ZAM Coated Steel for Photovoltaic Brackets

Zinc-Aluminum-Magnesium (ZAM) vs Hot-dip galvanizing (HDG)

Definición

What is Zinc-Aluminum-Magnesium (ZAM)?

Zinc-aluminum-magnesium (ZAM) is a high-performance metallic coating applied to steel designed to offer superior corrosion resistance, durability, and heat resistance compared to traditional galvanizing (zinc-only coatings). The coating combines zinc (Zn), aluminum (Al), and magnesium (Mg), which provides unique advantages in various applications.

ZAM Coating

ZAM Coating

What is Hot-dip galvanizing? (HDG)?

Hot-dip galvanization is a form of galvanization. It is the process of coating iron and steel with zinc, which alloys with the base metal surface when immersing the metal in a bath of molten zinc at a temperature of around 450 °C (842 °F). When exposed to the atmosphere, the pure zinc (Zn) reacts with oxygen (O2) to form zinc oxide (ZnO), which further reacts with carbon dioxide (CO2) to form zinc carbonate (ZnCO3), a usually dull grey, fairly strong material that protects the steel underneath from further corrosion in many circumstances.

Hot-dip Galvanizing

Hot-dip Galvanizing

Main Differences: Zinc-Aluminum-Magnesium (ZAM) vs Hot-dip galvanizing (HDG)

The comparison between zinc-aluminum-magnesium (ZAM) y hot-dip galvanizing (HDG) revolves around their coating composition, corrosion resistance, applications, cost, y environmental impact. Below is a detailed comparison to help understand their differences:

1. Coating Composition

Zinc-Aluminum-Magnesium (ZAM):
ZAM coatings are made of a combination of zinc (Zn), aluminum (Al), y magnesium (Mg). Typically, the composition is about 80-90% Zinc, 5-11% Aluminum, y 1-3% Magnesium. Including aluminum and magnesium gives the coating superior properties compared to zinc alone.

Hot-Dip Galvanizing (HDG):
HDG involves immersing steel into a molten bath of zinc (Zn) to form a protective zinc coating. The coating consists almost entirely of zinc, with small amounts of iron from the substrate, forming a zinc-iron alloy layer.

2. Resistencia a la corrosión

Zinc-Aluminum-Magnesium (ZAM):
Superior corrosion resistance compared to hot-dip galvanized steel. Adding aluminum increases the coating’s resistance to high temperatures and oxidation, while magnesium improves its resistance to corrosion in harsh environments like coastal, industrial, and chemical settings. ZAM has self-healing properties—if the coating is damaged, the magnesium component reacts with moisture to help prevent further corrosion.

Hot-Dip Galvanizing (HDG):
It provides good corrosion resistance but not as high as ZAM, especially in aggressive environments. The zinc coating is sacrificial, meaning it corrodes first to protect the underlying steel, but its effectiveness can be limited in humid, salty, o chemical environments. HDG does not have the advanced self-healing properties that ZAM offers.

3. Durability and Longevity

Zinc-Aluminum-Magnesium (ZAM):
ZAM-coated products can last 2 to 4 times longer than traditional galvanized steel in harsh environments (e.g., coastal areas, chemical plants, etc.). The coating’s enhanced resistance to environmental factors contributes to a longer service life.

Hot-Dip Galvanizing (HDG):
The lifespan of HDG products is good but generally shorter than ZAM, particularly in extreme conditions. HDG can last for many years in less corrosive environments (e.g., mild climates), but its protection may degrade faster in severe environments.

4. Applications

Zinc-Aluminum-Magnesium (ZAM):
Ideal for entornos hostiles such as Coastal areas (where saltwater exposure is high), Chemical and industrial environments (where exposure to aggressive substances is every day), Solar panel mounts (due to its superior durability), Heavy-duty industrial applications (e.g., agricultural and mining equipment, steel structures exposed to extreme weather conditions).

Hot-Dip Galvanizing (HDG):
It is commonly used in general construction, automotive industries, outdoor infrastructure, y agricultural applications. It is suitable for general-purpose corrosion protection in outdoor conditions but not recommended for extreme or coastal environments.

5. Cost

Zinc-Aluminum-Magnesium (ZAM):
It is more expensive than traditional hot-dip galvanizing due to the inclusion of aluminum and magnesium and the more advanced coating process. The longer lifespan and lower maintenance costs in harsh environments often justify the higher initial cost.

Hot-Dip Galvanizing (HDG):
It is cheaper than ZAM, making it more suitable for projects where cost-efficiency is a priority and the environment is less aggressive. The relatively lower cost makes it ideal for large-scale production.

6. Environmental Impact

Zinc-Aluminum-Magnesium (ZAM):
The production of ZAM coatings is more environmentally friendly than hot-dip galvanizing, as it involves lower emissions of harmful gases and waste materials. The production process for ZAM generally generates less waste y fewer harmful emissions compared to traditional galvanizing methods.

Hot-Dip Galvanizing (HDG):
It is more environmentally intensive than ZAM, producing more waste gases and wastewater. However, modern improvements in the HDG process have aimed to reduce the environmental footprint, though it remains higher than ZAM.

7. Aesthetic Appearance

Zinc-Aluminum-Magnesium (ZAM):
ZAM has a matte gray finish with a smoother, more uniform appearance. This appearance can be more desirable in specific applications like architectural structures or solar panel mounts.

Hot-Dip Galvanizing (HDG):
HDG often has a shiny or dull metallic finish, depending on the thickness of the coating. While durable, its aesthetic appearance may be less appealing than ZAM’s, especially if the finish is uneven.

8. Ease of Processing and Welding

Zinc-Aluminum-Magnesium (ZAM):
ZAM coatings can be more challenging to process, weld, y paint than traditional galvanized steel, creating issues in some applications.

Hot-Dip Galvanizing (HDG):
HDG products are easier to weld and process than ZAM. However, the zinc coating can make welding and cutting more difficult due to zinc fumes, and special precautions may be required.

Summary Comparison Table: Zinc-Aluminum-Magnesium (ZAM) vs Hot-dip Galvanizing (HDG)

Característica Zinc-Aluminum-Magnesium (ZAM) Hot-Dip Galvanizing (HDG)
Coating Composition Zinc, Aluminum, Magnesium Zinc (with some iron from the substrate)
Resistencia a la corrosión Superior, especially in harsh environments Good, but less effective in aggressive settings
Durability and Longevity 2-4 times longer than HDG in extreme environments Moderate lifespan, shorter in harsh conditions
Aplicaciones Coastal areas, chemical environments, heavy-duty General outdoor infrastructure, agriculture
Costo Higher initial cost Lower initial cost
Impacto medioambiental Lower emissions and waste Higher emissions and waste
Aesthetic Appearance Matte gray, smoother finish Shiny or dull metallic finish
Ease of Processing It can be more challenging, especially with welding It is more straightforward to process and weld

Conclusión

ZAM is the best choice for extreme environments where superior corrosion resistance and durability are needed. Its long-term performance can justify the higher upfront cost.

HDG remains the go-to solution for general corrosion protection in less aggressive environments, providing a cost-effective and widely available option for most standard applications.

Pipeline vs Piping

Tuberías y ductos terrestres y marinos

Introducción

In the realm of energy transportation, the distinction between onshore and offshore pipelines and piping systems plays a crucial role in the efficiency, safety, and environmental impact of resource extraction and distribution. Onshore pipelines, typically situated on land, are designed to transport oil, gas, and other fluids over varying distances, benefiting from relatively more straightforward access for maintenance and monitoring. Conversely, offshore pipelines, laid on the seabed or suspended in water, present unique engineering challenges due to harsh marine conditions and logistical complexities. Understanding the Onshore vs Offshore Pipeline and Piping in design, construction, and operational considerations between these two types of pipelines is essential for optimizing infrastructure development and ensuring sustainable practices in the energy sector.

Definition: Onshore vs Offshore Pipeline and Piping

What is Pipeline?

Pipeline is a long series of pipes, usually of large diameter, running underground, aboveground and underwater, such as a submarine pipeline, and equipped with fittings, such as valves and pumps, to control the flow of large quantities of fluid over long distances. Pipelines have large diameters, making it easy to transport liquids or gases in bulk from one place to another, sometimes for thousands of miles.

Pipeline

Pipeline

What is Piping?

Tubería is a system of pipes used to convey fluids (liquids and gases) from one location to another within the designated boundaries or spaces of petrochemical plants, power plants, refineries, etc. It is also equipped with valves and fittings to control the flow of fluids from one facility to another as needed, but only within the plant’s designated boundaries. Never skip these essential topics when taking an online course on piping engineering. Piping diameters range from 1/2 inch to 80 inches, depending on the facility’s design requirements for fluid transportation, usually from one facility to another within the facility’s boundaries.

Tubería

Tubería

What is Onshore Pipeline?

Onshore pipelines refer to networks of pipelines and related equipment used to transport fluids such as oil, natural gas, water, and chemicals in a land environment. These pipelines are integral to long-distance oil and gas transportation from oil fields to refineries, from natural gas wells to gas stations, and from crude oil and refined oil tank farms, chemical tank farms, LNG tank farms, and aircraft refueling pipeline operations.

Onshore Pipeline

Onshore Pipeline

What is Offshore Pipeline?

Offshore pipelines refer to the network of pipes and related equipment used to transport fluids such as oil, gas, water, and chemicals in an offshore environment. These pipelines are integral to operating offshore oil rigs, platforms and floating production storage and offloading units (FPSOs). The unique conditions of the offshore environment, such as high salinity, extreme temperatures, and strong currents, present significant challenges to the design and maintenance of these systems.

Offshore Pipeline

Offshore Pipeline

Main Differences: Onshore vs Offshore Pipeline and Piping

Comparison Table: Onshore vs Offshore Pipeline and Piping

Especificación En tierra Costa afuera
Pipeline Tubería Pipeline Tubería
Códigos de diseño – ASME B31.4: Pipeline Transportation Systems for Liquids and Slurries
– ASME B31.8: Gas Transmission and Distribution Piping Systems
ASME B31.3: Process Piping – DNVGL-ST-F101: Submarine pipeline systems
– API RP 1111: Design, Construction, Operation, and Maintenance of Offshore Hydrocarbon Pipelines (Limit state design)
ASME B31.3: Process Piping
Alcance Outside plant boundary
(Villages, fields, rivers, canals, railways, highways, cities, deserts, forests, hills, etc.)
Within plant boundary Outside plant boundary Within plant boundary
Type of pipe API Spec 5L: Specification for Line pipes – ASTM
– BS
– API 5L
API Spec 5L: Specification for Line pipes
– DNVGl-ST-F101: Submarine Pipeline Systems
Normas ASTM
Válvulas – API 6D: Specification for Pipeline and Piping Valves
– Full Bore (FB) Ball Valves are used for pigs.
– BS
– API Standard
– Full bore (FB) and Reduced bore (RB)
– Full bore Valves: for smooth passage of intelligent pigs
– API 6D SS: Specification on Subsea Pipeline Valves
– RB valves
– BS/API standards
Soldadura – API Std. 1104: Welding of Pipelines and Related Facilities
– Type of welding: Automatic / Semi-Automatic/ Manual
– ASME Sec. IX: Standard for Welding and Brazing Procedures, Welders, Brazers and Welding and Brazing Operators
– Type of welding: Manual (mostly)
– API Std. 1104: Welding of Pipelines and Related Facilities
– Mostly automatic welding on pipelay barge.
– ASME Sec. IX: Standard for Welding and Brazing Procedures, Welders, Brazers and Welding and Brazing Operators
– Manual welding at the fabrication yard.
Weld joint inspection (NDT requirements) 100% by Automatic UT or RT (by using X-Ray) 5% to 100%
(mostly by using gamma rays)
100% by Automatic UT From 10% to 100% as required
Analyses – Wall Thickness Analysis
– Elastic Bend Radius Analysis
– Stability Analysis for Water Bodies/ Marshy Areas
– Horizontal directional drilling design analysis
– Railroad/ Highway Crossing Analysis
– Casing Pipe Analysis for Crossings
– Seismic Analysis
– Piping wall thickness calculation
– Piping Stress Analysis
Static Analysis
Dynamic Analysis
Wind Analysis
Flange Leakage Analysis
Seismic Analysis
– Wall thickness Analysis
– On-bottom Stability
– Span Analysis
– Global Buckling – Lateral and Upheaval
– Pipeline Expansion Analysis
– Riser Design (Span, Stress & Flexibility Analysis)
– Riser Clamp Design
– Pipeline Crossing Design and Analysis
– Deck piping stress analysis
Instalación Buried (mostly) Above ground/On rack/slippers/T-postal etc. Subsea (in water on the seabed or buried in the seabed) Deck Platform Piping
(similar to plant)
Special Installations – Across rivers
– Horizontal Directional Drilling (HDD) method
– Micro-tunnelling method
– Across road/ rail/ highway
– Auger boring/ jacking boring method
– Shallow HDD
– Ghats/ Hills
– Modular installations
– Finning
– Studding
– Jacketing
– Spooling inside warehouse
– U/G piping for cooling water
– S-lay Method (for shallow water installation)
– J-Lay Method (for deep water installation)
– Shore pull/ barge pull near Land Fall Point (LFP)
Along with the deck structure
Special Equipment – Sectionalizing Valves (Remote operated)
– Insulating Joints
– Scraper Launcher/ Receiver
– Stem Extended Valves (for buried valves)
– Flow Tee
– Long Radius bends (R=6D)
– Cold field bends (R = 30D or 40D)
– Expansion Joints
– Motor Operator Valves (MOV)
– Cryogenic Valves
– Springs
– Subsea Isolation Valve (SSIV)
– LR Bends
– Flow tee
– Pipeline End Manifold (PLEM)
– Single Point Mooring (SPM) system
– Submarine hoses
– Floating hoses
– Cables and umbilical installation
– Piggy-back pipelines
No aplicable
Survey – Topographical Survey
(all along the pipeline route)
– Geotechnical investigation
(all along the pipeline route)
– Soil resistivity survey
(all along the pipeline route)
– Hydrological Survey for water bodies (for scour depth calculation)
– Cadastral Survey (for RoU acquisition)
– Wind profile from meteorology
– Seismic study of plot
– Geophysical survey/ Bathymetric Survey by using side scan sonar, sub-bottom profiler, and echo-sounder
– Met-Ocean data collection
– Geotechnical data of the pipeline route
No aplicable
Corrosion Protection Coating Three Layer Polyethylene (3LPE) coating
Three Layer Polypropylene (3LPP) coating
Fusion bonded epoxy (FBE) coating
– Coal tar enamel (CTE) Coating
Painting Coatings such as:
– Coal Tar Enamel Coating (CTE)
Three-layer polyethylene coating (3LPE)
Three-layer polypropylene coating (3LPP)
– Double-layer fusion bonded epoxy coating (2FBE)
Painting
Cathodic Protection System – Impressed Current Cathodic Protection (ICCP) system
– Sacrificial Anode (limited locations)
Not applicable Sacrificial Anodic Cathodic Protection (SACP) system No aplicable
Hydrostatic testing – Gauge Plate run of 95% of the ID of the highest pipe thickness
– Test Pressure
Minimum: 1.25 times of Design Pressure (for liquid pipelines)
1.25 to 1.5 times of Design Pressure (for gas pipelines)
Maximum: Pressure equivalent to Hoop stress of 95% of SMYS of pipe material
– Hold period: 24 hours
– No gauge plate run is done. Generally, cardboard blasting is done to clean the piping.
– Test Pressure
Minimum: 1.5 × Design Pressure × Temperature Factor
Maximum: Based on line schedule
– Hold period: 2 – 6 hours
– Gauge Plate run of 95% of the ID of the highest pipeline thickness.
– Test Pressure
Minimum: 1.25 times x Design Pressure
– Hold period: 24 hours
– No gauging is done.
– Test Pressure
Maximum: As per line schedule
– Hold period: 2 hours
Preservation – Preservation of pipeline with corrosion-inhibited water or by filling of inert gas (N2) Not applicable
Pigging Intelligent Pigging Not applicable Compliant Not applicable
Machines/Equipment required for installation – Trencher
– Backhoe/ Excavator
– Side Boom
– Cold field bending machine
– Holiday Detection Machines
– Pneumatic/ Hydraulic Internal Clamps
Crane/ Hydra – Pipelay Barge
– Derrick Barge
– Diving support vessel
– Dynamic Positioning (DP) barge (for deepwater)
Pre-fabricated deck piping

Conclusion: Onshore vs Offshore Pipeline and Piping

In summary, Onshore pipelines are usually buried or erected on land to transport oil, natural gas, drinking water, sewage, seawater, slurry, etc. Onshore piping is typically erected in petrochemical plants, power plants, refineries, fire protection systems, water treatment systems, etc., while Offshore pipelines are buried on the seabed. Offshore piping typically consists of transmission and structural support pipeline systems on offshore drilling platforms. Special offshore equipment includes underwater isolation valves, tees, and submarine hoses. Offshore surveys include geophysics, bathymetry, and ocean data collection, while onshore surveys focus on topographic and geotechnical engineering studies.

L80-9Cr vs L80-13Cr

L80-9Cr vs L80-13Cr: algo que debes saber

Choosing the proper casing and tubing materials can ensure safety and efficiency in oil and gas drilling and exploration. L80-9Cr and L80-13Cr are two alloy steel grades commonly used in petroleum casing and tubing. Each grade has unique characteristics and applications. L80-9Cr vs L80-13Cr, this article will delve into the difference between these materials to help you make an informed decision.

1. Overview of L80 Grade

L80 is an alloy steel used in the oil and gas sector. It is known for its good strength and corrosion resistance. It is typically employed in high-temperature and high-pressure environments and is suitable for both oil and gas production.

1.1 L80-9Cr

Composition: Contains 9% chromium, enhancing the material’s oxidation resistance at high temperatures.
Características:
Corrosion Resistance: It performs well in CO2 environments, making it suitable for acidic gas pipelines.
Mechanical Strength: Provides good strength and is suitable for high-temperature operations.
Applications: Commonly used in high-temperature gas pipelines in oil fields.

1.2 L80-13Cr

Composition: Contains 13% chromium, offering higher corrosion resistance.
Características:
Corrosion Resistance: Exhibits superior performance in environments with H2S and CO2, suitable for extreme conditions.
Mechanical Strength: Offers higher strength and is ideal for complex operational environments.
Applications: Used in high-corrosion environments and deep well operations.

L80-9Cr vs L80-13Cr

L80-9Cr and L80-13Cr Casing and Tubing in Oil and Gas Drilling and Exploration

2. Comparison: L80-9Cr vs L80-13Cr

2.1 Chemical Composition

Estándar Calificación C Si Minnesota PAG S cr Mes Ni Cu
API 5CT L80-9Cr ≤ 0,15 ≤ 1.00 0.30-0.60 ≤ 0,020 ≤ 0,010 8.00-10.00 0.90-1.10 ≤ 0.50 ≤ 0,25
L80-13Cr 0.15-0.22 ≤ 1.00 0.25-1.00 ≤ 0,020 ≤ 0,010 12.00-14.00 ≤ 0.50 ≤ 0,25

2.2 Propiedades mecánicas

Estándar Calificación Yield Strength (Mpa) Resistencia a la tracción (Mpa) Elongación (%) Hardness max
mín. max. mín. mín. CDH HBW
API 5CT L80-9Cr 552 655 655 API 5CT
Table C.7
23 241
L80-13Cr 552 655 655 23 241

2.3 Impact Test

Estándar Calificación Sharpy Impact Energy (J)
Coupling Cuerpo de tubería
API 5CT L80-9Cr L-10-40-0 T-10-20-0 L-10-27-0 T-10-14-0
L80-13Cr L-10-40-0 T-10-20-0 L-10-27-0 T-10-14-0

2.4 Corrosion Resistance

L80-9Cr: The 9% chromium content provides moderate corrosion resistance, suitable for environments with low to moderate concentrations of H₂S (hydrogen sulfide) or CO₂ (carbon dioxide), typically seen in less aggressive environments.

L80-13Cr: The 13% chromium content provides enhanced resistance to sour service (i.e., environments with high levels of H₂S) and high CO₂ environments. It’s better for harsher conditions like deep wells or offshore drilling.

2.5 Temperature and Sour Service

L80-9Cr: Generally suitable for moderate-temperature environments.

L80-13Cr: Can withstand higher temperatures and is better equipped for sour service conditions with high concentrations of H₂S or CO₂.

2.6 Cost

L80-9Cr: Due to its lower chromium content, L80-9Cr is less expensive than L80-13Cr. If the environment is not highly corrosive or sour, L80-9Cr could be a more cost-effective option.

L80-13Cr: More expensive but provides superior resistance in harsh conditions, potentially reducing maintenance costs or failures over time.

2.7 Applications

L80-9Cr: Suitable in wells with moderate temperature, pressure, and sour gas conditions. Often used in conventional oil and gas wells or less aggressive service environments.

L80-13Cr: Ideal for high-pressure wells with harsh environmental conditions, particularly in sour gas service, deep wells, or offshore oil & gas operations where high corrosion resistance is critical.

Producción de acero crudo

Producción de acero crudo en septiembre de 2024

En septiembre de 2024, la producción mundial de acero crudo de los 71 países que informan a la Asociación Mundial del Acero (acero mundial) fue de 143,6 millones de toneladas (Mt), una disminución de 4,7% respecto de septiembre de 2023.

producción de acero crudo

producción de acero crudo

Producción de acero crudo por regiones

África produjo 1,9 Mt en septiembre de 2024, 2,61 TP3T más que en septiembre de 2023. Asia y Oceanía produjeron 105,3 Mt, 5,01 TP3T menos. La UE (27) produjo 10,5 Mt, 0,31 TP3T más. Europa, Otros produjo 3,6 Mt, 4,11 TP3T más. Oriente Medio produjo 3,5 Mt, 23,01 TP3T menos. América del Norte produjo 8,6 Mt, 3,41 TP3T menos. Rusia y otros países de la CEI + Ucrania produjeron 6,8 Mt, 7,61 TP3T menos. América del Sur produjo 3,5 Mt, 3,31 TP3T más.

Cuadro 1. Producción de acero crudo por regiones

Región septiembre 2024 (mt) Cambio de % 24/23 de septiembre Enero-septiembre de 2024 (Mt) % cambio enero-septiembre 24/23
África 1.9 2.6 16.6 2.3
Asia y Oceanía 105.3 -5 1,032.00 -2.5
UE (27) 10.5 0.3 97.8 1.5
Europa, Otros 3.6 4.1 33.1 7.8
Oriente Medio 3.5 -23 38.4 -1.5
América del norte 8.6 -3.4 80 -3.9
Rusia y otros países de la CEI + Ucrania 6.8 -7.6 64.9 -2.5
Sudamerica 3.5 3.3 31.4 0
Total 71 países 143.6 -4.7 1,394.10 -1.9

Los 71 países incluidos en esta tabla representaron aproximadamente 98% de la producción mundial total de acero crudo en 2023.

Regiones y países cubiertos por la tabla:

  • África: Argelia, Egipto, Libia, Marruecos, Sudáfrica, Túnez
  • Asia y Oceanía: Australia, China, India, Japón, Mongolia, Nueva Zelanda, Pakistán, Corea del Sur, Taiwán (China), Tailandia, Vietnam
  • Unión Europea (27): Alemania, Austria, Bélgica, Bulgaria, Croacia, Eslovaquia, Eslovenia, España, Finlandia, Francia, Grecia, Hungría, Italia, Luxemburgo, Países Bajos, Polonia, Portugal, República Checa, Rumanía y Suecia.
  • Europa, Otros: Macedonia, Noruega, Serbia, Turquía, Reino Unido
  • Oriente Medio: Arabia Saudita, Bahréin, Emiratos Árabes Unidos, Irak, Irán, Jordania, Kuwait, Omán, Qatar, Yemen
  • América del norte: Canadá, Cuba, El Salvador, Guatemala, México, Estados Unidos
  • Rusia y otros países de la CEI + Ucrania: Bielorrusia, Kazajstán, Rusia, Ucrania
  • Sudamerica: Argentina, Brasil, Chile, Colombia, Ecuador, Paraguay, Perú, Uruguay, Venezuela

Los 10 principales países productores de acero

China produjo 77,1 Mt en septiembre de 2024, 6,11 TP3T menos que en septiembre de 2023. India produjo 11,7 Mt, 0,21 TP3T menos. Japón produjo 6,6 Mt, 5,81 TP3T menos. Estados Unidos produjo 6,7 Mt, 1,21 TP3T más. Se estima que Rusia produjo 5,6 Mt, 10,31 TP3T menos. Corea del Sur produjo 5,5 Mt, 1,31 TP3T más. Alemania produjo 3,0 Mt, 4,31 TP3T más. Turquía produjo 3,1 Mt, 6,51 TP3T más. Brasil produjo 2,8 Mt, 9,91 TP3T más. Se estima que Irán produjo 1,5 Mt, 41,21 TP3T menos.

Cuadro 2. Los 10 principales países productores de acero

Región  septiembre 2024 (mt) Cambio de % 24/23 de septiembre Enero-septiembre de 2024 (Mt) % cambio enero-septiembre 24/23
Porcelana 77.1 -6.1 768.5 -3.6
India 11.7 -0.2 110.3 5.8
Japón 6.6 -5.8 63.3 -3.2
Estados Unidos 6.7 1.2 60.3 -1.6
Rusia 5.6e -10.3 54 -5.5
Corea del Sur 5.5 1.3 48.1 -4.6
Alemania 3 4.3 28.4 4
Turquía 3.1 6.5 27.9 13.8
Brasil 2.8 9.9 25.2 4.4
Irán 1,5 e -41.2 21.3 -3.1

e – estimado. La clasificación de los 10 principales países productores se basa en el agregado del año hasta la fecha.

Comparación entre API 5L y ISO 3183

Conozca las diferencias: API 5L vs ISO 3183

Las normas ISO 3183 y API 5L son normas relacionadas con las tuberías de acero, principalmente para su uso en las industrias de transporte de petróleo, gas y otros fluidos. Si bien existe una superposición significativa entre estas dos normas, API 5L e ISO 3183, existen diferencias clave en su alcance, aplicación y las organizaciones que las respaldan.

1. Organismos emisores: API 5L vs ISO 3183

API 5L: Emitida por el Instituto Americano del Petróleo (API), esta norma se utiliza principalmente en la industria del petróleo y el gas. Detalla los requisitos técnicos para las tuberías de acero que transportan petróleo, gas y agua.
ISO 3183: Emitida por la Organización Internacional de Normalización (ISO), esta norma es reconocida internacionalmente y utilizada globalmente para tuberías de acero en el sector de transporte de petróleo y gas.

2. Ámbito de aplicación: API 5L vs ISO 3183

API 5L: Cubre tuberías de acero para transportar petróleo, gas natural y otros fluidos a alta presión. Es ampliamente utilizada en América del Norte, especialmente en Estados Unidos.
ISO 3183: Esta norma se centra principalmente en el diseño, fabricación y control de calidad de las tuberías de acero utilizadas en oleoductos y gasoductos, pero su uso es más internacional y aplicable en varios países del mundo.

3. Diferencias clave: API 5L vs ISO 3183

Enfoque geográfico y de mercado:

API 5L está más adaptada al mercado norteamericano (particularmente EE. UU.), mientras que ISO 3183 es aplicable internacionalmente y se utiliza en muchos países del mundo.

Grados y requisitos del acero:

API 5L define grados de acero como L175, L210, L245, etc., donde el número representa la resistencia mínima al rendimiento en megapascales (MPa).
La norma ISO 3183 también define grados similares pero con requisitos más detallados respecto a las propiedades del material, los procesos de fabricación y los protocolos de inspección, alineándose con las prácticas industriales internacionales.
Especificaciones adicionales:
API 5L enfatiza el control de calidad, la certificación y los requisitos de producción, mientras que ISO 3183 cubre un alcance más amplio, teniendo en cuenta el comercio internacional, y proporciona especificaciones para diferentes condiciones, incluida la temperatura, el medio ambiente y los requisitos mecánicos específicos.

4. Requisitos técnicos: API 5L vs ISO 3183

La API 5L especifica las propiedades de los materiales, los procesos de fabricación, las dimensiones, los métodos de prueba y el control de calidad de las tuberías de acero. Define los grados de acero desde L (baja resistencia) hasta X (mayor resistencia), como X42, X60 y X70.
La norma ISO 3183 cubre aspectos similares de la fabricación de tuberías de acero, incluida la calidad del material, el tratamiento térmico, el tratamiento de la superficie y los extremos de las tuberías. También proporciona especificaciones detalladas para la presión de diseño de las tuberías, consideraciones ambientales y diversos accesorios para tuberías.

5. Comparación de grados de tuberías: API 5L vs ISO 3183

API 5L: Los grados van desde los grados L (resistencia a la fluencia baja) hasta los grados X (resistencia a la fluencia más alta). Por ejemplo, X60 se refiere a tuberías con una resistencia a la fluencia de 60 000 psi (aproximadamente 413 MPa).
ISO 3183: Utiliza un sistema de clasificación similar, pero puede incluir clasificaciones y condiciones más detalladas. También garantiza la alineación con las prácticas operativas y de diseño de tuberías globales.

6. Compatibilidad entre normas:

En muchos casos, API 5L e ISO 3183 son compatibles, lo que significa que una tubería de acero que cumple con los requisitos de API 5L generalmente también cumplirá con los requisitos de ISO 3183 y viceversa. Sin embargo, proyectos de tuberías específicos pueden adherirse a una norma en lugar de a otra según la ubicación, las preferencias del cliente o los requisitos regulatorios.

7. Conclusión:

La API 5L es más común en los Estados Unidos y las regiones circundantes. Se centra en la industria de oleoductos y gasoductos, y pone un gran énfasis en la producción y el control de calidad.
La ISO 3183 es una norma internacional para proyectos de oleoductos y gasoductos a nivel mundial. Sus requisitos más detallados y alineados a nivel mundial garantizan una mayor aceptación en los mercados internacionales.

Ambas normas son muy similares en cuanto a especificaciones de materiales, fabricación y pruebas. Aun así, la ISO 3183 tiende a tener un alcance más amplio y de aplicación más global, mientras que la API 5L sigue siendo más específica para el mercado norteamericano. La elección entre estas normas depende de la ubicación geográfica, las especificaciones y las necesidades regulatorias del proyecto de oleoducto.

Acero inoxidable vs acero galvanizado

Acero inoxidable vs acero galvanizado

Introducción

Acero inoxidable vs acero galvanizadoEs fundamental tener en cuenta el medio ambiente, la durabilidad requerida y las necesidades de mantenimiento. El acero inoxidable ofrece una resistencia a la corrosión, una solidez y un atractivo visual inigualables, lo que lo hace adecuado para aplicaciones exigentes en entornos hostiles. El acero galvanizado, por otro lado, ofrece una protección contra la corrosión rentable para entornos menos agresivos.

1. Composición y proceso de fabricación

Acero inoxidable

El acero inoxidable es una aleación compuesta principalmente de hierro, cromo (al menos 10,5%) y, en ocasiones, níquel y molibdeno. El cromo forma una capa de óxido protectora sobre la superficie, lo que le confiere una excelente resistencia a la corrosión. Los distintos grados, como el 304 y el 316, varían en elementos de aleación, lo que ofrece opciones para diversos entornos, incluidas temperaturas extremas y alta salinidad.

Acero galvanizado

El acero galvanizado es acero al carbono recubierto con una capa de zinc. La capa de zinc protege el acero que se encuentra debajo como una barrera contra la corrosión. El método de galvanización más común es la galvanización por inmersión en caliente, en la que el acero se sumerge en zinc fundido. Otro método es la electrogalvanización, en la que se aplica zinc mediante una corriente eléctrica. Ambos procesos mejoran la resistencia a la corrosión, aunque generalmente son menos duraderos en entornos hostiles que el acero inoxidable.

2. Resistencia a la corrosión

Acero inoxidable

La resistencia a la corrosión del acero inoxidable es inherente a su composición de aleación, que forma una capa pasiva de óxido de cromo. El acero inoxidable de grado 316, que incluye molibdeno, proporciona una excelente resistencia a la corrosión por cloruros, ácidos y otros productos químicos agresivos. Es una opción preferida en las industrias marina, de procesamiento químico y de petróleo y gas, donde la exposición a agentes corrosivos es diaria.

Acero galvanizado

La capa de zinc sobre el acero galvanizado proporciona protección sacrificial; el zinc se corroerá antes que el acero subyacente, lo que ofrece cierta resistencia a la corrosión. Sin embargo, esta protección es limitada, ya que la capa de zinc puede degradarse con el tiempo. Si bien el acero galvanizado funciona adecuadamente en entornos templados y en la construcción en general, no resiste los productos químicos agresivos ni la exposición al agua salada con tanta eficacia como el acero inoxidable.

3. Propiedades mecánicas y resistencia

Acero inoxidable

El acero inoxidable es generalmente más resistente que el acero galvanizado, con Mayor resistencia a la tracción y durabilidadEsto lo hace ideal para aplicaciones que requieren resistencia y confiabilidad bajo presión. El acero inoxidable también ofrece Excelente resistencia al impacto y al desgaste., lo que beneficia a la infraestructura y a las aplicaciones industriales de servicio pesado.

Acero galvanizado

Si bien la resistencia del acero galvanizado proviene principalmente de la núcleo de acero al carbono, por lo general es menos resistente que el acero inoxidable. La capa de zinc añadida no contribuye significativamente a su resistencia. El acero galvanizado es adecuado para aplicaciones de servicio medio donde la resistencia a la corrosión es necesaria pero no en entornos extremos o de alto estrés.

4. Apariencia y estética

Acero inoxidable

El acero inoxidable tiene un aspecto elegante y brillante y suele ser el material preferido en aplicaciones arquitectónicas e instalaciones visibles. Su atractivo estético y su durabilidad lo convierten en la opción preferida para estructuras y equipos de alta visibilidad.

Acero galvanizado

La capa de zinc le da al acero galvanizado un acabado gris mate, menos atractivo visualmente que el acero inoxidable. Con el tiempo, la exposición a la intemperie puede generar una pátina blanquecina en la superficie, lo que puede reducir el atractivo estético, aunque no afecta el rendimiento.

5. Consideraciones de costos

Acero inoxidable

El acero inoxidable es típicamente más caro debido a sus elementos de aleación, cromo y níquel, y a los complejos procesos de fabricación. Sin embargo, su mayor vida útil y un mantenimiento mínimo puede compensar el costo inicial, especialmente en entornos exigentes.

Acero galvanizado

El acero galvanizado es Más económico que el acero inoxidable, especialmente para aplicaciones de corto a mediano plazo. Es una opción rentable para proyectos con un Presupuesto limitado y necesidades moderadas de resistencia a la corrosión.

6. Aplicaciones típicas

Aplicaciones del acero inoxidable

Petróleo y gas: Se utiliza en tuberías, tanques de almacenamiento y plataformas marinas debido a su alta resistencia a la corrosión y resistencia.
Procesamiento químico: Excelente para entornos donde la exposición a productos químicos ácidos o cáusticos es diaria.
Ingeniería marina: La resistencia del acero inoxidable al agua salada lo hace adecuado para aplicaciones marinas como muelles, embarcaciones y equipos.
Infraestructura: Ideal para puentes, barandillas y estructuras arquitectónicas donde la durabilidad y la estética son esenciales.

Aplicaciones del acero galvanizado

Construcción general: se utiliza comúnmente en marcos de edificios, cercas y soportes de techos.
Equipos agrícolas: Proporciona un equilibrio entre resistencia a la corrosión y rentabilidad para equipos expuestos al suelo y la humedad.
Instalaciones de tratamiento de agua: adecuadas para infraestructura de agua no crítica, como tuberías y tanques de almacenamiento en entornos de baja corrosión.
Estructuras para exteriores: se utilizan comúnmente en barreras de carreteras, barandillas y postes, donde se espera exposición a condiciones climáticas templadas.

7. Mantenimiento y longevidad

Acero inoxidable

El acero inoxidable requiere mantenimiento mínimo Debido a su inherente resistencia a la corrosión, sin embargo, en entornos hostiles, se recomienda una limpieza periódica para eliminar la sal, los productos químicos o los depósitos que podrían comprometer la capa protectora de óxido con el tiempo.

Acero galvanizado

El acero galvanizado requiere Inspección y mantenimiento regulares para mantener la capa de zinc intacta. Si la capa de zinc está rayada o degradada, puede ser necesario volver a galvanizarla o aplicarle revestimientos adicionales para evitar la corrosión. Esto es particularmente importante en aplicaciones marinas o industriales, donde la capa de zinc corre el riesgo de degradarse más rápidamente.

8. Ejemplo: acero inoxidable vs acero galvanizado

PROPIEDAD ACERO INOXIDABLE (316) ACERO GALVANIZADO COMPARACIÓN
Mecanismo de protección Una capa protectora de óxido que se autorepara en presencia de oxígeno, otorgando resistencia a la corrosión a largo plazo. Durante la fabricación, se aplica al acero una capa protectora de zinc. Cuando se daña, el zinc circundante protege catódicamente el acero expuesto. La capa protectora de acero inoxidable es más duradera y puede "repararse" por sí sola. La protección del acero inoxidable no disminuye con la pérdida de material o la reducción de espesor.
Apariencia Hay muchos acabados disponibles, desde electropulido muy brillante hasta pulido abrasivo. Aspecto y tacto atractivos de alta calidad. Posible aparición de lentejuelas. La superficie no es brillante y cambia gradualmente a un gris opaco con el tiempo. Elección de diseño estético.
Sensación de superficie Es muy suave y puede ser resbaladizo. Tiene un tacto más áspero, que se hace más evidente con el tiempo. Elección de diseño estético.
Credenciales verdes Puede reutilizarse en nuevas estructuras. Una vez concluida la vida útil de la estructura, es valioso como chatarra y, debido a su valor de colección, tiene una alta tasa de reciclaje. El acero al carbono generalmente se desecha al final de su vida útil y es menos valioso. El acero inoxidable se recicla en gran medida, tanto durante la fabricación como al final de su vida útil. Todo el acero inoxidable nuevo contiene una proporción sustancial de acero reciclado.
Escorrentía de metales pesados Niveles insignificantes. Importante pérdida de zinc, especialmente en los primeros años de vida. En algunas carreteras europeas se han sustituido las barandillas por barandillas de acero inoxidable para evitar la contaminación ambiental por zinc.
Vida Indefinido, siempre que se mantenga la superficie. Corrosión general lenta hasta que se disuelva el zinc. Aparecerá óxido rojo a medida que se corroa la capa de zinc/hierro y, finalmente, el acero del sustrato. Es necesario realizar una reparación antes de que aproximadamente el 2% de la superficie presente manchas rojas. El acero inoxidable ofrece una clara ventaja en términos de costo de ciclo de vida si se pretende prolongar su vida útil. El punto de equilibrio económico puede ser de tan solo seis años, según el entorno y otros factores.
Resistencia al fuego Excelente para aceros inoxidables austeníticos con resistencia y desviación razonables durante el fuego. El zinc se derrite y se escurre, lo que puede provocar la falla del acero inoxidable adyacente en una planta química. El sustrato de acero al carbono pierde resistencia y sufre deformaciones. El acero inoxidable ofrece una mejor resistencia al fuego y evita el riesgo de zinc fundido si se utiliza galvanizado.
Soldadura en sitio Esta es una rutina para aceros inoxidables austeníticos, en la que se debe tener cuidado con la expansión térmica. Las soldaduras se pueden integrar con la superficie metálica circundante. La limpieza y la pasivación posteriores a la soldadura son esenciales. El acero al carbono se puede soldar por sí solo, pero es necesario eliminar el zinc debido a los vapores. Si se sueldan acero galvanizado y acero inoxidable, cualquier residuo de zinc hará que el acero inoxidable se vuelva quebradizo. La pintura rica en zinc es menos duradera que la galvanizada. En entornos marinos severos, puede aparecer óxido costroso en tres a cinco años, y los ataques al acero ocurren cuatro años/mm después. La durabilidad a corto plazo es similar, pero un revestimiento rico en zinc en las uniones requiere mantenimiento. En condiciones severas, el acero galvanizado puede oxidarse (incluso perforarse) y causar posibles lesiones en las manos, especialmente desde el lado que no se ve hacia el mar.
Contacto con material húmedo y poroso (por ejemplo, cuñas de madera) en un ambiente salado. Probablemente provocará manchas de óxido y grietas, pero no fallas estructurales. Similar a las manchas de almacenamiento, conduce a una rápida pérdida de zinc y a un mayor plazo debido a la perforación. No es deseable para ninguno de los dos, pero puede provocar fallos en la base de los postes galvanizados a largo plazo.
Mantenimiento Puede sufrir manchas de té y micropicaduras si no se mantiene adecuadamente. Puede sufrir pérdida general de zinc y posterior corrosión del sustrato de acero si no se mantiene adecuadamente. En ambos casos es necesaria la lluvia en zonas abiertas o el lavado en regiones protegidas.