ASTM A335 ASME SA335 P92 SMLS-ROHR

Mikrostrukturentwicklung von P92-Stahl bei unterschiedlichen isothermen Temperaturen

Mikrostrukturentwicklung von P92-Stahl bei unterschiedlichen isothermen Temperaturen

P92 Stahl wird hauptsächlich in ultra-überkritischen Kesseln, Ultrahochdruck-Pipelines und anderen Hochtemperatur- und Hochdruckgeräten verwendet. Die chemische Zusammensetzung von P92-Stahl basiert auf der Zugabe von Spurenelementen der Elemente W und B, der Reduzierung des Mo-Gehalts und der Verstärkung der Korngrenzen und Dispersion auf verschiedene Weise, um die Gesamtleistung von P92-Stahl zu verbessern. P92-Stahl hat im Vergleich zu P91-Stahl eine bessere Oxidations- und Korrosionsbeständigkeit. Ein Warmbearbeitungsprozess ist für die Herstellung von P92-Stahlrohren unerlässlich. Die Wärmebehandlungstechnologie kann die im Produktionsprozess entstandenen inneren Defekte beseitigen und die Leistung des Stahls an die Anforderungen der Arbeitsbedingungen anpassen. Art und Zustand der Organisation im Warmbearbeitungsprozess sind die Schlüsselfaktoren, die die Leistung beeinflussen, um den Standard zu erfüllen. Daher analysiert dieses Dokument die Organisation von P92-Stahlrohren bei unterschiedlichen isothermen Temperaturen, um die Organisationsentwicklung von P92-Stahlrohren bei verschiedenen Temperaturen aufzuzeigen. Dies liefert nicht nur Informationsunterstützung für die Organisationsanalyse und Leistungskontrolle des eigentlichen Warmumformungsprozesses, sondern legt auch die experimentelle Grundlage für die Entwicklung des Warmumformungsprozesses.

1. Testmaterialien und Methoden

1.1 Untersuchungsmaterial

Bei dem getesteten Stahl handelt es sich um ein P92-Stahlrohr im Gebrauchszustand (1060 °C gehärtet + 760 °C angelassen), und seine chemische Zusammensetzung ist in Tabelle 1 aufgeführt. Eine zylindrische Probe von ϕ4 mm × 10 mm wurde an einer bestimmten Stelle entlang der Längsrichtung im Mittelteil des fertigen Rohrs herausgeschnitten, und mit dem Abschreck-Ausdehnungsmessgerät wurde die Gewebeumwandlung bei unterschiedlichen Temperaturen untersucht.

Tabelle 1 Hauptchemische Zusammensetzung von P92-Stahl nach Massenanteil (%)

Element C Si Mn Cr Ni Mo V Al B Nr. B Fe
% 0.13 0.2 0.42 8.67 0.25 0.48 0.19 0.008 0.002 0.05 1.51 Gleichgewicht

1.2 Testprozess

Unter Verwendung des Abschreck-Wärmeausdehnungsmessgeräts L78 wird die Isolierung 15 Minuten lang mit 0,05 °C/s auf 1050 °C erwärmt und mit 200 °C/s auf Raumtemperatur abgekühlt. Der kritische Punkt des Phasenwechsels des Materials wird gemessen: Ac1 liegt bei 792,4 °C, Ac3 bei 879,8 °C und Ms bei 372,3 °C. Die Proben wurden mit einer Geschwindigkeit von 10 °C/s auf 1050 °C erhitzt und 15 Minuten lang auf dieser Temperatur gehalten. Anschließend wurden sie mit einer Geschwindigkeit von 150 °C/s auf unterschiedliche Temperaturen (770, 740, 710, 680, 650, 620, 520, 430, 400, 370, 340, 310, 280, 250, 190 und 160 °C) abgekühlt und für unterschiedliche Zeiträume (620 °C und darunter für 1 Stunde, 620 °C und darüber für 25 Stunden) gehalten. Bei 620 °C und darüber für 25 Stunden wird das isotherme Ende der Stromversorgung abgeschaltet, sodass die Probe durch Luftkühlung auf Raumtemperatur abgekühlt wird.1.3 Prüfmethoden

Nach dem Schleifen und Polieren der Oberfläche der Proben mit verschiedenen Verfahren wurde die Oberfläche der Proben mit Königswasser korrodiert. Zur Beobachtung und Analyse der Organisation wurden das Zeiss-Mikroskop AXIOVERT 25 und das Umwelt-Rasterelektronenmikroskop QWANTA 450 verwendet. Mit einem Härteprüfgerät HVS-50 Vickers (Belastungsgewicht 1 kg) wurden an mehreren Stellen auf der Oberfläche jeder Probe Härtemessungen vorgenommen und der Durchschnittswert als Härtewert der Probe genommen.

2. Testergebnisse und Analyse

2.1 Organisation und Analyse verschiedener isothermer Temperatur

Abbildung 1 zeigt die Mikrostruktur von P92-Stahl nach vollständiger Austenitisierung bei 1050 °C für unterschiedliche Zeiten und Temperaturen. Abbildung 1(a) zeigt die Mikrostruktur von P92-Stahl nach Isothermalisierung bei 190 °C für 1 Stunde. In Abbildung 1(a2) ist ersichtlich, dass die Struktur bei Raumtemperatur Martensit (M) ist. In Abbildung 1(a3) ist ersichtlich, dass der Martensit lattenartige Eigenschaften aufweist. Da der Ms-Punkt des Stahls bei etwa 372 °C liegt, findet die Martensit-Phasenumwandlung bei isothermischen Temperaturen unterhalb des Ms-Punkts statt, wobei Martensit entsteht, und der Kohlenstoffgehalt des P92-Stahls gehört zum Bereich der kohlenstoffarmen Zusammensetzungen; eine lattenartige Morphologie ist charakteristisch für den Martensit.

Abbildung 1(a) zeigt die Mikrostruktur von P92-Stahl nach 1 Stunde isothermer Lagerung bei 190°C

Abbildung 1(a) zeigt die Mikrostruktur von P92-Stahl nach 1 Stunde isothermer Lagerung bei 190°C

Abbildung 1 (b) zeigt die Mikrostruktur von P92-Stahl bei 430 °C isothermisch 1 Stunde. Wenn die isotherme Temperatur auf 430 °C ansteigt, erreicht P92-Stahl die Bainit-Umwandlungszone. Da der Stahl Mo-, B- und W-Elemente enthält, haben diese Elemente nur wenig Einfluss auf die Bainit-Umwandlung, während sie die perlitische Umwandlung verzögern. Daher wird bei P92-Stahl bei 430 °C 1 Stunde lang eine gewisse Menge Bainit gebildet. Dann wird der verbleibende unterkühlte Austenit bei Luftkühlung in Martensit umgewandelt.

Abbildung 1 (b) für die Mikrostruktur von P92-Stahl bei 430 ℃ isothermisch 1h

Abbildung 1 (b) für die Mikrostruktur von P92-Stahl bei 430 ℃ isothermisch 1h

Abbildung 1 (c) zeigt die Mikrostruktur von P92-Stahl bei 520 °C isothermisch 1 Stunde. Bei einer isothermischen Temperatur von 520 °C werden die Legierungselemente Cr, Mo, Mn usw. so eingestellt, dass die Perlitumwandlung gehemmt wird, der Beginn des Bainitumwandlungspunkts (Bs-Punkt) wird gesenkt, sodass in einem bestimmten Temperaturbereich die Stabilisierungszone des unterkühlten Austenits auftritt. Abbildung 1 (c) zeigt, dass nach 520 °C isothermisch 1 Stunde lang kein unterkühlter Austenit mehr umgewandelt wird und sich nach Luftkühlung Martensit bildet; die endgültige Struktur bei Raumtemperatur ist Martensit.

Abbildung 1 (c) zeigt die Mikrostruktur von P92-Stahl bei 520 °C isothermisch 1 Stunde

Abbildung 1 (c) zeigt die Mikrostruktur von P92-Stahl bei 520 °C isothermisch 1 Stunde

Abbildung 1 (d) zeigt die Mikrostruktur von P92-Stahl bei 650 °C isothermisch über 25 Stunden für Martensit + Perlit. Wie in Abbildung 1 (d3) gezeigt, weist Perlit diskontinuierliche Lamelleneigenschaften auf und das Karbid an der Oberfläche weist eine kurze Stabausscheidung auf. Dies liegt daran, dass die Legierungselemente Cr, Mo, V usw. von P92-Stahl die Stabilität von unterkühltem Austenit verbessern und gleichzeitig die Perlitmorphologie von P92-Stahl ändern, d. h. das Karbid im Perlitkörper des Karbids für den kurzen Stab, dieser Perlitkörper wird als Perlitklasse bezeichnet. Gleichzeitig wurden in der Organisation viele feine Partikel der zweiten Phase gefunden.

Abbildung 1 (d) für den P92-Stahl bei 650 ℃ isothermische 25-Stunden-Mikrostruktur für Martensit + Perlit

Abbildung 1 (d) für den P92-Stahl bei 650 ℃ isothermische 25-Stunden-Mikrostruktur für Martensit + Perlit

Abbildung 1 (e) zeigt die Mikrostruktur von P92-Stahl bei 740 °C isothermisch über 25 Stunden. Bei 740 °C isothermisch kommt es zunächst zu einer eutektischen massiven Ferritausfällung und dann zur eutektischen Zersetzung des Austenits, was zu einer perlitähnlichen Organisation führt. Im Vergleich zur 650 °C isothermischen Temperatur (siehe Abbildung 1 (d3)) wird die perlitische Organisation mit zunehmender isothermischer Temperatur gröber, und der zweiphasige Charakter des Perlits, d. h. Ferrit und Carburit in Form eines kurzen Balkens, ist deutlich sichtbar.

Abbildung 1 (e) zeigt die Mikrostruktur von P92-Stahl bei 740 °C isothermisch 25h

Abbildung 1 (e) zeigt die Mikrostruktur von P92-Stahl bei 740 °C isothermisch 25h

Abb. 1(f) zeigt die Mikrostruktur von P92-Stahl bei 770 °C isothermer Temperatur für 25 Stunden. Bei 770 °C isothermer Temperatur tritt mit zunehmender isothermer Zeit zuerst die Ausfällung von Ferrit auf, und dann durchläuft der unterkühlte Austenit eine eutektische Zersetzung, wobei eine Ferrit-Perlit-Anordnung entsteht. Mit zunehmender isothermer Temperatur steigt der erste eutektische Ferritgehalt an und der Perlitgehalt sinkt. Aufgrund der Legierungselemente des P92-Stahls, die sich im Austenit lösen und die Härtbarkeit des Austenits erhöhen, wird die eutektische Zersetzung schwieriger, sodass die isotherme Zeit ausreichend lang sein muss, damit die eutektische Zersetzung und die Bildung der perlitischen Anordnung erfolgen können.

Abb. 1(f) zeigt die Mikrostruktur von P92-Stahl bei 770°C isothermer Temperatur für 25h

Abb. 1(f) zeigt die Mikrostruktur von P92-Stahl bei 770°C isothermer Temperatur für 25h

Um den Gewebetyp weiter zu bestimmen, wurde eine Energiespektrumanalyse an den Geweben mit unterschiedlicher Morphologie in Abb. 1(f2) durchgeführt, wie in Tabelle 2 gezeigt. Aus Tabelle 2 ist ersichtlich, dass der Kohlenstoffgehalt der weißen Partikel höher ist als bei anderen Anordnungen und dass die Legierungselemente Cr, Mo und V häufiger vorhanden sind. Bei der Analyse dieses Partikels auf zusammengesetzte Karbidpartikel, die beim Abkühlungsprozess ausgeschieden wurden, ist dieser Partikel vergleichsweise dünn. Der Kohlenstoffgehalt in der diskontinuierlichen lamellaren Anordnung ist der zweitniedrigste und der Kohlenstoffgehalt in der massiven Anordnung ist am geringsten. Da Perlit eine zweiphasige Anordnung aus Aufkohlung und Ferrit ist, ist der durchschnittliche Kohlenstoffgehalt höher als bei Ferrit. In Kombination mit der isothermen Temperatur- und Morphologieanalyse wurde außerdem festgestellt, dass die lamellare Anordnung perlitähnlich ist und die massive Anordnung zunächst eutektischer Ferrit ist.

Spektralanalyse des P92-Stahls, isothermisch behandelt bei 770 °C für 25 Stunden, in Tabellenform mit Atomanteilen (%)

Struktur C Nr. Mo Ti V Cr Mn Fe B
Weißes Granulat 11.07 0.04 0.94 0.02 2.16 8.36 2.64 54.77 2.84
Blockstruktur 9.31 0.04 0.95 0.2 0.32 8.42 0.74 85.51 10.21
Schichtstruktur 5.1 0 0.09 0.1 0.33 7.3 0.35 85.65 0.69

2.2 Mikrohärte und Analyse

Während des Abkühlungsprozesses von legiertem Stahl mit Elementen wie W und Mo treten im unterkühlten Austenit allgemein drei Arten von Organisationsumwandlungen auf: martensitische Umwandlung in der Niedertemperaturzone, Bainitumwandlung in der Mitteltemperaturzone und Perlitumwandlung in der Hochtemperaturzone. Die unterschiedlichen Organisationsentwicklungen führen zu unterschiedlichen Härten. Abbildung 2 zeigt die Variation der Härtekurve von Stahl P92 bei unterschiedlichen isothermen Temperaturen. Aus Abbildung 2 ist ersichtlich, dass die Härte mit zunehmender isothermer Temperatur zunächst abnimmt, dann zunimmt und schließlich abnimmt. Bei einer isothermen Temperatur von 160 – 370 °C findet eine martensitische Umwandlung statt, die Vickershärte steigt von 516 HV auf 457 HV. Bei einer isothermen Temperatur von 400 – 620 °C findet eine geringe Bainitumwandlung statt und die Härte steigt von 478 HV auf 484 HV; Aufgrund der geringen Bainitumwandlung ändert sich die Härte nicht wesentlich. Bei einer isothermen Temperatur von 650 °C bildet sich eine kleine Menge Perlit mit einer Härte von 410 HV. Bei einer isothermen Temperatur von 680 bis 770 °C bildet sich eine Ferrit-Perlit-Organisation, die Härte steigt von 242 HV auf 163 HV. Da die Umwandlung von P92-Stahl bei unterschiedlichen Temperaturen in der Organisation des Übergangs unterschiedlich ist, nimmt im Bereich der Niedrigtemperatur-Martensitumwandlung, wenn die isotherme Temperatur unter dem Ms-Punkt liegt, mit steigender Temperatur der Martensitgehalt ab und die Härte nimmt ab; in der Mitte der Umwandlung von P92-Stahl bei unterschiedlichen Temperaturen, wenn die isotherme Temperatur unter dem Ms-Punkt liegt, nimmt der Martensitgehalt mit steigender Temperatur ab und die Härte nimmt ab; Im Mitteltemperatur-Bainitumwandlungsbereich ändert sich die Härte nicht sehr, da der Anteil der Bainitumwandlung gering ist; im Hochtemperatur-Perlitumwandlungsbereich nimmt mit steigender isothermer Temperatur der Gehalt des ersten eutektischen Ferrits zu, sodass die Härte weiter abnimmt. Daher weist die Materialhärte mit steigender isothermer Temperatur im Allgemeinen eine abnehmende Tendenz auf, und die Tendenz der Härteänderung und die Organisationsanalyse entsprechen diesem Trend.

Variation der Härtekurven von P92-Stahl bei unterschiedlichen isothermen Temperaturen

Variation der Härtekurven von P92-Stahl bei unterschiedlichen isothermen Temperaturen

3. Fazit

1) Der kritische Punkt Ac1 von P92-Stahl liegt bei 792,4 °C, Ac3 bei 879,8 °C und Ms bei 372,3 °C.

2) Die Raumtemperatur-Anordnung von P92-Stahl ist bei unterschiedlichen isothermen Temperaturen unterschiedlich; bei 160–370 °C isothermer einstündiger Anordnung liegt Martensit vor; bei 400–430 °C isothermer einstündiger Anordnung liegt eine kleine Menge Bainit + Martensit vor; bei 520–620 °C isothermer einstündiger Anordnung ist die Anordnung relativ stabil, innerhalb einer kurzen Zeitspanne (1 Stunde) findet keine Umwandlung statt, bei Raumtemperatur liegt Martensit vor; bei 650 °C isothermer 25 Stunden liegt Perlit vor. Bei Raumtemperatur liegt Perlit + Martensit vor; bei 680–770 °C isothermer 25 Stunden liegt die Anordnung in Perlit + erstes eutektisches Ferrit vor.

3) Die Austenitisierung von P92-Stahl in Ac1 verläuft unterhalb der Isothermie. Mit der Verringerung der Isothermietemperatur nimmt die Härte des gesamten Materials tendenziell zu. Bei einer Isothermie von 770 °C ist die Härte nach der ersten eutektischen Ferritausscheidung und der perlitischen Umwandlung am niedrigsten und liegt bei etwa 163 HV. Bei einer Isothermie von 160 °C ist die Härte nach der martensitischen Umwandlung am höchsten und liegt bei etwa 516 HV.

ASME B31.3 im Vergleich zu ASME B31.1

ASME B31.1 vs. ASME B31.3: Kennen Sie die Rohrleitungskonstruktionscodes

Einführung

Bei der Rohrleitungskonstruktion und -technik ist die Auswahl des geeigneten Rohrleitungscodes von entscheidender Bedeutung, um Sicherheit, Effizienz und Einhaltung von Industriestandards zu gewährleisten. Zwei der am weitesten verbreiteten Rohrleitungskonstruktionscodes sind ASME B31.1 Und ASME B31.3. Obwohl beide von der American Society of Mechanical Engineers (ASME) stammen und die Konstruktion und den Bau von Rohrleitungssystemen regeln, unterscheiden sich ihre Anwendungen erheblich. Das Verständnis der ASME B31.1 im Vergleich zu ASME B31.3 Die Diskussion ist von entscheidender Bedeutung für die Auswahl des richtigen Codes für Ihr Projekt, unabhängig davon, ob es sich um Kraftwerke, die chemische Verarbeitung oder Industrieanlagen handelt.

Übersicht: ASME B31.1 vs. ASME B31.3

What is ASME B31.3 or Process Piping Code?

ASME B31.1 ist die Norm, die die Konstruktion, den Bau und die Wartung von Kraftwerks-Rohrleitungssystemen regelt. Sie gilt für Rohrleitungssysteme in Kraftwerken, Industrieanlagen und anderen Einrichtungen, in denen Strom erzeugt wird. Dieser Code konzentriert sich stark auf die Integrität von Systemen, die Hochdruckdampf, Wasser und heiße Gase handhaben.

Typische Anwendungen: Kraftwerke, Heizungsanlagen, Turbinen und Kesselanlagen.
Druckbereich: Hochdruckdampf- und Flüssigkeitssysteme.
Temperaturbereich: Hochtemperatureinsatz, insbesondere für Dampf- und Gasanwendungen.

What is ASME B31.1 or Power Piping Code?

ASME B31.3 applies to the design and construction of piping systems used in chemical, petrochemical, and pharmaceutical industries. It governs systems that transport chemicals, gases, or liquids under different pressure and temperature conditions, often including hazardous materials. This code also covers the associated support systems and the safety considerations of handling chemicals and dangerous substances.

Typische Anwendungen: Chemische Verarbeitungsanlagen, Raffinerien, pharmazeutische Anlagen, Lebensmittel- und Getränkefabriken.
Druckbereich: Im Allgemeinen niedriger als der Druckbereich in ASME B31.1, abhängig von der Flüssigkeitsart und ihrer Klassifizierung.
Temperaturbereich: varies depending von den chemischen Flüssigkeiten, aber sie ist typischerweise niedriger als die extremen Bedingungen in ASME B31.1.

Difference Between ASME B31.3 and ASME B31.1 (ASME B31.3 vs ASME B31.1)

ASME B31.3 im Vergleich zu ASME B31.1

ASME B31.3 im Vergleich zu ASME B31.1

Sr No Parameter ASME B31.3-Process Piping ASME B31.1-Power Piping
1 Umfang Provides rules for Process or Chemical Plants Provides rules for Power Plants
2 Basic Allowable Material Stress Basic allowable material stress value is higher (For example the allowable stress value for A 106 B material at 250 Deg C is 132117.328 Kpa as per ASME B31.3) Basic allowable material stress value is lower (For example the allowable stress value for A 106 B material at 250 Deg C is 117900.344 Kpa as per ASME B31.3)
3 Allowable Sagging (Sustained) The ASME B31.3 code does not specifically limit allowable sagging. An allowable sagging of up to 15 mm is generally acceptable. ASME B31.3 does not provide a suggested support span. ASME B31.1 clearly specifies the allowable sagging value as 2.5 mm. Table 121.5-1 of ASME B31.1 provides suggested support span.
4 SIF on Reducers Process Piping Code ASME B31.3 does not use SIF (SIF=1.0) for reducer stress calculation Power Piping code ASME B31.1 uses a maximum SIF of 2.0 for reducers while stress calculation.
5 Factor of Safety ASME B31.3 uses a factor of safety of 3; relatively lower than ASME B31.1. ASME B31.1 uses a safety factor of 4 to have higher reliability as compared to Process plants
6 SIF for Butt Welded Joints ASME B31.3 uses a SIF of 1.0 for buttwelded joints ASME B31.1 uses a SIF of up to 1.9 max in stress calculation.
7 Approach towards SIF ASME B31.3 uses a complex in-plane, out-of-plane SIF approach. ASME B31.1 uses a simplified single SIF Approach.
8 Maximum values of Sc and Sh As per the Process Piping code, the maximum value of Sc and Sh are limited to 138 Mpa or 20 ksi. For the Power piping code, the maximum value of Sc and Sh are 138 Mpa only if the minimum tensile strength of the material is 70 ksi (480Mpa); otherwise, it depends on the values provided in the mandatory appendix A as per temperature.
9 Allowable Stress for Occasional Stresses The allowable value of occasional stress is 1.33 times Sh As per ASME B31.1, the allowable value of occasional stress is 1.15 to 1.20 times Sh
10 The equation for Pipe Wall Thickness Calculation The equation for pipe wall thickness calculation is valid for t<D/6 There is no such limitation in the Power piping wall thickness calculation. However, they add a limitation on maximum design pressure.
11 Section Modulus, Z for Sustained and Occasional Stresses While Sustained and Occasional stress calculation the Process Piping code reduces the thickness by corrosion and other allowances. ASME B31.1 calculates the section modulus using nominal thickness. Thickness is not reduced by corrosion and other allowances.
12 Rules for material usage below -29 Deg. C ASME B31.3 provides extensive rules for the use of materials below -29 degrees C The power piping code provides no such rules for pipe materials below -29 degrees C.
13 Maximum Value of Cyclic Stress Range Factor The maximum value of cyclic stress range factor f is 1.2 The maximum value of is 1.0
14 Allowance for Pressure Temperature Variation As per clause 302.2.4 of ASME B31.3, occasional pressure temperature variation can exceed the allowable by (a) 33% for no more than 10 hours at any one time and no more than 100 hours/year, or (b) 20% for no more than 50 hours at any one time and no more than 500 hours/year. As per clause 102.2.4 of ASME B31.1, occasional pressure temperature variation can exceed the allowable by (a) 15% if the event duration occurs for no more than 8 hours at any one time and not more than 800 hours/year or (b) 20% if the event duration occurs for not more than 1 hour at any one time and not more than 80 hour/year.
15 Design Leben Process Piping is normally designed for 20 to 30 years of service life. Power Piping is generally designed for 40 years or more of service life.
16 PSV reaction force ASME B31.3 does not provide specific equations for PSV reaction force calculation. ASME B31.1 provides specific equations for PSV reaction force calculation.

Abschluss

Der entscheidende Unterschied in der ASME B31.1 im Vergleich zu ASME B31.3 Gegenstand der Debatte sind Branchenanwendungen, Materialanforderungen und Sicherheitsaspekte. ASME B31.1 ist ideal für die Stromerzeugung und Hochtemperatursysteme, wobei der Schwerpunkt auf mechanischer Integrität liegt. Gleichzeitig ASME B31.3 is tailored for the chemical and process industries, emphasizing the safe handling of hazardous materials and chemical compatibility. By understanding the distinctions between these two standards, you can decide which code best suits your project’s requirements, ensuring compliance and safety throughout the project’s lifecycle. Whether you are involved in power plant design or system’ processing, choosing the correct piping code is crucial for a successful project.

ASME BPVC Abschnitt II Teil A

ASME BPVC Abschnitt II Teil A: Spezifikationen für Eisenwerkstoffe

Einführung

ASME BPVC Abschnitt II Teil A: Spezifikationen für Eisenmaterialien ist ein Abschnitt des ASME Boiler and Pressure Vessel Code (BPVC), der Spezifikationen für Eisenmaterialien (vor allem Eisen) abdeckt Wird beim Bau von Kesseln, Druckbehältern und anderen druckhaltenden Geräten verwendet. Dieser Abschnitt befasst sich speziell mit den Anforderungen an Stahl- und Eisenmaterialien, einschließlich Kohlenstoffstahl, legiertem Stahl und Edelstahl.

Zugehörige Materialspezifikationen für Rohre und Platten

Röhrchen:

SA-178/SA-178M – Elektrisch widerstandsgeschweißte Kessel- und Überhitzerrohre aus Kohlenstoffstahl und Kohlenstoff-Mangan-Stahl
SA-179/SA-179M – Nahtlose kaltgezogene Wärmetauscher- und Kondensatorrohre aus kohlenstoffarmem Stahl
SA-192/SA-192M – Nahtlose Kesselrohre aus Kohlenstoffstahl für Hochdruckanwendungen
SA-209/SA-209M – Nahtlose Kessel- und Überhitzerrohre aus Kohlenstoff-Molybdän-legiertem Stahl
SA-210/SA-210M – Nahtlose Kessel- und Überhitzerrohre aus mittelkohlenstoffhaltigem Stahl
SA-213/SA-213M – Nahtlose Kessel-, Überhitzer- und Wärmetauscherrohre aus ferritischem und austenitischem legiertem Stahl
SA-214/SA-214M – Elektrisch widerstandsgeschweißte Wärmetauscher- und Kondensatorrohre aus Kohlenstoffstahl
SA-249/SA-249M – Geschweißte Kessel-, Überhitzer-, Wärmetauscher- und Kondensatorrohre aus austenitischem Stahl
SA-250/SA-250M – Elektrisch widerstandsgeschweißte Kessel- und Überhitzerrohre aus ferritischem legiertem Stahl
SA-268/SA-268M – Nahtlose und geschweißte ferritische und martensitische Edelstahlrohre für den allgemeinen Einsatz
SA-334/SA-334M – Nahtlose und geschweißte Kohlenstoff- und legierte Stahlrohre für den Einsatz bei niedrigen Temperaturen
SA-335/SA-335M – Nahtlose ferritische legierte Stahlrohre für den Einsatz bei hohen Temperaturen
SA-423/SA-423M – Nahtlose und elektrisch geschweißte niedriglegierte Stahlrohre
SA-450/SA-450M – Allgemeine Anforderungen an Rohre aus Kohlenstoffstahl und niedriglegiertem Stahl
SA-556/SA-556M – Nahtlose kaltgezogene Speisewasserheizrohre aus Kohlenstoffstahl
SA-557/SA-557M – Elektrisch widerstandsgeschweißte Speisewasserheizrohre aus Kohlenstoffstahl
SA-688/SA-688M – Nahtlose und geschweißte Speisewasserheizrohre aus austenitischem Edelstahl
SA-789/SA-789M – Nahtlose und geschweißte ferritische/austenitische Edelstahlrohre für den allgemeinen Einsatz
SA-790/SA-790M – Nahtlose und geschweißte ferritische/austenitische Edelstahlrohre
SA-803/SA-803M – Nahtlose und geschweißte Speisewasserheizrohre aus ferritischem Edelstahl
SA-813/SA-813M – Einfach oder doppelt geschweißtes austenitisches Edelstahlrohr
SA-814/SA-814M – Kaltverformtes geschweißtes austenitisches Edelstahlrohr

ASME BPVC

ASME BPVC

Platten:

SA-203/SA-203M – Druckbehälterplatten, legierter Stahl, Nickel
SA-204/SA-204M – Druckbehälterplatten, legierter Stahl, Molybdän
SA-285/SA-285M – Druckbehälterplatten, Kohlenstoffstahl, niedrige und mittlere Zugfestigkeit
SA-299/SA-299M – Druckbehälterplatten, Kohlenstoffstahl, Mangan-Silizium
SA-302/SA-302M – Druckbehälterplatten, legierter Stahl, Mangan-Molybdän und Mangan-Molybdän-Nickel
SA-353/SA-353M – Druckbehälterplatten, legierter Stahl, doppelt normalisiert und angelassen 9% Nickel
SA-387/SA-387M – Druckbehälterplatten, legierter Stahl, Chrom-Molybdän
SA-516/SA-516M – Druckbehälterplatten, Kohlenstoffstahl, für den Einsatz bei mittleren und niedrigen Temperaturen
SA-517/SA-517M – Druckbehälterplatten, legierter Stahl, hochfest, vergütet
SA-533/SA-533M – Druckbehälterplatten, legierter Stahl, vergütet, Mangan-Molybdän und Mangan-Molybdän-Nickel
SA-537/SA-537M – Druckbehälterplatten, wärmebehandelt, Kohlenstoff-Mangan-Silizium-Stahl
SA-542/SA-542M – Druckbehälterplatten, legierter Stahl, vergütet, Chrom-Molybdän und Chrom-Molybdän-Vanadium
SA-543/SA-543M – Druckbehälterplatten, legierter Stahl, vergütet, Nickel-Chrom-Molybdän
SA-553/SA-553M – Druckbehälterplatten, legierter Stahl, vergütet 7, 8 und 9% Nickel
SA-612/SA-612M – Druckbehälterplatten, Kohlenstoffstahl, hohe Festigkeit, für mittlere und niedrige Temperaturen
SA-662/SA-662M – Druckbehälterplatten, Kohlenstoff-Mangan-Silizium-Stahl, für den Einsatz bei mittleren und niedrigen Temperaturen
SA-841/SA-841M – Druckbehälterplatten, hergestellt im thermomechanischen Kontrollverfahren (TMCP)

Abschluss

Zusammenfassend lässt sich sagen, dass ASME BPVC Abschnitt II Teil A: Spezifikationen für Eisenwerkstoffe eine wichtige Ressource zur Gewährleistung der Sicherheit, Zuverlässigkeit und Qualität von Eisenwerkstoffen ist, die zum Bau von Kesseln, Druckbehältern und anderen druckhaltenden Geräten verwendet werden. Durch die Bereitstellung umfassender Spezifikationen zu den mechanischen und chemischen Eigenschaften von Materialien wie Kohlenstoffstahl, legiertem Stahl und rostfreiem Stahl stellt dieser Abschnitt sicher, dass die Materialien die strengen Standards erfüllen, die für Hochdruck- und Hochtemperaturanwendungen erforderlich sind. Seine detaillierten Hinweise zu Produktformen, Testverfahren und Einhaltung von Industriestandards machen ihn für Ingenieure, Hersteller und Inspektoren, die an der Konstruktion und dem Bau von Druckgeräten beteiligt sind, unverzichtbar. Daher ist ASME BPVC Abschnitt II Teil A von entscheidender Bedeutung für die petrochemische, nukleare und Stromerzeugungsindustrie, in der Druckbehälter und Kessel unter strengen mechanischen Belastungsbedingungen sicher und effizient funktionieren müssen.

Abschrecken von nahtlosem Stahlrohr SAE4140

Analyse der Ursachen ringförmiger Risse in abgeschreckten nahtlosen Stahlrohren aus SAE 4140

Der Grund für den ringförmigen Riss am Rohrende des nahtlosen Stahlrohrs SAE 4140 wurde durch Untersuchung der chemischen Zusammensetzung, Härteprüfung, metallografische Beobachtung, Rasterelektronenmikroskopie und Energiespektrumanalyse untersucht. Die Ergebnisse zeigen, dass der ringförmige Riss des nahtlosen Stahlrohrs SAE 4140 ein Abschreckriss ist, der im Allgemeinen am Rohrende auftritt. Der Grund für den Abschreckriss sind die unterschiedlichen Abkühlungsraten zwischen Innen- und Außenwand. Die Abkühlungsrate der Außenwand ist viel höher als die der Innenwand, was zu Rissversagen aufgrund von Spannungskonzentration nahe der Innenwand führt. Der ringförmige Riss kann beseitigt werden, indem die Abkühlungsrate der Innenwand des Stahlrohrs während des Abschreckens erhöht, die Gleichmäßigkeit der Abkühlungsrate zwischen Innen- und Außenwand verbessert und die Temperatur nach dem Abschrecken auf 150–200 °C gehalten wird, um die Abschreckspannung durch Selbstanlassen zu verringern.

SAE 4140 ist ein niedrig legierter CrMo-Baustahl und entspricht der amerikanischen ASTM A519-Standardgüte. Der nationale Standard 42CrMo basiert auf der Erhöhung des Mn-Gehalts. Daher wurde die Härtbarkeit von SAE 4140 weiter verbessert. SAE 4140 nahtlose Stahlrohre: Anstatt aus massiven Schmiedestücken herzustellen, kann die Herstellung von verschiedenen Arten von Hohlwellen, Zylindern, Hülsen und anderen Teilen aus Walzbarren die Produktionseffizienz erheblich verbessern und Stahl einsparen. SAE 4140-Stahlrohre werden häufig in Bohrwerkzeugen und anderen Bohrgeräten für den Öl- und Gasbergbau verwendet. Die Vergütungsbehandlung von nahtlosen SAE 4140-Stahlrohren kann die Anforderungen an die Anpassung verschiedener Stahlfestigkeiten und Zähigkeiten erfüllen, indem der Wärmebehandlungsprozess optimiert wird. Dennoch wird häufig festgestellt, dass dies zu Produktlieferungsfehlern im Produktionsprozess führt. Dieser Artikel konzentriert sich hauptsächlich auf SAE 4140-Stahlrohre im Abschreckprozess in der Mitte der Wandstärke des Rohrendes, führt eine ringförmige Rissdefektanalyse durch und schlägt Verbesserungsmaßnahmen vor.

1. Testmaterialien und Methoden

Ein Unternehmen hat Spezifikationen für nahtlose Stahlrohre der Stahlsorte SAE 4140 mit ∅ 139,7 x 31,75 mm erstellt. Der Produktionsprozess sieht folgende Schritte vor: Erhitzen des Knüppels → Lochen → Walzen → Kalibrieren → Anlassen (850 °C, 70 Minuten Einweichzeit, Abschrecken + Rohr drehend außerhalb der Wasserdusche abkühlen + 735 °C, 2 Stunden Einweichzeit, Anlassen) → Fehlererkennung und -prüfung. Nach der Anlassbehandlung ergab die Fehlererkennung einen ringförmigen Riss in der Mitte der Wandstärke am Rohrende, wie in Abb. 1 dargestellt. Der ringförmige Riss trat etwa 21 bis 24 mm von der Außenseite entfernt auf, verlief kreisförmig um das Rohr und war teilweise unterbrochen, während im Rohrkörper kein derartiger Defekt festgestellt wurde.

Abb.1 Der ringförmige Riss am Rohrende

Abb.1 Der ringförmige Riss am Rohrende

Nehmen Sie Proben aus der Charge von abgeschreckten Stahlrohren, um diese zu analysieren und ihre Organisation zu beobachten, und führen Sie eine Spektralanalyse der Zusammensetzung der Stahlrohre durch. Gleichzeitig werden aus den Rissen im gehärteten Stahlrohr Hochleistungsproben entnommen, um die Mikromorphologie und Korngrößenverteilung der Risse zu beobachten. Außerdem werden mithilfe eines Rasterelektronenmikroskops mit Spektrometer Proben der inneren Zusammensetzung der Risse im Mikrobereich analysiert.

2. Testergebnisse

2.1 Chemische Zusammensetzung

Tabelle 1 zeigt die Ergebnisse der Spektralanalyse der chemischen Zusammensetzung. Die Zusammensetzung der Elemente entspricht den Anforderungen der Norm ASTM A519.

Tabelle 1 Ergebnisse der Analyse der chemischen Zusammensetzung (Massenanteil, %)

Element C Si Mn P S Cr Mo Cu Ni
Inhalt 0.39 0.20 0.82 0.01 0.005 0.94 0.18 0.05 0.02
ASTM A519-Anforderung 0.38-0.43 0.15-0.35 0.75-1.00 ≤ 0,04 ≤ 0,04 0.8-1.1 0.15-0.25 ≤ 0,35 ≤ 0,25

2.2 Rohrhärtbarkeitstest

Beim Abschreckhärtetest der gesamten Wanddicke der abgeschreckten Proben wurden die Ergebnisse der Gesamtwanddickenhärte wie in Abbildung 2 dargestellt ermittelt. Wie aus Abbildung 2 ersichtlich, begann die Abschreckhärte im Bereich von 21 bis 24 mm außerhalb des Rohrs deutlich zu sinken, und im Bereich von 21 bis 24 mm außerhalb des Rohrs wurden Ringrisse festgestellt. Der Härteunterschied zwischen der Wanddicke im Bereich unterhalb und oberhalb der Wanddicke erreichte etwa 5 (HRC). Der Härteunterschied zwischen der unteren und oberen Wanddicke in diesem Bereich beträgt etwa 5 (HRC). Die metallografische Organisation im abgeschreckten Zustand ist in Abbildung 3 dargestellt. Aus der metallografischen Organisation in Abbildung 3: Es ist ersichtlich, dass die Anordnung im Außenbereich des Rohrs eine kleine Menge Ferrit + Martensit ist, während die Anordnung nahe der Innenfläche nicht abgeschreckt ist und eine kleine Menge Ferrit und Bainit aufweist, was zu einer geringen Abschreckhärte von der Außenfläche des Rohrs zur Innenfläche des Rohrs in einem Abstand von 21 mm führt. Der hohe Grad der Konsistenz der Ringrisse in der Rohrwand und die Position des extremen Unterschieds in der Abschreckhärte weisen darauf hin, dass Ringrisse wahrscheinlich beim Abschreckvorgang entstehen. Die hohe Konsistenz zwischen der Position der Ringrisse und der geringeren Abschreckhärte weist darauf hin, dass die Ringrisse möglicherweise beim Abschreckvorgang entstanden sind.

Abb. 2 Der Abschreckhärtewert in voller Wandstärke

Abb. 2 Der Abschreckhärtewert in voller Wandstärke

Abb. 3 Abschreckstruktur eines Stahlrohrs

Abb. 3 Abschreckstruktur eines Stahlrohrs

2.3 Die metallografischen Ergebnisse des Stahlrohrs sind in Abb. 4 bzw. Abb. 5 dargestellt.

Die Matrixorganisation des Stahlrohrs besteht aus angelassenem Austenit + einer kleinen Menge Ferrit + einer kleinen Menge Bainit mit einer Korngröße von 8, was einer durchschnittlich angelassenen Organisation entspricht. Die Risse verlaufen in Längsrichtung, was zu kristallinen Rissen gehört, und die beiden Seiten der Risse weisen die typischen Merkmale einer Verzahnung auf. Auf beiden Seiten tritt ein Entkohlungsphänomen auf, und auf der Oberfläche der Risse ist eine graue Hochtemperaturoxidschicht erkennbar. Auf beiden Seiten tritt eine Entkohlung auf, und auf der Rissoberfläche ist eine graue Hochtemperaturoxidschicht erkennbar, und in der Nähe des Risses sind keine nichtmetallischen Einschlüsse zu sehen.

Abb. 4 Beobachtungen der Rissmorphologie

Abb. 4 Beobachtungen der Rissmorphologie

Abb. 5 Mikrostruktur des Risses

Abb. 5 Mikrostruktur des Risses

2.4 Ergebnisse der Rissbruchmorphologie und der Energiespektrumanalyse

Nachdem der Bruch geöffnet wurde, wird die Mikromorphologie des Bruchs unter dem Rasterelektronenmikroskop beobachtet, wie in Abb. 6 dargestellt. Daraus lässt sich erkennen, dass der Bruch hohen Temperaturen ausgesetzt war und an der Oberfläche eine Hochtemperaturoxidation stattgefunden hat. Der Bruch verläuft hauptsächlich entlang des Kristallbruchs, wobei die Korngröße zwischen 20 und 30 μm liegt und keine groben Körner oder abnormalen Organisationsdefekte gefunden werden. Die Energiespektrumanalyse zeigt, dass die Oberfläche des Bruchs hauptsächlich aus Eisen und seinen Oxiden besteht und keine abnormalen Fremdelemente zu sehen sind. Die Spektralanalyse zeigt, dass die Bruchoberfläche hauptsächlich aus Eisen und seinen Oxiden besteht und keine abnormalen Fremdelemente aufweist.

Abb. 6 Bruchmorphologie des Risses

Abb. 6 Bruchmorphologie des Risses

3 Analyse und Diskussion

3.1 Analyse von Rissfehlern

Aus der Sicht der Rissmikromorphologie ist die Rissöffnung gerade; das Ende ist gekrümmt und scharf; der Rissausbreitungspfad zeigt die Merkmale einer Rissbildung entlang des Kristalls und die beiden Seiten des Risses weisen typische Verzahnungseigenschaften auf, die die üblichen Merkmale von Abschreckrissen sind. Die metallografische Untersuchung ergab jedoch, dass auf beiden Seiten des Risses Entkohlungsphänomene auftreten, was nicht mit den Merkmalen der herkömmlichen Abschreckrisse übereinstimmt, wenn man berücksichtigt, dass die Anlasstemperatur des Stahlrohrs 735 °C beträgt und Ac1 bei SAE 4140 738 °C beträgt, was nicht mit den herkömmlichen Merkmalen von Abschreckrissen übereinstimmt. Wenn man berücksichtigt, dass die für das Rohr verwendete Anlasstemperatur 735 °C beträgt und die Ac1 von SAE 4140 738 °C beträgt, also beide Werte sehr nahe beieinander liegen, wird angenommen, dass die Entkohlung auf beiden Seiten des Risses mit dem Hochtemperaturanlassen während des Anlassens (735 °C) zusammenhängt und kein Riss ist, der bereits vor der Wärmebehandlung des Rohrs vorhanden war.

3.2 Ursachen für Rissbildung

Die Ursachen für Abschreckrisse hängen im Allgemeinen mit der Abschreckheiztemperatur, der Abschreckkühlrate, metallurgischen Defekten und Abschreckspannungen zusammen. Aus den Ergebnissen der Zusammensetzungsanalyse geht hervor, dass die chemische Zusammensetzung des Rohrs den Anforderungen der Stahlsorte SAE 4140 im ASTM A519-Standard entspricht und keine überzähligen Elemente gefunden wurden; in der Nähe der Risse wurden keine nichtmetallischen Einschlüsse gefunden, und die Energiespektrumanalyse am Rissbruch zeigte, dass die grauen Oxidationsprodukte in den Rissen Fe und seine Oxide waren und keine abnormalen Fremdelemente zu sehen waren, sodass ausgeschlossen werden kann, dass metallurgische Defekte die ringförmigen Risse verursacht haben; die Korngrößenklasse des Rohrs war Klasse 8, und die Korngrößenklasse war Klasse 7, und die Korngröße war Klasse 8, und die Korngröße war Klasse 8. Die Korngrößenstufe des Rohrs ist 8; das Korn ist fein und nicht grob, was darauf hinweist, dass der Abschreckriss nichts mit der Abschreckheiztemperatur zu tun hat.

Die Bildung von Abschreckrissen hängt eng mit den Abschreckspannungen zusammen, die in thermische und organisatorische Spannungen unterteilt werden. Thermische Spannungen entstehen durch den Abkühlungsprozess des Stahlrohrs. Die Abkühlungsgeschwindigkeit der Oberflächenschicht und des Kerns des Stahlrohrs ist nicht konsistent, was zu einer ungleichmäßigen Kontraktion des Materials und zu inneren Spannungen führt. Dadurch wird die Oberflächenschicht des Stahlrohrs Druckspannungen und der Kern Zugspannungen ausgesetzt. Gewebespannungen entstehen durch die Abschreckung des Stahlrohrs in der Martensitumwandlung, die mit der inkonsistenten Volumenausdehnung einhergeht und innere Spannungen erzeugt. Die durch die Organisation der Spannungen erzeugten Spannungen führen zu Zugspannungen in der Oberflächenschicht und Zugspannungen im Zentrum. Diese beiden Arten von Spannungen im Stahlrohr treten im selben Teil auf, haben jedoch eine entgegengesetzte Richtung. Die kombinierte Wirkung des Ergebnisses besteht darin, dass einer der beiden Spannungsfaktoren, die thermische Spannung, die dominante Rolle spielt, das Ergebnis der Zugspannung im Kern des Werkstücks und des Oberflächendrucks ist. Die dominante Gewebespannung wird das Ergebnis der Zugspannung im Kern des Werkstücks und des Oberflächendrucks ist.

Beim Abschrecken von Stahlrohren des Typs SAE 4140 wird eine rotierende Außendusche verwendet. Die Abkühlungsrate der Außenfläche ist viel größer als die der Innenfläche. Das äußere Metall des Stahlrohrs wird vollständig abgeschreckt, während das innere Metall nicht vollständig abgeschreckt wird, wodurch ein Teil der Ferrit- und Bainit-Organisation entsteht. Das innere Metall kann aufgrund der inneren Metallstruktur nicht vollständig in eine martensitische Organisation umgewandelt werden. Das innere Metall des Stahlrohrs ist zwangsläufig der Zugspannung ausgesetzt, die durch die Ausdehnung der Außenwand des Martensits erzeugt wird. Gleichzeitig ist aufgrund der unterschiedlichen Organisationsarten das spezifische Volumen zwischen dem inneren und dem äußeren Metall unterschiedlich. Gleichzeitig ist aufgrund der unterschiedlichen Organisationsarten das spezifische Volumen der inneren und äußeren Schichten des Metalls unterschiedlich und die Schrumpfungsrate ist während der Abkühlung nicht gleich. An der Schnittstelle der beiden Organisationsarten wird auch Zugspannung erzeugt. Die Spannungsverteilung wird von den thermischen Spannungen dominiert. Die an der Schnittstelle der beiden Organisationsarten im Rohr erzeugte Zugspannung ist am größten, was zu einem Ring führt. Abschreckrisse treten im Bereich der Wandstärke des Rohrs nahe der Innenfläche auf (21 bis 24 mm von der Außenfläche entfernt); außerdem ist das Ende des Stahlrohrs ein geometrisch empfindlicher Teil des gesamten Rohrs, der anfällig für Spannungserzeugung ist. Darüber hinaus ist das Ende des Rohrs ein geometrisch empfindlicher Teil des gesamten Rohrs, der anfällig für Spannungskonzentrationen ist. Dieser Ringriss tritt normalerweise nur am Ende des Rohrs auf, und solche Risse wurden im Rohrkörper nicht gefunden.

Zusammenfassend lässt sich sagen, dass ringförmige Risse in abgeschreckten dickwandigen Stahlrohren SAE 4140 durch eine ungleichmäßige Abkühlung der Innen- und Außenwände verursacht werden. Die Abkühlungsrate der Außenwand ist viel höher als die der Innenwand. Bei der Herstellung von dickwandigen Stahlrohren SAE 4140 muss die vorhandene Kühlmethode geändert werden. Der Kühlprozess kann nicht nur von außen verwendet werden. Stattdessen muss die Kühlung der Innenwand des Stahlrohrs verstärkt werden, um die Gleichmäßigkeit der Abkühlungsrate der Innen- und Außenwände des dickwandigen Stahlrohrs zu verbessern und so die Spannungskonzentration zu verringern und Ringrisse zu vermeiden. Ringrisse.

3.3 Verbesserungsmaßnahmen

Um Abschreckrisse zu vermeiden, müssen bei der Gestaltung des Abschreckprozesses alle Bedingungen berücksichtigt werden, die zur Entwicklung von Abschreckzugspannungen beitragen und Faktoren für die Rissbildung sind, darunter Heiztemperatur, Abkühlungsprozess und Entladungstemperatur. Zu den vorgeschlagenen Maßnahmen zur Verbesserung des Prozesses gehören: Abschrecktemperatur von 830–850 °C; Verwendung einer Innendüse, die auf die Mittellinie des Rohrs abgestimmt ist, Steuerung des geeigneten inneren Sprühflusses, Verbesserung der Abkühlungsrate des Innenlochs, um sicherzustellen, dass die Abkühlungsrate der Innen- und Außenwände von dickwandigen Stahlrohren gleichmäßig ist; Steuerung der Nachabschrecktemperatur von 150–200 °C, Verwendung einer selbsthärtenden Resttemperatur des Stahlrohrs, um die Abschreckspannungen im Stahlrohr zu reduzieren.

Durch den Einsatz verbesserter Technologie werden gemäß Dutzenden von Stahlrohrspezifikationen ∅158,75 × 34,93 mm, ∅139,7 × 31,75 mm, ∅254 × 38,1 mm, ∅224 × 26 mm usw. hergestellt. Nach der Ultraschall-Fehlerprüfung sind die Produkte qualifiziert und weisen keine Ringabschreckungsrisse auf.

4. Fazit

(1) Gemäß den makroskopischen und mikroskopischen Eigenschaften von Rohrrissen gehören die ringförmigen Risse an den Rohrenden von SAE 4140-Stahlrohren zu den durch Abschreckspannung verursachten Rissversagen, die üblicherweise an den Rohrenden auftreten.

(2) Ringförmige Risse in abgeschreckten dickwandigen Stahlrohren SAE 4140 werden durch ungleichmäßige Abkühlung der Innen- und Außenwände verursacht. Die Abkühlungsrate der Außenwand ist viel höher als die der Innenwand. Um die Gleichmäßigkeit der Abkühlungsrate der Innen- und Außenwände des dickwandigen Stahlrohrs zu verbessern, muss bei der Herstellung von dickwandigen Stahlrohren SAE 4140 die Kühlung der Innenwand verstärkt werden.

ASME SA213 T91 Nahtlose Stahlrohre

ASME SA213 T91: Wie viel wissen Sie?

Hintergrund & Einführung

ASME SA213 T91, die Stahlnummer in der ASME SA213/SA213M Standardmäßig handelt es sich um den verbesserten 9Cr-1Mo-Stahl, der in den 1970er bis 1980er Jahren vom US Rubber Ridge National Laboratory und dem Metallurgical Materials Laboratory der US Combustion Engineering Corporation in Zusammenarbeit entwickelt wurde. Entwickelt auf der Grundlage des früheren 9Cr-1Mo-Stahls, der in der Kernenergie (kann auch in anderen Bereichen verwendet werden) als Material für hochtemperaturbeständige Teile verwendet wird, ist er die dritte Generation von warmfesten Stahlprodukten. Seine Hauptfunktion besteht in der Reduzierung des Kohlenstoffgehalts, in der Begrenzung der Ober- und Untergrenzen des Kohlenstoffgehalts und einer strengeren Kontrolle des Gehalts an Restelementen wie P und S. Gleichzeitig werden Spuren von 0,030–0,070% N und Spuren der festen karbidbildenden Elemente 0,18–0,25% V und 0,06–0,10% Nb hinzugefügt, um die Kornanforderungen zu verfeinern und dadurch die plastische Zähigkeit und Schweißbarkeit des Stahls zu verbessern sowie die Stabilität des Stahls bei hohen Temperaturen zu verbessern. Nach dieser Mehrfachverbundverstärkung entsteht ein neuer Typ von martensitischem, hitzebeständigem legiertem Stahl mit hohem Chromgehalt.

ASME SA213 T91 stellt normalerweise Produkte für Rohre mit kleinem Durchmesser her und wird hauptsächlich in Kesseln, Überhitzern und Wärmetauschern verwendet.

International entsprechende Güteklassen für T91-Stahl

Land

USA Deutschland Japan Frankreich China
Äquivalente Stahlsorte SA-213 T91 X10CrMoVNNb91 HCM95 TUZ10CDVNb0901 10Cr9Mo1VNbN

Wir werden diesen Stahl hier unter mehreren Gesichtspunkten betrachten.

I. Chemische Zusammensetzung von ASME SA213 T91

Element C Mn P S Si Cr Mo Ni V Nr. N Al
Inhalt 0.07-0.14 0.30-0.60 ≤0,020 ≤0,010 0.20-0.50 8.00-9.50 0.85-1.05 ≤0,40 0.18-0.25 0.06-0.10 0.030-0.070 ≤0,020

II. Leistungsanalyse

2.1 Die Rolle von Legierungselementen auf die Werkstoffeigenschaften: Die Legierungselemente des Stahls T91 wirken als Festlösungs- und Diffusionsverstärkung und verbessern die Oxidations- und Korrosionsbeständigkeit des Stahls. Diese werden im Folgenden genauer analysiert.
2.1.1 Kohlenstoff ist der offensichtlichste feststofflösliche Verstärkungseffekt von Stahlelementen. Mit steigendem Kohlenstoffgehalt nehmen die kurzfristige Festigkeit, Plastizität und Zähigkeit des Stahls ab. Bei T91-Stahl beschleunigt ein Anstieg des Kohlenstoffgehalts die Geschwindigkeit der Karbidsphäroidisierung und -aggregation, beschleunigt die Umverteilung von Legierungselementen und verringert die Schweißbarkeit, Korrosionsbeständigkeit und Oxidationsbeständigkeit des Stahls. Daher sollte der Kohlenstoffgehalt bei hitzebeständigem Stahl im Allgemeinen gesenkt werden. Dennoch verringert sich die Festigkeit des Stahls, wenn der Kohlenstoffgehalt zu niedrig ist. T91-Stahl hat im Vergleich zu 12Cr1MoV-Stahl einen um 20% reduzierten Kohlenstoffgehalt, was eine sorgfältige Berücksichtigung der Auswirkungen der oben genannten Faktoren darstellt.
2.1.2 T91-Stahl enthält Spuren von Stickstoff. Die Rolle von Stickstoff spiegelt sich in zwei Aspekten wider. Einerseits spielt es die Rolle der Festlösungsverfestigung. Bei Raumtemperatur ist die Stickstofflöslichkeit im Stahl minimal. In der geschweißten Wärmeeinflusszone von T91-Stahl kommt es während des Schweißerwärmungsvorgangs und der Wärmebehandlung nach dem Schweißen zu einem Prozess von Festlösung und Ausfällung von VN: In der Wärmeeinflusszone beim Schweißen bildet sich aufgrund der Löslichkeit von VN eine austenitische Organisation, der Stickstoffgehalt steigt an, und danach steigt der Übersättigungsgrad in der Organisation bei Raumtemperatur an. Bei der nachfolgenden Wärmebehandlung der Schweißnaht kommt es zu einer leichten VN-Ausfällung, die die Stabilität der Organisation erhöht und den Wert der dauerhaften Festigkeit der Wärmeeinflusszone verbessert. Andererseits enthält T91-Stahl auch eine kleine Menge A1. Stickstoff kann zusammen mit AlN gebildet werden. Bei Temperaturen über 1.100 °C löst sich eine große Menge AlN nur in der Matrix und wird dann bei niedrigeren Temperaturen wieder ausgefällt, wodurch eine bessere diffusionsverstärkende Wirkung erzielt werden kann.
2.1.3 Die Zugabe von Chrom dient hauptsächlich dazu, die Oxidationsbeständigkeit und Korrosionsbeständigkeit von hitzebeständigem Stahl zu verbessern. Chromgehalte unter 5% beginnen bei 600 °C heftig zu oxidieren, während Chromgehalte bis zu 5% eine ausgezeichnete Oxidationsbeständigkeit aufweisen. 12Cr1MoV-Stahl weist bei 580 °C eine gute Oxidationsbeständigkeit auf, die Korrosionstiefe beträgt 0,05 mm/a, und bei 600 °C beginnt sich die Leistung zu verschlechtern, die Korrosionstiefe beträgt 0,13 mm/a. T91 mit einem Chromgehalt von 1 bis 100 °C löst sich vor der Verwendung in der Matrix stark auf, und bei niedrigeren Temperaturen und bei erneuter Ausfällung kann es eine gute diffusionsverstärkende Wirkung haben. /T91 Der Chromgehalt wird auf etwa 9% erhöht, die Anwendungstemperatur kann 650 °C erreichen. Die Hauptmaßnahme besteht darin, mehr Chrom in der Matrix aufzulösen.
2.1.4 Vanadium und Niob sind wichtige karbidbildende Elemente. Wenn sie zu einer feinen und stabilen Karbidlegierung mit Kohlenstoff hinzugefügt werden, entsteht ein fester diffusionsverstärkender Effekt.
2.1.5 Die Zugabe von Molybdän verbessert vor allem die Wärmefestigkeit des Stahls und verstärkt feste Lösungen.

2.2 Mechanische Eigenschaften

Der T91-Knüppel hat nach der letzten Wärmebehandlung zum Normalisieren + Hochtemperaturanlassen eine Zugfestigkeit bei Raumtemperatur ≥ 585 MPa, eine Streckgrenze bei Raumtemperatur ≥ 415 MPa, eine Härte ≤ 250 HB, eine Dehnung (50 mm Abstand der Standardkreisprobe) ≥ 20% und den zulässigen Spannungswert [σ] 650 ℃ = 30 MPa.

Wärmebehandlungsprozess: Normalisierungstemperatur von 1040 °C, Haltezeit von nicht weniger als 10 Minuten, Anlasstemperatur von 730 – 780 °C, Haltezeit von nicht weniger als einer Stunde.

2.3 Schweißleistung

Entsprechend der empfohlenen Formel zum Kohlenstoffäquivalent des International Welding Institute errechnet sich das Kohlenstoffäquivalent von T91-Stahl mit 2,43%, und die sichtbare Schweißbarkeit von T91 ist schlecht.
Der Stahl neigt nicht zur Wiedererwärmungsrissbildung.

2.3.1 Probleme beim T91-Schweißen

2.3.1.1 Rissbildung bei gehärteter Organisation in der Wärmeeinflusszone
Die kritische Abkühlungsgeschwindigkeit von T91 ist niedrig, Austenit ist sehr stabil und die Abkühlung erfolgt bei der normalen Perlitumwandlung nicht schnell. Um in Martensit und grobe Organisation umgewandelt zu werden, muss es auf eine niedrigere Temperatur (ca. 400 °C) abgekühlt werden.
Beim Schweißen entstehen unterschiedliche Organisationsformen der Wärmeeinflusszone mit unterschiedlichen Dichten, Ausdehnungskoeffizienten und unterschiedlichen Gitterformen, die beim Erhitzen und Abkühlen zwangsläufig mit unterschiedlicher Volumenausdehnung und -kontraktion einhergehen. Andererseits hat das Schweißen aufgrund der ungleichmäßigen Erwärmung und der Hochtemperatureigenschaften enorme innere Spannungen, sodass die Schweißverbindungen T91 enormen inneren Spannungen ausgesetzt sind. Gehärtete Verbindungen mit grober Martensitorganisation befinden sich in einem komplexen Spannungszustand. Gleichzeitig diffundiert beim Abkühlen der Schweißnaht Wasserstoff von der Schweißnaht in den Nahtbereich. Das Vorhandensein von Wasserstoff trägt zur Martensitversprödung bei. Diese Kombination von Effekten führt leicht zur Bildung von Kaltrissen im abgeschreckten Bereich.

2.3.1.2 Kornwachstum in der Wärmeeinflusszone
Thermische Zyklen beim Schweißen beeinflussen das Kornwachstum in der Wärmeeinflusszone von Schweißverbindungen erheblich, insbesondere in der Schmelzzone unmittelbar neben der maximalen Heiztemperatur. Wenn die Abkühlrate gering ist, erscheint in der geschweißten Wärmeeinflusszone eine grobe, massive Ferrit- und Karbidstruktur, sodass die Plastizität des Stahls erheblich abnimmt. Die Abkühlrate ist aufgrund der Bildung einer groben Martensitstruktur erheblich, aber auch die Plastizität der Schweißverbindungen wird reduziert.

2.3.1.3 Erzeugung der erweichten Schicht
Beim Schweißen von T91-Stahl im angelassenen Zustand bildet sich in der Wärmeeinflusszone eine unvermeidliche Erweichungsschicht, die stärker ist als die Erweichung von hitzebeständigem Perlitstahl. Die Erweichung ist deutlicher, wenn Spezifikationen mit langsameren Heiz- und Abkühlraten verwendet werden. Darüber hinaus hängen die Breite der erweichten Schicht und ihr Abstand von der Schmelzlinie mit den Heizbedingungen und -eigenschaften des Schweißens, Vorwärmens und der Wärmebehandlung nach dem Schweißen zusammen.

2.3.1.4 Spannungsrisskorrosion
Bei T91-Stahl beträgt die Abkühltemperatur bei der Wärmebehandlung nach dem Schweißen im Allgemeinen nicht weniger als 100 °C. Wenn die Abkühlung bei Raumtemperatur und relativ feuchter Umgebung erfolgt, kann es leicht zu Spannungsrisskorrosion kommen. Deutsche Vorschriften: Vor der Wärmebehandlung nach dem Schweißen muss auf unter 150 °C abgekühlt werden. Bei dickeren Werkstücken, Kehlnähten und schlechter Geometrie beträgt die Abkühltemperatur nicht weniger als 100 °C. Wenn die Abkühlung bei Raumtemperatur und Feuchtigkeit strengstens untersagt ist, kann es leicht zu Spannungsrisskorrosion kommen.

2.3.2 Schweißverfahren

2.3.2.1 Schweißverfahren: Es kann Handschweißen, Wolframpol-Schutzgasschweißen oder Schmelzpol-Automatenschweißen verwendet werden.
2.3.2.2 Schweißmaterial: Sie können zwischen WE690-Schweißdraht oder Schweißstab wählen.

Auswahl des Schweißmaterials:
(1) Schweißen der gleichen Stahlsorte – wenn Handschweißen verwendet werden kann, um CM-9Cb-Handschweißstäbe herzustellen, kann Wolframgasschweißen verwendet werden, um TGS-9Cb herzustellen, kann automatisches Schmelzpolschweißen verwendet werden, um MGS-9Cb-Draht herzustellen;
(2) Schweißen von ungleichen Stählen - beispielsweise beim Schweißen mit austenitischem Edelstahl stehen ERNiCr-3-Schweißzusätze zur Verfügung.

2.3.2.3 Schweißprozesspunkte:
(1) die Wahl der Vorwärmtemperatur vor dem Schweißen
Der Ms-Punkt von T91-Stahl liegt bei etwa 400 °C; die Vorwärmtemperatur wird im Allgemeinen bei 200 bis 250 °C gewählt. Die Vorwärmtemperatur darf nicht zu hoch sein. Andernfalls wird die Abkühlrate der Verbindung verringert, was zu Karbidausfällungen und zur Bildung von Ferritstrukturen an den Korngrenzen der Schweißverbindungen führen kann, wodurch die Schlagzähigkeit der Stahlschweißverbindungen bei Raumtemperatur erheblich verringert wird. In Deutschland beträgt die Vorwärmtemperatur 180 bis 250 °C; in den USA beträgt sie 120 bis 205 °C.

(2) die Wahl der Schweißkanal- / Zwischenschichttemperatur
Die Zwischenschichttemperatur darf nicht unter der Untergrenze der Vorwärmtemperatur liegen. Dennoch darf die Zwischenschichttemperatur, wie bei der Auswahl der Vorwärmtemperatur, nicht zu hoch sein. Die Zwischenschichttemperatur beim T91-Schweißen wird im Allgemeinen auf 200 bis 300 °C geregelt. Französische Vorschriften: Die Zwischenschichttemperatur darf 300 °C nicht überschreiten. US-Vorschriften: Die Zwischenschichttemperatur kann zwischen 170 und 230 °C liegen.

(3) die Wahl der Starttemperatur der Wärmebehandlung nach dem Schweißen
T91 muss nach dem Schweißen unter den Ms-Punkt abgekühlt und für einen bestimmten Zeitraum gehalten werden, bevor es angelassen wird. Die Abkühlrate nach dem Schweißen sollte 80 bis 100 °C/h betragen. Ohne Isolierung kann die austenitische Struktur der Verbindung möglicherweise nicht vollständig umgewandelt werden. Durch das Anlassen wird die Karbidausfällung entlang der austenitischen Korngrenzen gefördert, wodurch die Struktur sehr spröde wird. T91 kann jedoch vor dem Anlassen nach dem Schweißen nicht auf Raumtemperatur abgekühlt werden, da beim Abkühlen der Schweißverbindungen auf Raumtemperatur Kaltrisse entstehen können. Für T91 kann eine Wärmebehandlung nach dem Schweißen mit einer Starttemperatur von 100 bis 150 °C und einer Haltezeit von einer Stunde eine vollständige Umwandlung der Struktur gewährleisten.

(4) Auswahl der Anlasstemperatur, der Haltezeit und der Abkühlrate bei der Wärmebehandlung nach dem Schweißen
Anlasstemperatur: T91-Stahl neigt stärker zur Kaltrissbildung und neigt unter bestimmten Bedingungen zu verzögerter Rissbildung. Daher müssen die Schweißverbindungen innerhalb von 24 Stunden nach dem Schweißen angelassen werden. Der nach dem Schweißen gebildete Zustand des Lattenmartensits bei T91 kann sich nach dem Anlassen in angelassenen Martensit ändern. Seine Leistung ist der von Lattenmartensit überlegen. Bei niedriger Anlasstemperatur ist der Anlasseffekt nicht sichtbar. Das Schweißmetall altert und versprödet leicht. Bei zu hoher Anlasstemperatur (über der AC1-Linie) kann die Verbindung erneut austenitisiert werden und im anschließenden Abkühlprozess erneut abgeschreckt werden. Gleichzeitig sollte, wie bereits zuvor in diesem Dokument beschrieben, bei der Bestimmung der Anlasstemperatur auch der Einfluss der Erweichungsschicht der Verbindung berücksichtigt werden. Im Allgemeinen beträgt die Anlasstemperatur bei T91 730 bis 780 °C.
Haltezeit: T91 erfordert eine Anlasshaltezeit nach dem Schweißen von mindestens einer Stunde, um sicherzustellen, dass seine Organisation vollständig in angelassenes Martensit umgewandelt wird.
Anlassabkühlrate: Um die Restspannung von Schweißverbindungen aus T91-Stahl zu reduzieren, muss die Abkühlrate weniger als fünf °C/min betragen.
Insgesamt lässt sich der T91-Stahlschweißprozess im Temperaturkontrollprozess in der folgenden Abbildung kurz darstellen:

Temperaturkontrollprozess im Schweißprozess von T91-Stahlrohren

Temperaturkontrollprozess im Schweißprozess von T91-Stahlrohren

III. Verständnis von ASME SA213 T91

Bei 3.1 T91-Stahl werden durch das Legierungsprinzip, insbesondere durch die Zugabe kleiner Mengen Niob, Vanadium und anderer Spurenelemente, die Hochtemperaturfestigkeit und Oxidationsbeständigkeit im Vergleich zu 12 Cr1MoV-Stahl deutlich verbessert, die Schweißleistung ist jedoch schlecht.
3.2 T91-Stahl neigt beim Schweißen stärker zur Kaltrissbildung und muss vor dem Schweißen auf 200–250 °C vorgewärmt werden. Dabei muss die Zwischenschichttemperatur bei 200–300 °C gehalten werden, um Kaltrisse wirksam zu verhindern.
3.3 Nach der Wärmebehandlung muss T91-Stahl auf 100–150 °C abgekühlt werden, eine Stunde lang isoliert werden, bei einer Erwärmungs- und Anlasstemperatur von 730–780 °C erhitzt werden, die Isolierungszeit darf nicht weniger als eine Stunde betragen und schließlich muss mit einer Geschwindigkeit von nicht mehr als 5 °C/min auf Raumtemperatur abgekühlt werden.

IV. Herstellungsprozess von ASME SA213 T91

Der Herstellungsprozess von SA213 T91 erfordert mehrere Methoden, darunter Schmelzen, Durchstechen und Walzen. Der Schmelzprozess muss die chemische Zusammensetzung kontrollieren, um sicherzustellen, dass das Stahlrohr eine ausgezeichnete Korrosionsbeständigkeit aufweist. Die Durchstech- und Walzprozesse erfordern eine präzise Temperatur- und Druckkontrolle, um die erforderlichen mechanischen Eigenschaften und Maßgenauigkeit zu erreichen. Darüber hinaus müssen Stahlrohre wärmebehandelt werden, um innere Spannungen zu entfernen und die Korrosionsbeständigkeit zu verbessern.

V. Anwendungen von ASME SA213 T91

ASME SA213 T91 ist ein hitzebeständiger Stahl mit hohem Chromgehalt, der hauptsächlich bei der Herstellung von Hochtemperatur-Überhitzern und Nacherhitzern und anderen unter Druck stehenden Teilen von unterkritischen und überkritischen Kraftwerkskesseln mit Metallwandtemperaturen von nicht mehr als 625 °C verwendet wird und auch als unter Druck stehende Hochtemperaturteile von Druckbehältern und Kernkraftanlagen verwendet werden kann. SA213 T91 hat eine ausgezeichnete Kriechfestigkeit und kann bei hohen Temperaturen und unter Langzeitbelastung seine Größe und Form stabil halten. Zu seinen Hauptanwendungen gehören Kessel, Überhitzer, Wärmetauscher und andere Geräte in der Energie-, Chemie- und Erdölindustrie. Es wird häufig in den wassergekühlten Wänden von Hochdruckkesseln, Economizer-Rohren, Überhitzern, Nacherhitzern und Rohren der petrochemischen Industrie verwendet.

NACE MR0175 ISO 15156 im Vergleich zu NACE MR0103 ISO 17495-1

NACE MR0175/ISO 15156 vs. NACE MR0103/ISO 17495-1

Einführung

In der Öl- und Gasindustrie, insbesondere in Onshore- und Offshore-Umgebungen, ist die Gewährleistung der Langlebigkeit und Zuverlässigkeit von Materialien, die aggressiven Bedingungen ausgesetzt sind, von größter Bedeutung. Hier kommen Standards wie NACE MR0175/ISO 15156 vs. NACE MR0103/ISO 17495-1 ins Spiel. Beide Standards bieten wichtige Leitlinien für die Materialauswahl in sauren Betriebsumgebungen. Das Verständnis der Unterschiede zwischen ihnen ist jedoch wichtig, um die richtigen Materialien für Ihren Betrieb auszuwählen.

In diesem Blogbeitrag werden wir die wichtigsten Unterschiede untersuchen zwischen NACE MR0175/ISO 15156 vs. NACE MR0103/ISO 17495-1, und bieten praktische Ratschläge für Öl- und Gasfachleute, die mit diesen Normen zurechtkommen müssen. Wir werden auch die spezifischen Anwendungen, Herausforderungen und Lösungen besprechen, die diese Normen bieten, insbesondere im Zusammenhang mit den rauen Umgebungsbedingungen in Öl- und Gasfeldern.

Was sind NACE MR0175/ISO 15156 und NACE MR0103/ISO 17495-1?

NACE MR0175/ISO 15156:
Diese Norm wird weltweit für die Materialauswahl und Korrosionskontrolle in Umgebungen mit sauren Gasen anerkannt, in denen Schwefelwasserstoff (H₂S) vorhanden ist. Sie bietet Richtlinien für die Konstruktion, Herstellung und Wartung von Materialien, die bei der Öl- und Gasförderung an Land und auf See verwendet werden. Ziel ist es, die mit wasserstoffinduzierter Rissbildung (HIC), Sulfid-Spannungsrissbildung (SSC) und Spannungsrisskorrosion (SCC) verbundenen Risiken zu mindern, die die Integrität kritischer Geräte wie Rohrleitungen, Ventile und Bohrlochköpfe beeinträchtigen können.

NACE MR0103/ISO 17495-1:
Auf der anderen Seite, NACE MR0103/ISO 17495-1 konzentriert sich in erster Linie auf Materialien, die in Raffinerien und bei der chemischen Verarbeitung verwendet werden, wo es zu sauren Bedingungen kommen kann, allerdings mit etwas anderem Anwendungsbereich. Es deckt die Anforderungen für Geräte ab, die leicht korrosiven Bedingungen ausgesetzt sind, wobei der Schwerpunkt darauf liegt, sicherzustellen, dass die Materialien der aggressiven Natur bestimmter Raffinationsprozesse wie Destillation oder Cracken standhalten, bei denen das Korrosionsrisiko vergleichsweise geringer ist als bei Upstream-Öl- und Gasoperationen.

NACE MR0175 ISO 15156 im Vergleich zu NACE MR0103 ISO 17495-1

NACE MR0175 ISO 15156 im Vergleich zu NACE MR0103 ISO 17495-1

Hauptunterschiede: NACE MR0175/ISO 15156 vs. NACE MR0103/ISO 17495-1

Nachdem wir nun einen Überblick über die einzelnen Normen haben, ist es wichtig, die Unterschiede hervorzuheben, die sich auf die Materialauswahl vor Ort auswirken können. Diese Unterschiede können die Leistung der Materialien und die Betriebssicherheit erheblich beeinträchtigen.

1. Geltungsbereich

Der Hauptunterschied zwischen NACE MR0175/ISO 15156 vs. NACE MR0103/ISO 17495-1 liegt im Umfang ihrer Anwendung.

NACE MR0175/ISO 15156 ist auf Geräte zugeschnitten, die in sauren Umgebungen mit Schwefelwasserstoff eingesetzt werden. Es ist von entscheidender Bedeutung für Upstream-Aktivitäten wie Exploration, Produktion und Transport von Öl und Gas, insbesondere in Offshore- und Onshore-Feldern, in denen mit saurem Gas (Gas mit Schwefelwasserstoff) gearbeitet wird.

NACE MR0103/ISO 17495-1befasst sich zwar weiterhin mit der Verarbeitung saurer Gase, konzentriert sich jedoch stärker auf die Raffinerie- und Chemieindustrie, insbesondere dort, wo saures Gas in Prozessen wie der Raffination, Destillation und dem Cracken zum Einsatz kommt.

2. Umweltbelastung

Auch die Umgebungsbedingungen spielen bei der Anwendung dieser Normen eine entscheidende Rolle. NACE MR0175/ISO 15156 befasst sich mit härteren Bedingungen im sauren Bereich. Beispielsweise deckt es höhere Konzentrationen von Schwefelwasserstoff ab, der korrosiver ist und ein höheres Risiko für Materialzersetzung durch Mechanismen wie wasserstoffinduzierte Rissbildung (HIC) und Sulfidspannungsrissbildung (SSC) darstellt.

Im Gegensatz, NACE MR0103/ISO 17495-1 berücksichtigt Umgebungen, die hinsichtlich der Schwefelwasserstoffbelastung weniger streng sein können, in Raffinerien und Chemiewerken jedoch immer noch kritisch sind. Die chemische Zusammensetzung der in den Raffinationsprozessen eingesetzten Flüssigkeiten ist möglicherweise nicht so aggressiv wie die in Sauergasfeldern, birgt aber dennoch Korrosionsrisiken.

3. Benötigte Materialien

Beide Normen geben konkrete Kriterien für die Materialauswahl vor, unterscheiden sich jedoch in ihren strengen Anforderungen. NACE MR0175/ISO 15156 legt größeren Wert auf die Verhinderung von wasserstoffbedingter Korrosion in Materialien, die selbst bei sehr geringen Schwefelwasserstoffkonzentrationen auftreten kann. Diese Norm fordert Materialien, die gegen SSC, HIC und Korrosionsermüdung in sauren Umgebungen beständig sind.

Auf der anderen Seite, NACE MR0103/ISO 17495-1 ist in Bezug auf wasserstoffbedingtes Cracken weniger normativ, erfordert aber Materialien, die mit korrosiven Stoffen in Raffinationsprozessen zurechtkommen, wobei der Schwerpunkt oft eher auf der allgemeinen Korrosionsbeständigkeit als auf spezifischen wasserstoffbedingten Risiken liegt.

4. Testen und Verifizieren

Beide Normen erfordern Tests und Überprüfungen, um sicherzustellen, dass die Materialien in ihren jeweiligen Umgebungen funktionieren. NACE MR0175/ISO 15156 erfordert umfangreichere Tests und eine detailliertere Überprüfung der Materialleistung unter sauren Betriebsbedingungen. Die Tests umfassen spezifische Richtlinien für SSC, HIC und andere Ausfallarten, die mit sauren Gasumgebungen verbunden sind.

NACE MR0103/ISO 17495-1erfordert zwar auch Materialprüfungen, ist hinsichtlich der Prüfkriterien jedoch häufig flexibler und konzentriert sich eher darauf, sicherzustellen, dass die Materialien die allgemeinen Korrosionsbeständigkeitsstandards erfüllen, statt sich speziell auf die mit Schwefelwasserstoff verbundenen Risiken zu konzentrieren.

Warum sollten Sie sich für NACE MR0175/ISO 15156 im Vergleich zu NACE MR0103/ISO 17495-1 interessieren?

Das Verständnis dieser Unterschiede kann dazu beitragen, Materialfehler zu vermeiden, die Betriebssicherheit zu gewährleisten und Branchenvorschriften einzuhalten. Ganz gleich, ob Sie auf einer Offshore-Bohrinsel, einem Pipeline-Projekt oder in einer Raffinerie arbeiten: Die Verwendung der geeigneten Materialien gemäß diesen Normen schützt vor kostspieligen Ausfällen, unerwarteten Ausfallzeiten und potenziellen Umweltgefahren.

Für Öl- und Gasbetriebe, insbesondere in sauren Umgebungen an Land und auf See, NACE MR0175/ISO 15156 ist der Standard. Er stellt sicher, dass die Materialien den härtesten Umgebungsbedingungen standhalten und mindert Risiken wie SSC und HIC, die zu katastrophalen Ausfällen führen können.

Im Gegensatz dazu bei Raffinations- oder chemischen Verarbeitungsprozessen NACE MR0103/ISO 17495-1 bietet eine maßgeschneiderte Anleitung. Sie ermöglicht den effektiven Einsatz von Materialien in Umgebungen mit saurem Gas, aber weniger aggressiven Bedingungen als bei der Öl- und Gasförderung. Der Schwerpunkt liegt hier eher auf der allgemeinen Korrosionsbeständigkeit in Verarbeitungsumgebungen.

Praktische Anleitung für Öl- und Gasfachleute

Beachten Sie bei der Auswahl von Materialien für Projekte in beiden Kategorien Folgendes:

Verstehen Sie Ihre Umgebung: Bewerten Sie, ob Ihr Betrieb an der Gewinnung von Sauergas (Upstream) oder der Raffination und chemischen Verarbeitung (Downstream) beteiligt ist. So können Sie bestimmen, welcher Standard anzuwenden ist.

Materialauswahl: Wählen Sie Materialien, die den relevanten Standards entsprechen, basierend auf den Umgebungsbedingungen und der Art des Einsatzes (Sauergas oder Raffination). Je nach Härte der Umgebung werden häufig rostfreie Stähle, hochlegierte Materialien und korrosionsbeständige Legierungen empfohlen.

Testen und Verifizieren: Stellen Sie sicher, dass alle Materialien gemäß den entsprechenden Normen getestet werden. In Umgebungen mit sauren Gasen können zusätzliche Tests auf SSC, HIC und Korrosionsermüdung erforderlich sein.

Konsultieren Sie Experten: Es ist immer eine gute Idee, Korrosionsspezialisten oder Werkstoffingenieure zu konsultieren, die mit NACE MR0175/ISO 15156 vs. NACE MR0103/ISO 17495-1 um eine optimale Materialleistung sicherzustellen.

Abschluss

Zusammenfassend lässt sich sagen, dass das Verständnis des Unterschieds zwischen NACE MR0175/ISO 15156 vs. NACE MR0103/ISO 17495-1 ist unerlässlich, um fundierte Entscheidungen bei der Materialauswahl für Öl- und Gasanwendungen im Upstream- und Downstream-Bereich zu treffen. Durch die Wahl des geeigneten Standards für Ihren Betrieb stellen Sie die langfristige Integrität Ihrer Ausrüstung sicher und helfen, katastrophale Ausfälle zu verhindern, die durch falsch spezifizierte Materialien entstehen können. Ob Sie nun mit Sauergas auf Offshore-Feldern oder mit chemischer Verarbeitung in Raffinerien arbeiten, diese Standards bieten die notwendigen Richtlinien zum Schutz Ihrer Anlagen und zur Wahrung der Sicherheit.

Wenn Sie sich nicht sicher sind, welcher Standard zu befolgen ist, oder weitere Unterstützung bei der Materialauswahl benötigen, wenden Sie sich an einen Materialexperten, der Ihnen eine individuelle Beratung zu folgenden Themen bietet: NACE MR0175/ISO 15156 vs. NACE MR0103/ISO 17495-1 und stellen Sie sicher, dass Ihre Projekte sowohl sicher sind als auch den Best Practices der Branche entsprechen.