Coś, co musisz wiedzieć: wykończenie powierzchni czołowej kołnierza

The Kod ASME B16.5 wymaga, aby powierzchnia kołnierza (powierzchnia wypukła i powierzchnia płaska) miała określoną chropowatość, aby zapewnić kompatybilność tej powierzchni z uszczelką i zapewnić wysoką jakość uszczelnienia.

Wymagane jest ząbkowane wykończenie, koncentryczne lub spiralne, z 30 do 55 rowkami na cal i wynikającą z tego chropowatością pomiędzy 125 a 500 mikrocalów. Pozwala to na udostępnienie przez producentów kołnierzy różnych stopni wykończenia powierzchni powierzchni styku uszczelki w kołnierzach metalowych.

Wykończenie czołowe kołnierza

Ząbkowane wykończenie

Wykończenie zapasów
Najpowszechniej stosowane wykończenie powierzchni kołnierzy, ponieważ praktycznie nadaje się do wszystkich zwykłych warunków pracy. Pod wpływem ściskania miękka powierzchnia uszczelki osadzi się w tym wykończeniu, co pomaga w utworzeniu uszczelnienia, a pomiędzy współpracującymi powierzchniami generowany jest wysoki poziom tarcia.

Wykończenie tych kołnierzy jest generowane za pomocą narzędzia z okrągłą końcówką o promieniu 1,6 mm przy posuwie 0,8 mm na obrót do 12 cali. W przypadku rozmiarów 14 cali i większych wykończenie wykonuje się za pomocą narzędzia z okrągłą końcówką 3,2 mm z posuwem 1,2 mm na obrót.

Wykończenie powierzchni czołowej kołnierza — wykończenie standardoweWykończenie powierzchni czołowej kołnierza — wykończenie standardowe

Ząbkowane spiralnie
Jest to również rowek ciągły lub spiralny fonograficzny, ale różni się od standardowego wykończenia tym, że rowek jest zwykle generowany przy użyciu narzędzia o kącie 90°, które tworzy geometrię „V” z ząbkowaniem pod kątem 45°.

Wykończenie powierzchni czołowej kołnierza – ząbkowane spiralnie

Koncentryczne ząbkowane
Jak sama nazwa wskazuje, wykończenie to składa się z koncentrycznych rowków. Używa się narzędzia 90°, a ząbki są rozmieszczone równomiernie na powierzchni czołowej.

Wykończenie powierzchni czołowej kołnierza — koncentryczne ząbkowane

Gładki koniec
Na tym wykończeniu nie widać widocznych oznaczeń narzędzi. Wykończenia te są zwykle stosowane w przypadku uszczelek z okładzinami metalowymi, takimi jak podwójna powłoka, stal płaska i metal falisty. Gładkie powierzchnie łączą się, tworząc uszczelnienie i zależą od płaskości przeciwległych powierzchni, aby uzyskać uszczelnienie. Zwykle osiąga się to poprzez utworzenie powierzchni stykowej uszczelki przez ciągły (czasami nazywany fonograficznym) spiralny rowek utworzony przez narzędzie z okrągłą końcówką o promieniu 0,8 mm przy szybkości posuwu 0,3 mm na obrót i głębokości 0,05 mm. W rezultacie uzyskana zostanie chropowatość wynosząca od Ra 3,2 do 6,3 mikrometra (125–250 mikro cali).

Wykończenie powierzchni czołowej kołnierza — gładkie wykończenie

GŁADKI KONIEC

Czy nadaje się do uszczelek spiralnych i uszczelek niemetalowych? Do jakich zastosowań przeznaczony jest ten typ?

Kołnierze z gładkim wykończeniem są bardziej powszechne w przypadku rurociągów niskociśnieniowych i/lub o dużej średnicy i są przeznaczone głównie do stosowania z uszczelkami z litego metalu lub zwijanymi spiralnie.

Gładkie wykończenia są zwykle spotykane na maszynach lub złączach kołnierzowych innych niż kołnierze rur. Podczas pracy z gładkim wykończeniem należy rozważyć zastosowanie cieńszej uszczelki, aby zmniejszyć efekt pełzania i płynięcia na zimno. Należy jednak zauważyć, że zarówno cieńsza uszczelka, jak i gładkie wykończenie same w sobie wymagają większej siły ściskającej (tzn. momentu obrotowego śruby), aby uzyskać uszczelnienie.

Obróbka powierzchni czołowych uszczelek kołnierzy w celu uzyskania gładkiego wykończenia Ra = 3,2 – 6,3 mikrometra (= 125 – 250 mikro cali AARH)

AARH oznacza średnią arytmetyczną wysokość chropowatości. Służy do pomiaru chropowatości (raczej gładkości) powierzchni. 125 AARH oznacza, że 125 mikro cali będzie średnią wysokością wzlotów i upadków powierzchni.

63 AARH jest określony dla złączy pierścieniowych.

Dla uszczelek spiralnych określono wartość 125-250 AARH (nazywa się to gładkim wykończeniem).

250-500 AARH (nazywa się to wykończeniem podstawowym) jest określone dla miękkich uszczelek, takich jak BEZAzbestowe, arkusze grafitowe, elastomery itp. Jeśli zastosujemy gładkie wykończenie dla miękkich uszczelek, nie wystąpi wystarczający „efekt wgryzania”, a zatem połączenie może wystąpić wyciek.

Czasami AARH jest również określany jako Ra, co oznacza średnią szorstkości i oznacza to samo.

Rura przewodowa bez szwu API 5L Gr.B z powłoką 3LPE zgodna z CAN CSA Z245.21

Pomyślna dostawa zamówienia CAN/CSA-Z245.21 Rura przewodowa powlekana 3LPE

Klient, którego śledzimy od 8 lat, w końcu złożył zamówienie. Zamówienie dotyczy partii rur o średnicach NPS 3”, NPS 4”, NPS 6” i NPS 8”, grubości SCH40, pojedynczej długości 11,8 M, z 2,5 mm grubości 3-warstwową powłoką polietylenową w celu ochrony przed korozją, które zostaną zakopane w ziemi w celu transportu gazu ziemnego.

Rury produkowane są zgodnie z Rura bezszwowa API 5L PSL 1 Gr. B standard i powłoka antykorozyjna są produkowane zgodnie z CAN/CSA-Z245.21 standard.

Rura przewodowa bez szwu API 5L Gr.B z powłoką 3LPE zgodna z CAN CSA Z245.21

Rura przewodowa bez szwu API 5L Gr.B z powłoką 3LPE zgodna z CAN CSA Z245.21

Schemat procesu produkcji rur bez szwu

Schemat procesu produkcji rur bez szwu

Schemat procesu produkcyjnego powłoki 3LPE

Schemat procesu produkcyjnego powłoki 3LPE

Nasze rury bezszwowe są walcowane w najnowocześniejszej na świecie walcowni PQF, która jest produkowana przez SMS Group w Niemczech. Nasze powłoki 3LPE są produkowane w naszej najnowocześniejszej linii powlekania w Chinach, co zapewnia, że specyfikacje rur i powłok w pełni spełniają wymagania naszych klientów.

Jeśli masz jakiekolwiek zapotrzebowanie na rury przewodowe z powłoką 3LPE/3LPP/FBE/LE, skontaktuj się z nami, aby uzyskać wycenę za pośrednictwem poczty e-mail na adres [email protected]. Będziemy ściśle kontrolować jakość i lepiej wspierać Cię pod względem ceny i serwisu!

PTT Tajlandia – Projekt molo naftowego w Kambodży

PTT Tajlandia – Projekt molo naftowego w Kambodży

Projekt: Molo Naftowe
Lokalizacja: Kambodża
Czas trwania: luty 2021 – lipiec 2021

Wymagany produkt: Rury stalowe, łączniki rurowe, kołnierze rurowe
Dane techniczne: API 5L gr.B, ASME B16.9, ASME B16.5
Ilość: 75 ton rur stalowych, 130 sztuk złączek rurowych i kołnierzy
Używać: System rurociągów podmorskich na molo naftowym
Dane techniczne powłok: DIN 30670-2012 Powłoka 3LPE
Używać: Zapobieganie korozji spowodowanej wodą morską i solą morską oraz wydłużanie żywotności

Poznaj różnice: powłoka TPEPE vs powłoka 3LPE

Rura ze stali antykorozyjnej TPEPE i antykorozyjne rury stalowe 3PE ulepszają produkty oparte na zewnętrznej jednowarstwowej rurze stalowej z polietylenu i wewnętrznej rurze stalowej pokrytej żywicą epoksydową. Jest to najbardziej zaawansowany antykorozyjny rurociąg stalowy na duże odległości zakopany pod ziemią. Czy wiesz, jaka jest różnica między antykorozyjną rurą stalową TPEPE a antykorozyjną rurą stalową 3PE?

 

 

Struktura powłoki

Zewnętrzna ściana antykorozyjnej rury stalowej TPEPE wykonana jest z procesu nawijania złącza termotopliwego 3PE. Składa się z trzech warstw: żywicy epoksydowej (warstwa dolna), kleju (warstwa pośrednia) i polietylenu (warstwa zewnętrzna). W ścianie wewnętrznej zastosowano antykorozyjny sposób natryskiwania termicznego proszku epoksydowego, a proszek jest równomiernie powlekany na powierzchni rury stalowej po podgrzaniu i stopieniu w wysokiej temperaturze, tworząc warstwę kompozytową stalowo-plastikową, co znacznie poprawia grubość powłoki i przyczepność powłoki, zwiększa odporność na uderzenia i korozję oraz sprawia, że jest ona szeroko stosowana.

Rura stalowa z powłoką antykorozyjną 3PE odnosi się do trzech warstw poliolefiny znajdujących się na zewnątrz rury ze stali antykorozyjnej, jej struktura antykorozyjna składa się zazwyczaj z struktury trójwarstwowej, proszku epoksydowego, kleju i PE, w praktyce te trzy materiały są mieszanymi procesami topienia i stali rury mocno ze sobą połączone, tworząc warstwę antykorozyjnej powłoki polietylenowej (PE), ma dobrą odporność na korozję, odporność na przepuszczalność wilgoci i właściwości mechaniczne, jest szeroko stosowany w przemyśle rurociągów naftowych.

Pwydajność Ccharakterystyka

W odróżnieniu od zwykłej rury stalowej, antykorozyjna rura stalowa TPEPE została wykonana jako wewnętrzna i zewnętrzna antykorozyjna, ma bardzo wysoką szczelność, a długoterminowa eksploatacja może znacznie zaoszczędzić energię, obniżyć koszty i chronić środowisko. Dzięki dużej odporności na korozję i wygodnej konstrukcji jego żywotność wynosi do 50 lat. Ma również dobrą odporność na korozję i odporność na uderzenia w niskich temperaturach. Jednocześnie ma również wysoką wytrzymałość epoksydową, dobrą miękkość kleju topliwego itp. I ma wysoką niezawodność antykorozyjną; Ponadto nasza antykorozyjna rura stalowa TPEPE jest produkowana ściśle zgodnie ze specyfikacjami norm krajowych, uzyskała certyfikat bezpieczeństwa wody pitnej z rur stalowych antykorozyjnych, aby zapewnić bezpieczeństwo wody pitnej.

Rura stalowa antykorozyjna 3PE wykonana z polietylenu, materiał ten charakteryzuje się dobrą odpornością na korozję i bezpośrednio wydłuża żywotność rur stalowych antykorozyjnych.

Rura stalowa antykorozyjna 3PE ze względu na różne specyfikacje może być podzielona na gatunek zwykły i gatunek wzmacniający, grubość PE zwykłej rury stalowej antykorozyjnej 3PE wynosi około 2,0 mm, a grubość PE gatunku wzmacniającego wynosi około 2,7 mm. Jako zwykły zewnętrzny środek antykorozyjny na rurze osłonowej, zwykły gatunek jest więcej niż wystarczający. Jeśli jest używany do bezpośredniego transportu kwasów, zasad, gazu ziemnego i innych płynów, spróbuj użyć wzmocnionej rury ze stali antykorozyjnej klasy 3PE.

Powyższe dotyczy różnicy między antykorozyjną rurą stalową TPEPE a antykorozyjną rurą stalową 3PE, odzwierciedloną głównie w charakterystyce użytkowej i zastosowaniu różnych, prawidłowy dobór odpowiedniej antykorozyjnej rury stalowej odgrywa swoją należytą rolę.

Sprawdziany gwintów do rur osłonowych stosowanych w projektach wierceń naftowych

Sprawdziany gwintów do rur osłonowych stosowanych w projektach wierceń naftowych

W przemyśle naftowym i gazowym rury osłonowe odgrywają kluczową rolę w utrzymaniu integralności strukturalnej odwiertów podczas operacji wiertniczych. Aby zapewnić bezpieczną i wydajną pracę tych odwiertów, gwinty na rurach osłonowych muszą być precyzyjnie wykonane i dokładnie sprawdzone. To właśnie tutaj wskaźniki gwintów stają się niezbędne.

Wskaźniki gwintu do rur osłonowych pomagają zapewnić prawidłowe gwintowanie, co bezpośrednio wpływa na wydajność i bezpieczeństwo odwiertów naftowych. W tym blogu przyjrzymy się znaczeniu wskaźników gwintu, sposobowi ich wykorzystania w projektach wierceń naftowych i sposobowi, w jaki pomagają one rozwiązywać typowe problemy branżowe.

1. Czym są wzorce gwintów?

Wskaźniki gwintów to precyzyjne narzędzia pomiarowe służące do weryfikacji dokładności wymiarowej i dopasowania elementów gwintowanych. W kontekście wierceń naftowych są one niezbędne do sprawdzania gwintów rur osłonowych, aby upewnić się, że spełniają one standardy branżowe i będą tworzyć bezpieczne, szczelne połączenia w odwiercie.

Rodzaje wzorców gwintów:

  • Wskaźniki pierścieniowe: Służy do sprawdzania gwintów zewnętrznych rury.
  • Wskaźniki wtykowe: Służy do kontroli gwintów wewnętrznych rur lub złączek.
  • Wskaźniki suwmiarkowe: Wskaźniki te mierzą średnicę gwintu, zapewniając właściwy rozmiar i dopasowanie.
  • Wskaźniki gwintu API: Zaprojektowano specjalnie, aby spełniać normy określone przez Amerykański Instytut Naftowy (API) w zakresie zastosowań w przemyśle naftowym i gazowym.

2. Rola rur osłonowych w wierceniu ropy naftowej

Rury obudowy służą do wyłożenia otworu wiertniczego w trakcie i po procesie wiercenia. Zapewniają integralność strukturalną otworu i zapobiegają zanieczyszczeniu wód gruntowych, a także zapewniają bezpieczne wydobywanie ropy naftowej lub gazu ze złoża.

Wiercenie szybów naftowych odbywa się w wielu etapach, z których każdy wymaga innego rozmiaru rury obudowy. Rury te są łączone od końca do końca za pomocą złączy gwintowanych, tworząc bezpieczny i ciągły ciąg obudowy. Zapewnienie dokładności i bezpieczeństwa tych połączeń gwintowanych ma kluczowe znaczenie dla zapobiegania wyciekom, wybuchom i innym awariom.

3. Dlaczego sprawdziany gwintowe są ważne w wierceniu ropy naftowej?

Trudne warunki spotykane podczas wierceń ropy naftowej — wysokie ciśnienia, ekstremalne temperatury i środowiska korozyjne — wymagają precyzji w każdym elemencie. Wskaźniki gwintu zapewniają, że gwinty na rurach osłonowych mieszczą się w granicach tolerancji, co pomaga w:

  • Zapewnij bezpieczne dopasowanie: Odpowiednio wymierzone gwinty gwarantują szczelne połączenie rur i złączy, zapobiegając przeciekom, które mogłyby skutkować kosztownymi przestojami lub zanieczyszczeniem środowiska.
  • Zapobiegaj awariom studni: Źle wykonane połączenia gwintowane są jedną z głównych przyczyn problemów z integralnością odwiertu. Wskaźniki gwintów pomagają wcześnie identyfikować wady produkcyjne, zapobiegając katastrofalnym awariom podczas operacji wiertniczych.
  • Zachowaj bezpieczeństwo: W wierceniu ropy bezpieczeństwo jest najważniejsze. Wskaźniki gwintu zapewniają, że połączenia obudowy są wystarczająco wytrzymałe, aby wytrzymać wysokie ciśnienia występujące głęboko pod ziemią, chroniąc w ten sposób pracowników i sprzęt przed potencjalnie niebezpiecznymi sytuacjami.

4. Jak wykorzystuje się wzorce gwintów w projektach wiertniczych?

Wskaźniki gwintu są używane na różnych etapach projektu wiercenia ropy naftowej, od produkcji rur osłonowych po inspekcje terenowe. Poniżej znajduje się przegląd krok po kroku, jak są stosowane:

1. Kontrola produkcji:

Podczas produkcji rury osłonowe i złączki są wytwarzane z precyzyjnym gwintowaniem, aby zapewnić bezpieczne dopasowanie. W całym procesie używane są wskaźniki gwintów, aby sprawdzić, czy gwinty spełniają wymagane normy. Jeśli jakikolwiek gwint wykracza poza tolerancję, jest on ponownie obrabiany lub wyrzucany, aby zapobiec przyszłym problemom.

2. Kontrola terenowa:

Zanim rury obudowy zostaną opuszczone do odwiertu, inżynierowie terenowi używają mierników gwintu do sprawdzenia zarówno rur, jak i złączy. Zapewnia to, że gwinty nadal mieszczą się w granicach tolerancji i nie zostały uszkodzone podczas transportu lub obsługi.

3. Ponowna kalibracja i konserwacja:

Same wskaźniki gwintu muszą być regularnie kalibrowane, aby zapewnić stałą dokładność. Jest to szczególnie ważne w przemyśle naftowym, gdzie nawet niewielka rozbieżność w gwintowaniu może prowadzić do kosztownych awarii.

5. Kluczowe normy gwintowania w przemyśle naftowym i gazowym

Wskaźniki gwintów muszą być zgodne z rygorystycznymi normami branżowymi, aby zapewnić zgodność i bezpieczeństwo w operacjach naftowych i gazowych. Najczęściej stosowane normy dla rur osłonowych są definiowane przez Amerykański Instytut Naftowy (API), która reguluje specyfikacje gwintów obudów, rur i przewodów rurowych. Należą do nich:

  • API 5B:Określa wymiary, tolerancje i wymagania dotyczące kontroli gwintów obudów, rur i rurociągów.
  • API5CT:Reguluje kwestie materiałów, produkcji i testowania obudów i rur do odwiertów naftowych.
  • Wątki bazowe API (BTC):Te gwinty są powszechnie stosowane w rurach osłonowych. Mają dużą powierzchnię nośną i idealnie sprawdzają się w środowiskach, w których występują duże naprężenia.

Zapewnienie zgodności z tymi normami jest kluczowe, gdyż mają one na celu ochronę integralności odwiertów ropy naftowej i gazu w ekstremalnych warunkach eksploatacyjnych.

6. Typowe wyzwania w gwintowaniu rur osłonowych i jak pomagają wzorce gwintów

1. Uszkodzenie gwintu podczas transportu:

Rury osłonowe są często transportowane do odległych lokalizacji, a podczas obsługi mogą wystąpić uszkodzenia. Wskaźniki gwintu umożliwiają inspekcję w terenie, zapewniając, że wszelkie uszkodzone gwinty zostaną zidentyfikowane i naprawione przed opuszczeniem rur do odwiertu.

2. Zużycie gwintu w miarę upływu czasu:

W niektórych przypadkach może być konieczne usunięcie i ponowne użycie przewodów osłonowych. Z czasem gwinty mogą się zużyć, co osłabi integralność połączenia. Wskaźniki gwintów mogą wykryć zużycie, umożliwiając inżynierom podjęcie decyzji, czy rura osłonowa może zostać ponownie użyta, czy też konieczne są nowe rury.

3. Niedopasowane wątki:

Różni producenci obudów mogą mieć niewielkie różnice w gwintach, co może prowadzić do potencjalnych problemów, gdy rury z różnych źródeł są używane w tym samym odwiercie. Wskaźniki gwintów mogą pomóc zidentyfikować niezgodności i zapewnić, że wszystkie używane rury są ze sobą kompatybilne.

4. Zapewnienie jakości:

Wzorce gwintów umożliwiają niezawodną kontrolę jakości zarówno w procesie produkcji, jak i w terenie, gwarantując spójność wszystkich rur osłonowych wykorzystywanych w projekcie.

7. Najlepsze praktyki stosowania wskaźników gwintu w wierceniu ropy naftowej

Aby zmaksymalizować skuteczność wskaźników gwintu i zminimalizować ryzyko problemów z integralnością odwiertu, operatorzy powinni stosować się do poniższych najlepszych praktyk:

  • Regularna kalibracja wskaźników: Wzorce gwintów należy regularnie kalibrować, aby mieć pewność, że dostarczają dokładnych pomiarów.
  • Szkolenia dla techników: Upewnij się, że technicy terenowi i produkcyjni są odpowiednio przeszkoleni w zakresie stosowania wzorców gwintów i potrafią prawidłowo interpretować wyniki.
  • Kontrole wizualne i pomiarowe: Chociaż sprawdziany do gwintów zapewniają precyzję, równie istotna jest wizualna kontrola pod kątem uszkodzeń, takich jak wgniecenia, korozja lub zużycie.
  • Śledzenie danych: Prowadź dokumentację wszystkich kontroli gwintów, aby monitorować wzorce zużycia lub uszkodzeń na przestrzeni czasu i umożliwiać wykonywanie konserwacji zapobiegawczej.

Wniosek

Wskaźniki gwintu dla rur osłonowych są kluczowym elementem operacji wiercenia ropy naftowej, pomagając zapewnić, że rury osłonowe są prawidłowo gwintowane i spełniają surowe wymagania branży. Dzięki stosowaniu wskaźników gwintu na wszystkich etapach produkcji, transportu i wiercenia operatorzy ropy naftowej i gazu mogą poprawić bezpieczeństwo, niezawodność i wydajność swoich projektów.

W wierceniu ropy naftowej, gdzie każde połączenie ma znaczenie, precyzja oferowana przez wskaźniki gwintów może oznaczać różnicę między udaną operacją a kosztowną porażką. Regularne stosowanie tych narzędzi, wraz z przestrzeganiem norm branżowych, zapewnia długoterminową integralność obudów odwiertów i ogólne bezpieczeństwo projektu wiercenia.

Różnice między rurami stalowymi wyłożonymi tworzywem sztucznym a rurami stalowymi powlekanymi tworzywem sztucznym

Rury stalowe powlekane tworzywem sztucznym a rury stalowe powlekane tworzywem sztucznym

  1. Rura stalowa wyłożona tworzywem sztucznym:
  • Definicja: Rura stalowa powlekana tworzywem sztucznym to wyrób kompozytowy stalowo-plastikowy wykonany z rury stalowej stanowiącej rurę bazową, z obrobioną powierzchnią wewnętrzną i zewnętrzną, cynkowaniem i farbą do wypalania lub farbą w sprayu na zewnątrz oraz wyłożoną tworzywem polietylenowym lub innym warstwy antykorozyjne.
  • Klasyfikacja: Rura stalowa wyłożona tworzywem sztucznym jest podzielona na rurę stalową wyłożoną tworzywem sztucznym do zimnej wody, rurę stalową z tworzywa sztucznego wyłożoną gorącą wodą i rurę stalową wyłożoną tworzywem sztucznym.
  • Wyściółka z tworzywa sztucznego: polietylen (PE), polietylen żaroodporny (PE-RT), polietylen usieciowany (PE-X), polipropylen (PP-R), twardy polichlorek winylu (PVC-U), chlorowany polichlorek winylu (PVC-C) ).
  1. Rura stalowa pokryta tworzywem sztucznym:
  • Definicja: Rura stalowa powlekana tworzywem sztucznym to produkt kompozytowy ze stali i tworzywa sztucznego, który jest wykonany z rury stalowej jako rury podstawowej i tworzywa sztucznego jako materiału powłokowego. Powierzchnie wewnętrzne i zewnętrzne są topione i pokrywane warstwą tworzywa sztucznego lub inną warstwą antykorozyjną.
  • Klasyfikacja: Rura stalowa pokryta tworzywem sztucznym dzieli się na rurę stalową pokrytą polietylenem i rurę stalową pokrytą żywicą epoksydową, według różnych materiałów powłokowych.
  • Materiał powłoki z tworzywa sztucznego: proszek polietylenowy, taśma polietylenowa i proszek żywicy epoksydowej.
  1. Etykietowanie produktu:
  • Numer kodowy rury stalowej z wykładziną z tworzywa sztucznego do zimnej wody to SP-C.
  • Numer kodowy rury stalowej z wykładziną z tworzywa sztucznego do ciepłej wody to SP-CR.
  • Kod rury stalowej powlekanej polietylenem to SP-T-PE.
  • Kod rury stalowej z powłoką epoksydową to SP-T-EP.
  1. Proces produkcji:
  • Wykładzina z tworzywa sztucznego: po wstępnej obróbce rury stalowej zewnętrzna ściana rury z tworzywa sztucznego jest równomiernie pokryta klejem, a następnie umieszczana w rurze stalowej, aby rozszerzyć się i utworzyć produkt kompozytowy stalowo-plastikowy.
  • Powłoka z tworzywa sztucznego: wstępna obróbka rur stalowych po podgrzaniu, szybka obróbka powłok z tworzywa sztucznego, a następnie tworzenie produktów kompozytowych stalowo-plastikowych.
  1. Wydajność rur stalowych wyłożonych tworzywem sztucznym i rur stalowych powlekanych tworzywem sztucznym:
  • Właściwości warstwy tworzywa sztucznego rur stalowych wyłożonych tworzywem sztucznym:

Siła wiązania: siła wiązania pomiędzy stalą a okładziną z tworzywa sztucznego rury wykładanej tworzywem sztucznym do zimnej wody nie powinna być mniejsza niż 0,3Mpa (30N/cm2): siła wiązania pomiędzy stalą a wykładziną z tworzywa sztucznego rury wyłożonej tworzywem sztucznym rura do ciepłej wody nie powinna być mniejsza niż 1,0Mpa (100N/cm2).

Zewnętrzne działanie antykorozyjne: produkt po ocynkowaniu farbą do pieczenia lub farbą w sprayu, w temperaturze pokojowej w wodnym roztworze chlorku sodu 3% (stosunek wagowy do objętości) nasączonym przez 24 godziny, wygląd nie powinien być biały, łuszczący się, zmarszczony i korozyjny .

Próba spłaszczania: rura stalowa wyłożona tworzywem sztucznym nie pęka po przekroczeniu 1/3 zewnętrznej średnicy spłaszczonej rury i nie ma oddzielenia stali od tworzywa sztucznego.

  • Wydajność powłoki rur stalowych pokrytych tworzywem sztucznym:

Test otworkowy: wewnętrzna powierzchnia stalowej rury pokrytej tworzywem sztucznym została wykryta przez elektryczny detektor iskier i nie wytworzyła się żadna iskra elektryczna.

Przyczepność: przyczepność powłoki polietylenowej nie powinna być mniejsza niż 30N/10mm. Siła przyczepności powłoki z żywicy epoksydowej wynosi 1 ~ 3 stopień.

Próba spłaszczania: po spłaszczeniu 2/3 średnicy zewnętrznej rury stalowej pokrytej polietylenem nie wystąpiły żadne pęknięcia. Po spłaszczeniu 4/5 średnicy zewnętrznej rury stalowej pokrytej żywicą epoksydową nie wystąpiło łuszczenie się pomiędzy rurą stalową a powłoką został spłaszczony.