Berichten

Onderzoek naar de vitale rol van stalen buizen bij olie- en gaswinning

I. De basiskennis van de pijpleiding voor de olie- en gasindustrie

1. Terminologie-uitleg

API: Afkorting van Amerikaanse Petroleum Instituut.
OCTG: Afkorting van Olieland buisvormige goederen, inclusief oliebehuizingspijp, olieslang, boorpijp, boorkraag, boorbeitels, zuigstang, jonggewrichten, enz.
Olieslang: Slangen worden in oliebronnen gebruikt voor oliewinning, gaswinning, waterinjectie en zuurbreken.
Behuizing: Buizen die vanaf het grondoppervlak in een geboord boorgat worden neergelaten als voering om instorting van de muur te voorkomen.
Boor pijp: Pijp gebruikt voor het boren van boorgaten.
Lijn pijp: Pijp gebruikt om olie of gas te transporteren.
Koppelingen: Cilinders die worden gebruikt om twee pijpen met schroefdraad en interne schroefdraad met elkaar te verbinden.
Koppelingsmateriaal: Pijp gebruikt voor het vervaardigen van koppelingen.
API-threads: Pijpdraden gespecificeerd door de API 5B-standaard, inclusief ronde schroefdraad van olieleidingen, korte ronde schroefdraad van de behuizing, lange ronde schroefdraad van de behuizing, gedeeltelijke trapeziumvormige schroefdraad van de behuizing, schroefdraad van lijnpijpen, enzovoort.
Premium-verbinding: Niet-API-schroefdraden met speciale afdichtingseigenschappen, verbindingseigenschappen en andere eigenschappen.
Storingen: vervorming, breuk, oppervlakteschade en verlies van oorspronkelijke functie onder specifieke gebruiksomstandigheden.
Belangrijkste vormen van falen: verpletteren, uitglijden, scheuren, lekkage, corrosie, hechting, slijtage, enzovoort.

2. Aardoliegerelateerde normen

API-specificatie 5B, 17e editie – Specificatie voor het draadsnijden, meten en draadinspectie van de schroefdraad van behuizingen, buizen en leidingleidingen
API-specificatie 5L, 46e editie – Specificatie voor leidingpijp
API-specificatie 5CT, 11e editie – Specificatie voor behuizing en buizen
API-specificatie 5DP, 7e editie – Specificatie voor boorpijp
API-specificatie 7-1, 2e editie – Specificatie voor roterende boorsteelelementen
API-specificatie 7-2, 2e editie – Specificatie voor draadsnijden en meten van roterende schroefdraadverbindingen
API-specificatie 11B, 24e editie – Specificatie voor zuigstangen, gepolijste stangen en voeringen, koppelingen, zinkstaven, gepolijste stangklemmen, pakkingbussen en pomp-T-stukken
ISO3183:2019 – Aardolie- en aardgasindustrieën – Stalen buizen voor transportsystemen voor pijpleidingen
ISO11960:2020 – Aardolie- en aardgasindustrieën – Stalen buizen voor gebruik als behuizing of buizen voor putten
NACE MR0175 / ISO 15156:2020 – Aardolie- en aardgasindustrieën – Materialen voor gebruik in H2S-bevattende omgevingen bij de olie- en gasproductie

II. Olieslang

1. Classificatie van olieslangen

Olieslangen zijn onderverdeeld in niet-verstoorde olieslangen (NU), externe verstoorde olieslangen (EU) en integrale gezamenlijke (IJ) olieslangen. NU-olieslang betekent dat het uiteinde van de slang een normale dikte heeft en direct de draad omdraait en de koppelingen brengt. Verstoorde buizen betekent dat de uiteinden van beide buizen uitwendig zijn verstoord, vervolgens van schroefdraad zijn voorzien en aan elkaar zijn gekoppeld. Integral Joint-slangen betekent dat het ene uiteinde van de buis is verstoord met externe schroefdraad en het andere uiteinde is verstoord met interne schroefdraad en direct is verbonden zonder koppelingen.

2. Functie van olieslangen

① Winning van olie en gas: nadat de olie- en gasbronnen zijn geboord en gecementeerd, worden de buizen in de oliemantel geplaatst om olie en gas uit de grond te halen.
② Waterinjectie: wanneer de druk in het boorgat onvoldoende is, injecteert u water via de slangen in de put.
③ Stoominjectie: Bij het winnen van dikke olie met hete olie wordt stoom via geïsoleerde olieleidingen in de put gebracht.
④ Verzuring en breuk: in de late fase van het boren van putten of om de productie van olie- en gasbronnen te verbeteren, is het noodzakelijk om verzurings- en breukmedium of uithardingsmateriaal in de olie- en gaslaag in te voeren, en het medium en het uithardingsmateriaal worden door de olieslangen getransporteerd.

3. Staalkwaliteit van olieslangen

De staalkwaliteiten van oliebuizen zijn H40, J55, N80, L80, C90, T95, P110.
N80 is verdeeld in N80-1 en N80Q, de twee hebben dezelfde trekeigenschappen, de twee verschillen zijn de verschillen in leveringsstatus en impactprestaties, N80-1-levering door genormaliseerde toestand of wanneer de uiteindelijke walstemperatuur hoger is dan de kritische temperatuur Ar3 en spanningsreductie na luchtkoeling en kan worden gebruikt om warmwalsen te vinden in plaats van genormaliseerd, impact- en niet-destructief testen zijn niet vereist; N80Q moet worden getemperd (afgeschrikt en getemperd). Warmtebehandeling, impactfunctie moet in overeenstemming zijn met de bepalingen van API 5CT en moet niet-destructief testen zijn.
L80 is onderverdeeld in L80-1, L80-9Cr en L80-13Cr. Hun mechanische eigenschappen en leveringsstatus zijn hetzelfde. Verschillen in gebruik, productieproblemen en prijs, L80-1 voor het algemene type, L80-9Cr en L80-13Cr zijn buizen met een hoge corrosieweerstand, productieproblemen, duur en worden meestal gebruikt in zware corrosieputten.
C90 en T95 zijn onderverdeeld in 1 en 2 typen, namelijk C90-1, C90-2 en T95-1, T95-2.

4. De vaak gebruikte staalsoort, staalnaam en leveringsstatus van de olieslangen

J55 (37Mn5) NU-olieslang: warmgewalst in plaats van genormaliseerd
J55 (37Mn5) EU-olieslang: genormaliseerd over de volledige lengte na verstoring
N80-1 (36Mn2V) NU-olieslang: warmgewalst in plaats van genormaliseerd
N80-1 (36Mn2V) EU-olieslang: volledige lengte genormaliseerd na verstoring
N80-Q (30Mn5) olieslang: 30Mn5, temperering over de volledige lengte
L80-1 (30Mn5) olieslang: 30Mn5, temperering over de volledige lengte
P110 (25CrMnMo) olieslang: 25CrMnMo, temperering over de volledige lengte
J55 (37Mn5) Koppeling: Warmgewalst online Genormaliseerd
N80 (28MnTiB) koppeling: tempereren over de volledige lengte
L80-1 (28MnTiB) Koppeling: gehard over de volledige lengte
P110 (25CrMnMo) koppeling: tempereren over de volledige lengte

III. Behuizing pijp

1. Classificatie en rol van behuizing

De behuizing is de stalen buis die de muur van olie- en gasbronnen ondersteunt. In elke put worden verschillende lagen boorbuis gebruikt, afhankelijk van de verschillende boordieptes en geologische omstandigheden. Cement wordt gebruikt om de behuizing te cementeren nadat deze in de put is neergelaten, en in tegenstelling tot oliepijpen en boorpijpen kan het niet worden hergebruikt en behoort het tot wegwerpbare verbruiksmaterialen. Daarom is het verbruik van behuizingen verantwoordelijk voor meer dan 70 procent van alle oliebronleidingen. De behuizing kan worden verdeeld in geleiderbehuizing, tussenbehuizing, productiebehuizing en voeringbehuizing, afhankelijk van het gebruik ervan, en hun structuren in oliebronnen worden getoond in figuur 1.

①Geleiderbehuizing: Doorgaans wordt gebruik gemaakt van API-kwaliteiten K55, J55 of H40. De geleidermantel stabiliseert de putmond en isoleert ondiepe watervoerende lagen met een diameter die gewoonlijk rond de 20 inch of 16 inch ligt.

②Tussenbehuizing: Tussenbehuizing, vaak gemaakt van API-kwaliteiten K55, N80, L80 of P110, wordt gebruikt om onstabiele formaties en variërende drukzones te isoleren, met typische diameters van 13 3/8 inch, 11 3/4 inch of 9 5/8 inch .

③Productiebehuizing: De productiebehuizing is gemaakt van hoogwaardig staal zoals API-kwaliteiten J55, N80, L80, P110 of Q125 en is ontworpen om productiedruk te weerstaan, gewoonlijk met diameters van 9 5/8 inch, 7 inch of 5 1/2 inch.

④Linerbehuizing: Voeringen breiden de boorput uit tot in het reservoir, waarbij gebruik wordt gemaakt van materialen zoals API-kwaliteit L80, N80 of P110, met typische diameters van 7 inch, 5 inch of 4 1/2 inch.

⑤Slangen: Slangen transporteren koolwaterstoffen naar het oppervlak, met behulp van API-kwaliteiten J55, L80 of P110, en zijn verkrijgbaar in diameters van 4 1/2 inch, 3 1/2 inch of 2 7/8 inch.

IV. Boor pijp

1. Classificatie en functie van buizen voor boorgereedschap

De vierkante boorpijp, boorpijp, verzwaarde boorpijp en boorkraag in boorgereedschap vormen de boorpijp. De boorpijp is het kernboorgereedschap dat de boor van de grond naar de bodem van de put drijft, en het is ook een kanaal van de grond naar de bodem van de put. Het heeft drie hoofdrollen:

① Om koppel over te brengen om de boor aan te drijven om te boren;

② Vertrouwen op zijn gewicht op de boor om de druk van de rots op de bodem van de put te breken;

③ Om wasvloeistof te transporteren, dat wil zeggen door modder door de grond te boren via de hogedrukmodderpompen, boorkolom in de boorgatstroom naar de bodem van de put om het steenafval weg te spoelen en de boor af te koelen, en het steenafval te dragen door het buitenoppervlak van de kolom en de wand van de put tussen de ring om terug te keren naar de grond, om het doel van het boren van de put te bereiken.

Omdat de boorpijp tijdens het boorproces bestand is tegen een verscheidenheid aan complexe wisselende belastingen, zoals trek-, druk-, torsie-, buig- en andere spanningen, is het binnenoppervlak ook onderhevig aan modderschuren en corrosie onder hoge druk.
(1) Vierkante boorpijp: vierkante boorpijp heeft twee soorten vierhoekig type en zeshoekig type, Chinese aardolieboorpijp, elke set boorkolommen gebruikt meestal een vierzijdige boorpijp. De specificaties zijn 63,5 mm (2-1/2 inch), 88,9 mm (3-1/2 inch), 107,95 mm (4-1/4 inch), 133,35 mm (5-1/4 inch), 152,4 mm ( 6 inch) enzovoort. Meestal is de gebruikte lengte 12 ~ 14,5 m.
(2) Boorpijp: De boorpijp is het belangrijkste gereedschap voor het boren van putten, verbonden met het onderste uiteinde van de vierkante boorpijp, en naarmate de boorput zich verder verdiept, blijft de boorpijp de boorkolom één voor één verlengen. De specificaties van de boorpijp zijn: 60,3 mm (2-3/8 inch), 73,03 mm (2-7/8 inch), 88,9 mm (3-1/2 inch), 114,3 mm (4-1/2 inch) , 127 mm (5 inch), 139,7 mm (5-1/2 inch) enzovoort.
(3) Zware boorpijp: Een verzwaarde boorpijp is een overgangsgereedschap dat de boorpijp en de boorkraag verbindt, waardoor de krachttoestand van de boorpijp kan worden verbeterd en de druk op de boor kan worden verhoogd. De belangrijkste specificaties van de verzwaarde boorpijp zijn 88,9 mm (3-1/2 inch) en 127 mm (5 inch).
(4) Boorkraag: de boorkraag is verbonden met het onderste deel van de boorpijp, een speciale dikwandige pijp met hoge stijfheid, die druk uitoefent op de boor om de rots te breken en een leidende rol speelt bij het boren van een rechte put. De gebruikelijke specificaties van boorkragen zijn 158,75 mm (6-1/4 inch), 177,85 mm (7 inch), 203,2 mm (8 inch), 228,6 mm (9 inch) enzovoort.

V. Lijnpijp

1. Classificatie van leidingpijpen

Lijnpijpen worden in de olie- en gasindustrie gebruikt voor de transmissie van olie-, geraffineerde olie-, aardgas- en waterleidingen met de afkorting van stalen buizen. Het transporteren van olie- en gaspijpleidingen is hoofdzakelijk onderverdeeld in hoofdpijpleidingen, aftakleidingpijpleidingen en stedelijke pijpleidingnetwerkpijpleidingen. Drie soorten hoofdpijpleidingtransmissie van de gebruikelijke specificaties voor ∅406 ~ 1219 mm, wanddikte van 10 ~ 25 mm, staalkwaliteit X42 ~ X80 ; aftakleiding pijpleiding en stedelijke pijpleidingnetwerk pijpleidingen zijn meestal specificaties voor de ∅114 ~ 700 mm, wanddikte van 6 ~ 20 mm, de staalsoort voor de X42 ~ X80. De staalsoort is X42~X80. Lijnpijp is verkrijgbaar als gelast type en naadloos type. Gelaste lijnpijpen worden meer gebruikt dan naadloze lijnpijpen.

2. Standaard van lijnpijp

API Spec 5L – Specificatie voor lijnpijp
ISO 3183 – Petroleum- en aardgasindustrie – Stalen buizen voor transportsystemen voor pijpleidingen

3. PSL1 en PSL2

PSL is de afkorting van Productspecificatieniveau. Het productspecificatieniveau van de lijnpijp is verdeeld in PSL 1 en PSL 2. Er kan ook worden gezegd dat het kwaliteitsniveau is verdeeld in PSL 1 en PSL 2. PSL 2 is hoger dan PSL 1, de 2 specificatieniveaus hebben niet alleen verschillende testvereisten, maar de vereisten voor de chemische samenstelling en mechanische eigenschappen zijn verschillend, dus volgens de API 5L-volgorde moeten de voorwaarden van het contract naast het specificeren van de specificaties, staalkwaliteit en andere gebruikelijke indicatoren ook het productspecificatieniveau aangeven, dat wil zeggen PSL 1 of PSL 2. PSL 2 in de chemische samenstelling, trekeigenschappen, slagkracht, niet-destructief testen en andere indicatoren zijn strenger dan PSL 1.

4. Lijnpijp Staalkwaliteit, chemische samenstelling en mechanische eigenschappen

Lijnpijpstaalkwaliteit van laag naar hoog is onderverdeeld in: A25, A, B, X42, X46, X52, X60, X65, X70 en X80. Raadpleeg voor de gedetailleerde chemische samenstelling en mechanische eigenschappen de API 5L-specificatie, 46e editie.

5. Hydrostatische test en niet-destructieve onderzoeksvereisten voor leidingpijpen

Leidingleidingen moeten tak voor tak hydraulische test worden uitgevoerd, en de standaard staat geen niet-destructieve generatie van hydraulische druk toe, wat ook een groot verschil is tussen de API-standaard en onze normen. PSL 1 vereist geen niet-destructieve testen, PSL 2 zou tak voor tak niet-destructief testen moeten zijn.

VI. Premium-verbindingen

1. Introductie van Premium-verbindingen

Premium Connection is een pijpdraad met een speciale structuur die verschilt van de API-draad. Hoewel de bestaande API-oliebehuizing met schroefdraad op grote schaal wordt gebruikt bij de exploitatie van oliebronnen, worden de tekortkomingen ervan duidelijk aangetoond in de speciale omgeving van sommige olievelden: de API-pijpkolom met ronde schroefdraad, hoewel de afdichtingsprestaties beter zijn, de trekkracht die wordt gedragen door de schroefdraad een deel is slechts gelijk aan 60% tot 80% van de sterkte van het pijplichaam, en kan dus niet worden gebruikt bij de exploitatie van diepe putten; de API-voorgespannen trapeziumvormige pijpkolom met schroefdraad, hoewel de trekprestaties veel hoger zijn dan die van de API-ronde schroefdraadverbinding, zijn de afdichtingsprestaties niet zo goed. Hoewel de trekprestaties van de kolom veel hoger zijn dan die van de API-ronde schroefdraadverbinding, zijn de afdichtingsprestaties niet erg goed, zodat deze niet kunnen worden gebruikt bij de exploitatie van hogedrukgasbronnen; bovendien kan het schroefdraadvet alleen zijn rol spelen in het milieu bij een temperatuur lager dan 95 ℃, zodat het niet kan worden gebruikt bij de exploitatie van bronnen met hoge temperaturen.

Vergeleken met de API-ronde draad en de gedeeltelijke trapeziumdraadverbinding heeft de premiumverbinding baanbrekende vooruitgang geboekt op de volgende aspecten:

(1) Goede afdichting, door de elasticiteit en het ontwerp van de metalen afdichtingsstructuur, maakt de gasafdichting van de verbinding bestand tegen het bereiken van de limiet van het buislichaam binnen de vloeidruk;

(2) Hoge sterkte van de verbinding, verbonden met een speciale gespverbinding van het olieomhulsel, de verbindingssterkte bereikt of overtreft de sterkte van het buislichaam, om het probleem van slippen fundamenteel op te lossen;

(3) Door de materiaalselectie en de verbetering van het oppervlaktebehandelingsproces werd in principe het probleem van het vastzitten van de draad opgelost;

(4) Door de optimalisatie van de constructie, zodat de gezamenlijke spanningsverdeling redelijker is en bevorderlijker voor de weerstand tegen spanningscorrosie;

(5) Door de schouderstructuur van het redelijke ontwerp, zodat de werking van de gesp op de bediening gemakkelijker uit te voeren is.

Momenteel beschikt de olie- en gasindustrie over meer dan 100 gepatenteerde premiumverbindingen, die aanzienlijke vooruitgang in de leidingtechnologie vertegenwoordigen. Deze gespecialiseerde schroefdraadontwerpen bieden superieure afdichtingsmogelijkheden, verhoogde verbindingssterkte en verbeterde weerstand tegen omgevingsinvloeden. Door uitdagingen zoals hoge druk, corrosieve omgevingen en extreme temperaturen aan te pakken, zorgen deze innovaties voor een grotere betrouwbaarheid en efficiëntie bij oliebronactiviteiten wereldwijd. Voortdurend onderzoek en ontwikkeling op het gebied van hoogwaardige verbindingen onderstrepen hun cruciale rol bij het ondersteunen van veiligere en productievere boorpraktijken, als weerspiegeling van een voortdurende inzet voor technologische uitmuntendheid in de energiesector.

VAM®-verbinding: VAM®-verbindingen staan bekend om hun robuuste prestaties in uitdagende omgevingen en zijn voorzien van geavanceerde metaal-op-metaal afdichtingstechnologie en hoge koppelmogelijkheden, waardoor betrouwbare werking in diepe putten en hogedrukreservoirs wordt gegarandeerd.

TenarisHydril Wedge-serie: Deze serie biedt een reeks verbindingen zoals Blue®, Dopeless® en Wedge 521®, bekend om hun uitzonderlijke gasdichte afdichting en weerstand tegen compressie- en trekkrachten, waardoor de operationele veiligheid en efficiëntie worden verbeterd.

TSH® Blauw: TSH® Blue-verbindingen zijn ontworpen door Tenaris en maken gebruik van een gepatenteerd ontwerp met dubbele schouder en een hoogwaardig draadprofiel, dat uitstekende weerstand tegen vermoeidheid en gemakkelijke montage biedt bij kritische boortoepassingen.

Grant Prideco™ XT®-verbinding: XT®-verbindingen zijn ontworpen door NOV en bevatten een unieke metaal-op-metaal afdichting en een robuuste draadvorm, waardoor een superieur koppelvermogen en weerstand tegen vreten wordt gegarandeerd, waardoor de operationele levensduur van de verbinding wordt verlengd.

Jacht Seal-Lock®-verbinding: Met een metaal-op-metaal afdichting en een uniek draadprofiel staat de Seal-Lock®-verbinding van Hunting bekend om zijn superieure drukweerstand en betrouwbaarheid bij zowel onshore als offshore booroperaties.

Conclusie

Kortom, het ingewikkelde netwerk van leidingen dat cruciaal is voor de olie- en gasindustrie omvat een breed scala aan gespecialiseerde apparatuur die is ontworpen om bestand te zijn tegen veeleisende omgevingen en complexe operationele eisen. Van de fundamentele mantelbuizen die putwanden ondersteunen en beschermen tot de veelzijdige buizen die worden gebruikt bij extractie- en injectieprocessen: elk type buis dient een ander doel bij de exploratie, productie en transport van koolwaterstoffen. Normen zoals API-specificaties zorgen voor uniformiteit en kwaliteit in deze leidingen, terwijl innovaties zoals premiumverbindingen de prestaties onder uitdagende omstandigheden verbeteren. Naarmate de technologie evolueert, blijven deze cruciale componenten zich ontwikkelen, waardoor de efficiëntie en betrouwbaarheid van de mondiale energieactiviteiten toenemen. Het begrijpen van deze leidingen en hun specificaties onderstreept hun onmisbare rol in de infrastructuur van de moderne energiesector.

Wat is NACE MR0175/ISO 15156?

Wat is NACE MR0175/ISO 15156?

NACE MR0175/ISO 15156 is een wereldwijd erkende norm die richtlijnen biedt voor de selectie van materialen die bestand zijn tegen sulfidespanningsscheuren (SSC) en andere vormen van door waterstof geïnduceerd kraken in omgevingen die waterstofsulfide (H₂S) bevatten. Deze norm is essentieel voor het garanderen van de betrouwbaarheid en veiligheid van apparatuur die wordt gebruikt in de olie- en gasindustrie, met name in zure serviceomgevingen.

Belangrijkste aspecten van NACE MR0175/ISO 15156

  1. Reikwijdte en doel:
    • De norm heeft betrekking op de selectie van materialen voor apparatuur die wordt gebruikt bij de olie- en gasproductie en die wordt blootgesteld aan omgevingen die H₂S bevatten, wat verschillende vormen van scheurvorming kan veroorzaken.
    • Het heeft tot doel materiaalfalen als gevolg van sulfidespanningsscheuren, spanningscorrosiescheuren, door waterstof geïnduceerde scheuren en andere gerelateerde mechanismen te voorkomen.
  2. Materiaalkeuze:
    • Biedt richtlijnen voor het selecteren van geschikte materialen, waaronder koolstofstaal, laaggelegeerd staal, roestvrij staal, legeringen op nikkelbasis en andere corrosiebestendige legeringen.
    • Specificeert de omgevingsomstandigheden en spanningsniveaus die elk materiaal kan weerstaan zonder scheuren te ervaren.
  3. Kwalificatie en testen:
    • Geeft een overzicht van de noodzakelijke testprocedures voor het kwalificeren van materialen voor zuur gebruik, inclusief laboratoriumtests die de corrosieve omstandigheden simuleren die voorkomen in H₂S-omgevingen.
    • Specificeert de criteria voor aanvaardbare prestaties bij deze tests, waarbij wordt gegarandeerd dat materialen onder gespecificeerde omstandigheden bestand zijn tegen scheuren.
  4. Ontwerp en fabricage:
    • Bevat aanbevelingen voor het ontwerp en de fabricage van apparatuur om het risico op door waterstof veroorzaakte scheurvorming te minimaliseren.
    • Benadrukt het belang van productieprocessen, lastechnieken en warmtebehandelingen die de weerstand van het materiaal tegen door H₂S veroorzaakte scheuren kunnen beïnvloeden.
  5. Onderhoud en monitoring:
    • Adviseert over de onderhoudspraktijken en monitoringstrategieën om scheuren tijdens het gebruik te detecteren en te voorkomen.
    • Beveelt regelmatige inspecties en het gebruik van niet-destructieve testmethoden aan om de voortdurende integriteit van apparatuur te garanderen.

Belang in de industrie

  • Veiligheid: Garandeert de veilige werking van apparatuur in zure serviceomgevingen door het risico op catastrofale storingen als gevolg van scheuren te verminderen.
  • Betrouwbaarheid: Verbetert de betrouwbaarheid en levensduur van apparatuur, waardoor uitvaltijd en onderhoudskosten worden verminderd.
  • Naleving: Helpt bedrijven te voldoen aan wettelijke vereisten en industrienormen, waardoor juridische en financiële gevolgen worden vermeden.

NACE MR0175/ISO 15156 is verdeeld in drie delen, elk gericht op verschillende aspecten van het selecteren van materialen voor gebruik in zure serviceomgevingen. Hier is een meer gedetailleerd overzicht:

Deel 1: Algemene principes voor de selectie van scheurbestendige materialen

  • Domein: Biedt overkoepelende richtlijnen en principes voor het selecteren van materialen die bestand zijn tegen scheuren in H₂S-houdende omgevingen.
  • Inhoud:
    • Definieert sleuteltermen en concepten met betrekking tot zure serviceomgevingen en materiaaldegradatie.
    • Geeft algemene criteria weer voor het beoordelen van de geschiktheid van materialen voor zure service.
    • Beschrijft het belang van het overwegen van omgevingsfactoren, materiaaleigenschappen en operationele omstandigheden bij het selecteren van materialen.
    • Biedt een raamwerk voor het uitvoeren van risicobeoordelingen en het nemen van weloverwogen materiële selectiebeslissingen.

Deel 2: Krasbestendig koolstof- en laaggelegeerd staal en het gebruik van gietijzer

  • Domein: Richt zich op de vereisten en richtlijnen voor het gebruik van koolstofstaal, laaggelegeerd staal en gietijzer in zure serviceomgevingen.
  • Inhoud:
    • Geeft details over de specifieke omstandigheden waaronder deze materialen veilig kunnen worden gebruikt.
    • Geeft een overzicht van de mechanische eigenschappen en chemische samenstellingen die deze materialen nodig hebben om bestand te zijn tegen sulfidespanningsscheuren (SSC) en andere vormen van door waterstof veroorzaakte schade.
    • Biedt richtlijnen voor de warmtebehandeling en fabricageprocessen die de weerstand van deze materialen tegen scheuren kunnen verbeteren.
    • Bespreekt de noodzaak van goede materiaaltest- en kwalificatieprocedures om naleving van de norm te garanderen.

Deel 3: Krasbestendige CRA's (corrosiebestendige legeringen) en andere legeringen

  • Domein: Behandelt het gebruik van corrosiebestendige legeringen (CRA's) en andere speciale legeringen in zure serviceomgevingen.
  • Inhoud:
    • Identificeert verschillende soorten CRA's, zoals roestvrij staal, legeringen op nikkelbasis en andere hoogwaardige legeringen, en hun geschiktheid voor zure service.
    • Specificeert de chemische samenstelling, mechanische eigenschappen en warmtebehandelingen die nodig zijn om deze materialen bestand te maken tegen scheuren.
    • Biedt richtlijnen voor de selectie, het testen en de kwalificatie van CRA's om hun prestaties in H₂S-omgevingen te garanderen.
    • Bespreekt het belang van het overwegen van zowel de corrosieweerstand als de mechanische eigenschappen van deze legeringen bij het selecteren van materialen voor specifieke toepassingen.

NACE MR0175/ISO 15156 is een uitgebreide norm die het veilige en effectieve gebruik van materialen in zure serviceomgevingen helpt garanderen. Elk deel van de norm heeft betrekking op verschillende categorieën materialen en biedt gedetailleerde richtlijnen voor de selectie, het testen en de kwalificatie ervan. Door deze richtlijnen te volgen kunnen bedrijven het risico op materiaalfalen verminderen en de veiligheid en betrouwbaarheid van hun activiteiten in H₂S-houdende omgevingen vergroten.