Olieland buisgoederen (OCTG)

Buisvormige goederen uit olielanden (OCTG) is een familie van naadloos gewalste producten bestaande uit boorbuizen, omhulsels en buizen die worden onderworpen aan belastingsomstandigheden afhankelijk van hun specifieke toepassing. (zie Figuur 1 voor een schema van een diepe put):

De Boor pijp is een zware naadloze buis die de boorkop roteert en boorvloeistof laat circuleren. Buissegmenten van 30 ft (9 m) lang worden gekoppeld met gereedschapsverbindingen. De boorbuis wordt gelijktijdig onderworpen aan een hoog koppel door te boren, axiale spanning door het eigen gewicht en interne druk door het zuiveren van boorvloeistof. Bovendien kunnen afwisselende buigbelastingen als gevolg van niet-verticaal of afgebogen boren worden gesuperponeerd op deze basisbelastingspatronen.
Behuizing pijp lijnen de boorgat. Het is onderhevig aan axiale spanning door zijn eigen gewicht, interne druk door vloeistofzuivering en externe druk van omringende rotsformaties. De gepompte olie- of gasemulsie stelt de omhulling in het bijzonder bloot aan axiale spanning en interne druk.
Tubing is een pijp waardoor olie of gas uit de boorput wordt getransporteerd. Tubing-segmenten zijn over het algemeen ongeveer 30 ft [9 m] lang en hebben aan elk uiteinde een schroefdraadverbinding.

Corrosiebestendigheid onder zure bedrijfsomstandigheden is een cruciale OCTG-eigenschap, vooral voor behuizingen en buizen.

Typische OCTG-productieprocessen omvatten (alle afmetingen zijn bij benadering)

Continue doornwals- en duwbankprocessen voor afmetingen tussen 21 en 178 mm OD.
Plugmolenwalsen voor maten tussen 140 en 406 mm OD.
Cross-roll piercing en pilger rolling voor maten tussen 250 en 660 mm OD.
Deze processen staan doorgaans niet de thermomechanische verwerking toe die gebruikelijk is voor de strip- en plaatproducten die worden gebruikt voor de gelaste pijp. Daarom moet een naadloze pijp met hoge sterkte worden geproduceerd door het legeringsgehalte te verhogen in combinatie met een geschikte warmtebehandeling, zoals blussen en temperen.

Figuur 1. Schematische weergave van een diepe, bloeiende voltooiing

Om te voldoen aan de fundamentele vereiste van een volledig martensitische microstructuur, zelfs bij grote buiswanddiktes, is een goede hardbaarheid vereist. Cr en Mn zijn de belangrijkste legeringselementen die een goede hardbaarheid produceren in conventioneel warmtebehandelbaar staal. De vereiste voor goede sulfide stress cracking (SSC)-bestendigheid beperkt echter hun gebruik. Mn heeft de neiging om te segregeren tijdens continugieten en kan grote MnS-insluitsels vormen die de waterstof-geïnduceerde scheurweerstand (HIC) verminderen. Hogere niveaus van Cr kunnen leiden tot de vorming van Cr7C3-precipitaten met een grove plaatvormige morfologie, die fungeren als waterstofverzamelaars en scheurinitiatoren. Legering met Molybdeen kan de beperkingen van Mn- en Cr-legering overwinnen. Mo is een veel sterkere verharder dan Mn en Cr, dus het kan snel het effect van een verminderde hoeveelheid van deze elementen herstellen.

Traditioneel waren OCTG-soorten koolstof-mangaanstaal (tot het sterkteniveau van 55 ksi) of Mo-bevattende soorten tot 0,41 TP3T Mo. De laatste jaren hebben diepe putboringen en reservoirs met verontreinigingen die corrosieve aanvallen veroorzaken, een sterke vraag gecreëerd naar materialen met een hogere sterkte die bestand zijn tegen waterstofbrosheid en SCC. Sterk getemperde martensiet is de structuur die het meest bestand is tegen SSC bij hogere sterkteniveaus, en een concentratie van 0,751 TP3T Mo produceert de optimale combinatie van vloeigrens en SSC-bestendigheid.