Waterstof-geïnduceerd kraken HIC

Milieubarsten: HB, HIC, SWC, SOHIC, SSC, SZC, HSC, HE, SCC

Invoering

In industrieën waar materialen worden blootgesteld aan zware omstandigheden, zoals olie en gas, chemische verwerking en energieopwekking, is het van cruciaal belang om omgevingsscheuren te begrijpen en te voorkomen. Deze soorten scheuren kunnen leiden tot catastrofale storingen, kostbare reparaties en aanzienlijke veiligheidsrisico's. Deze blogpost biedt een gedetailleerd en professioneel overzicht van de verschillende vormen van omgevingsscheuren, zoals HB, HIC, SWC, SOHIC, SSC, SZC, HSC, HE en SCC, inclusief hun herkenning, onderliggende mechanismen en strategieën voor preventie.

1. Waterstofblaarvorming (HB)

Herkenning:
Waterstofblaarvorming wordt gekenmerkt door de vorming van blaren of uitstulpingen op het oppervlak van een materiaal. Deze blaren ontstaan doordat waterstofatomen het materiaal binnendringen en zich ophopen bij interne defecten of insluitsels, waardoor waterstofmoleculen ontstaan die lokaal hoge druk creëren.

Mechanisme:
Waterstofatomen diffunderen in het materiaal, meestal koolstofstaal, en recombineren tot moleculaire waterstof op plekken met onzuiverheden of holtes. De druk van deze waterstofmoleculen creëert blaren, waardoor het materiaal verzwakt en er verdere degradatie optreedt.

Preventie:

  • Materiaalkeuze: Gebruik materialen met weinig onzuiverheden, vooral staalsoorten met een laag zwavelgehalte.
  • Beschermende coatings: Aanbrengen van coatings die het binnendringen van waterstof voorkomen.
  • Kathodische bescherming: Implementatie van kathodische beschermingssystemen om waterstofabsorptie te verminderen.

2. Waterstofgeïnduceerd kraken (HIC)

Herkenning:
Waterstof-geïnduceerde scheurvorming (HIC) wordt herkend aan interne scheuren die vaak parallel lopen aan de rolrichting van het materiaal. Deze scheuren bevinden zich doorgaans langs korrelgrenzen en strekken zich niet uit tot het oppervlak van het materiaal, waardoor ze moeilijk te detecteren zijn totdat er aanzienlijke schade is opgetreden.

Mechanisme:
Net als waterstofblaasjes komen waterstofatomen het materiaal binnen en recombineren ze om moleculaire waterstof te vormen in interne holtes of insluitsels. De druk die door deze moleculen wordt gegenereerd, veroorzaakt interne scheuren, waardoor de structurele integriteit van het materiaal in gevaar komt.

Preventie:

  • Materiaalkeuze: Kies voor staalsoorten met een laag zwavelgehalte en een lager gehalte aan onzuiverheden.
  • Hittebehandeling: Pas de juiste warmtebehandelingsprocessen toe om de microstructuur van het materiaal te verfijnen.
  • Beschermende maatregelen: Gebruik coatings en kathodische bescherming om waterstofabsorptie te voorkomen.

3. Stress-georiënteerd waterstof-geïnduceerd kraken (SOHIC)

Herkenning:
SOHIC is een vorm van waterstofgeïnduceerde scheurvorming die optreedt in aanwezigheid van externe trekspanning. Het wordt herkend door een kenmerkend trapsgewijs of trapvormig scheurpatroon, vaak waargenomen in de buurt van lassen of andere gebieden met hoge spanning.

Mechanisme:
Waterstof-geïnduceerde scheuren en trekspanning leiden tot een ernstiger en duidelijker scheurpatroon. De aanwezigheid van spanning verergert de effecten van waterstofverbrossing, waardoor de scheur zich stapsgewijs voortplant.

Preventie:

  • Stressmanagement: Voer stressverlichtende behandelingen uit om restspanningen te verminderen.
  • Materiaalkeuze: Gebruik materialen met een hogere weerstand tegen waterstofbrosheid.
  • Beschermende maatregelen: Breng beschermende coatings en kathodische bescherming aan.

4. Sulfide spanningsscheuren (SSC)

Herkenning:
Sulfide stress cracking (SSC) manifesteert zich als brosse scheuren in staalsoorten met hoge sterkte die worden blootgesteld aan waterstofsulfide-omgevingen (H₂S). Deze scheuren zijn vaak intergranulair en kunnen zich snel voortplanten onder trekspanning, wat leidt tot plotseling en catastrofaal falen.

Mechanisme:
In de aanwezigheid van waterstofsulfide worden waterstofatomen door het materiaal geabsorbeerd, wat leidt tot verbrossing. Deze verbrossing vermindert het vermogen van het materiaal om trekspanning te weerstaan, wat resulteert in brosse breuk.

Preventie:

  • Materiaalkeuze: Gebruik van zuurbestendige materialen met gecontroleerde hardheidsniveaus.
  • Milieubeheersing: Verminder de blootstelling aan waterstofsulfide of gebruik remmers om de impact ervan te minimaliseren.
  • Beschermende coatings: Aanbrengen van coatings die als barrière tegen waterstofsulfide dienen.

5. Stapsgewijs kraken (SWC)

Herkenning:
Stapsgewijs of waterstofscheuren komen voor in staalsoorten met een hoge sterkte, met name in gelaste constructies. Het is te herkennen aan een zigzag- of trapvormig scheurpatroon, dat doorgaans wordt waargenomen bij lassen.

Mechanisme:
Stapsgewijs scheuren ontstaat door de gecombineerde effecten van waterstofbrosheid en restspanning van het lassen. De scheur verspreidt zich stapsgewijs, waarbij het zwakste pad door het materiaal wordt gevolgd.

Preventie:

  • Hittebehandeling: Gebruik warmtebehandelingen voor en na het lassen om restspanningen te verminderen.
  • Materiaalkeuze: Kies voor materialen die beter bestand zijn tegen waterstofbrosheid.
  • Waterstof bakken: Voer na het lassen waterstofafbrandprocedures uit om geabsorbeerde waterstof te verwijderen.

6. Spanningszinkscheuren (SZC)

Herkenning:
Spanningszinkscheuren (SZC) treedt op in verzinkt (gegalvaniseerd) staal. Het wordt herkend aan intergranulaire scheuren die kunnen leiden tot delaminatie van de zinkcoating en vervolgens structureel falen van het onderliggende staal.

Mechanisme:
De combinatie van trekspanning in de zinkcoating en blootstelling aan een corrosieve omgeving veroorzaakt SZC. De spanning in de coating, gekoppeld aan omgevingsfactoren, leidt tot intergranulaire scheuren en falen.

Preventie:

  • Coatingcontrole: Zorg voor de juiste dikte van de zinklaag om overmatige spanning te voorkomen.
  • Ontwerp Overwegingen: Vermijd scherpe bochten en hoeken die spanning concentreren.
  • Milieubeheersing: Beperk blootstelling aan corrosieve omgevingen die scheurvorming kunnen verergeren.

7. Waterstofspanningsscheuren (HSC)

Herkenning:
Waterstofspanningsscheuren (HSC) is een vorm van waterstofbrosheid in staalsoorten met hoge sterkte die aan waterstof worden blootgesteld. Het wordt gekenmerkt door plotselinge brosse breuk onder trekspanning.

Mechanisme:
Waterstofatomen diffunderen in het staal, wat leidt tot verbrossing. Deze verbrossing vermindert de taaiheid van het materiaal aanzienlijk, waardoor het vatbaar wordt voor scheuren en plotseling falen onder spanning.

Preventie:

  • Materiaalkeuze: Kies materialen die minder gevoelig zijn voor waterstofbrosheid.
  • Milieubeheersing: Minimaliseer de blootstelling aan waterstof tijdens de verwerking en service.
  • Beschermende maatregelen: Gebruik beschermende coatings en kathodische bescherming om het binnendringen van waterstof te voorkomen.

8. Waterstofbrosheid (HE)

Herkenning:
Waterstofbrosheid (HE) is een algemene term voor het verlies van elasticiteit en daaropvolgende barsten of breuk van een materiaal door waterstofabsorptie. De plotselinge en broze aard van de breuk wordt vaak herkend.

Mechanisme:
Waterstofatomen dringen de roosterstructuur van het metaal binnen, waardoor de ductiliteit en taaiheid ervan aanzienlijk afnemen. Onder spanning is het brosse materiaal vatbaar voor scheuren en falen.

Preventie:

  • Materiaalkeuze: Gebruik materialen die bestand zijn tegen waterstofbrosheid.
  • Waterstofcontrole: Beheer de blootstelling aan waterstof tijdens de productie en het gebruik om absorptie te voorkomen.
  • Beschermende coatings: Breng coatings aan die voorkomen dat waterstof het materiaal binnendringt.

9. Spanningscorrosiescheuren (SCC)

Herkenning:
Spanningscorrosiescheuren (SCC) worden gekenmerkt door fijne scheuren die doorgaans beginnen aan het oppervlak van het materiaal en zich door de dikte ervan voortplanten. SCC treedt op wanneer een materiaal wordt blootgesteld aan een corrosieve omgeving onder trekspanning.

Mechanisme:
SCC is het resultaat van de gecombineerde effecten van trekspanning en een corrosieve omgeving. Bijvoorbeeld, chloride-geïnduceerde SCC is een veelvoorkomend probleem in roestvrij staal, waar chloride-ionen het ontstaan en de voortplanting van scheuren onder spanning vergemakkelijken.

Preventie:

  • Materiaalkeuze: Kies materialen die bestand zijn tegen specifieke soorten SCC die relevant zijn voor het milieu.
  • Milieubeheersing: Verminder de concentratie van corrosieve stoffen, zoals chloriden, in de werkomgeving.
  • Stressmanagement: Gebruik spanningsarm gloeien en een zorgvuldig ontwerp om restspanningen die bijdragen aan SCC tot een minimum te beperken.

Conclusie

Milieubarsten vormen een complexe en veelzijdige uitdaging voor industrieën waar materiaalintegriteit cruciaal is. Het begrijpen van de specifieke mechanismen achter elk type barsten, zoals HB, HIC, SWC, SOHIC, SSC, SZC, HSC, HE en SCC, is essentieel voor effectieve preventie. Door strategieën te implementeren zoals materiaalselectie, stressmanagement, milieubeheersing en beschermende coatings, kunnen industrieën de risico's die gepaard gaan met deze vormen van barsten aanzienlijk verminderen, waardoor de veiligheid, betrouwbaarheid en levensduur van hun infrastructuur worden gewaarborgd.

Naarmate technologische vooruitgang zich blijft ontwikkelen, zullen ook de methoden voor het bestrijden van milieuscheuren zich blijven ontwikkelen. Dit maakt voortdurend onderzoek en ontwikkeling van vitaal belang voor het behouden van de integriteit van het materiaal in steeds veeleisendere omgevingen.

Het bouwen van olieopslagtanks: Berekening van de vereisten voor stalen platen

Hoe bereken je het aantal stalen platen voor olieopslagtanks?

Invoering

Het bouwen van olieopslagtanks vereist nauwkeurige planning en nauwkeurige berekeningen om structurele integriteit, veiligheid en kosteneffectiviteit te garanderen. Voor tanks die zijn gebouwd met koolstofstalen platen, het bepalen van de hoeveelheid en de rangschikking van deze platen is cruciaal. In deze blog zullen we het berekenen van het aantal stalen platen voor olieopslagtanks onderzoeken, waarbij we een specifiek voorbeeld gebruiken om de betrokken stappen te illustreren.

Projectspecificaties

Klantvereisten:

  • Opties voor plaatdikte: 6mm, 8mm en 10mm koolstofstalen platen
  • Afmetingen plaat: Breedte: 2200mm, Lengte: 6000mm

Tankspecificaties:

  • Aantal tanks: 3
  • Individueel tankvolume: 3.000 kubieke meter
  • Hoogte: 12 meter
  • Diameter: 15.286 meter

Stappen voor het berekenen van de hoeveelheid stalen platen voor drie cilindrische olieopslagtanks

Stap 1: Bereken het oppervlak van een enkele tank

Het oppervlak van elke tank is de som van de oppervlakken van de cilindrische mantel, de bodem en het dak.

1. Bereken de omtrek en het schelpoppervlak

2. Bereken de oppervlakte van de bodem en het dak

 

Stap 2: Bereken het totale oppervlak van alle tanks

Stap 3: Bepaal het aantal benodigde stalen platen

Stap 4: Plaatdikte toewijzen

Om de structurele integriteit en kosten van de tanks te optimaliseren, moeten verschillende plaatdiktes worden toegewezen aan de verschillende onderdelen van elke tank:

  • 6mm platen: Gebruikt voor daken, waar de structurele spanning lager is.
  • 8mm platen: Aanbrengen op de bovenste delen van de tankwanden, waar de spanning matig is.
  • 10mm platen:Deze worden gebruikt voor de bodem en de onderste delen van de schelpen, waar de spanning het hoogst is vanwege het gewicht van de opgeslagen olie.

Stap 5: Voorbeeld van toewijzing van platen voor elke tank

Bodemplaten:

  • Vereiste oppervlakte per tank: 183,7 vierkante meter
  • Plaatdikte: 10mm
  • Aantal platen per tank: [183.7/13.2] platen
  • Totaal voor 3 tanks: 14×3 platen

Schilplaten:

  • Vereiste oppervlakte per tank: 576 vierkante meter
  • Plaatdikte: 10 mm (onderste gedeelte), 8 mm (bovenste gedeelte)
  • Aantal platen per tank: [576/13.2] platen
    • Onderste gedeelte (10 mm): Ongeveer 22 platen per tank
    • Bovenste gedeelte (8mm): Ongeveer 22 platen per tank
  • Totaal voor 3 tanks: 44×3 platen

Dakplaten:

  • Vereiste oppervlakte per tank: 183,7 vierkante meter
  • Plaatdikte: 6mm
  • Aantal platen per tank: [183.7/13.2] platen
  • Totaal voor 3 tanks: 14 × 3 = platen

Overwegingen voor nauwkeurige berekeningen

  • Corrosietoeslag: Voeg extra dikte toe om rekening te houden met toekomstige corrosie.
  • Verspilling: Houd rekening met materiaalverspilling door het snijden en monteren, waarbij doorgaans 5-10% extra materiaal wordt toegevoegd.
  • Ontwerpcodes: Zorg bij het bepalen van de plaatdikte en het tankontwerp dat wordt voldaan aan de relevante ontwerpcodes en -normen, zoals API 650.

Conclusie

Het bouwen van olieopslagtanks met koolstofstalen platen vereist nauwkeurige berekeningen om de materiaalefficiëntie en structurele integriteit te garanderen. Door het oppervlak nauwkeurig te bepalen en rekening te houden met de juiste plaatdiktes, kunt u het aantal platen schatten dat nodig is om tanks te bouwen die voldoen aan de industrienormen en klantvereisten. Deze berekeningen vormen de basis voor succesvolle tankconstructie, waardoor efficiënte materiaalinkoop en projectplanning mogelijk zijn. Of het nu gaat om een nieuw project of het aanpassen van bestaande tanks, deze aanpak zorgt voor robuuste en betrouwbare olieopslagoplossingen die aansluiten bij de beste technische praktijken. Als u een nieuw LNG-, vliegtuigbrandstof- of ruwe olieopslagtankproject hebt, neem dan contact op met [email protected] voor een optimale offerte voor stalen platen.

3LPE-coating versus 3LPP-coating

3LPE versus 3LPP: Uitgebreide vergelijking van pijpleidingcoatings

Invoering

Pipeline coatings beschermen stalen pijpleidingen tegen corrosie en andere omgevingsfactoren. Tot de meest gebruikte coatings behoren 3-laags polyethyleen (3LPE) En 3-laags polypropyleen (3LPP) coatings. Beide coatings bieden robuuste bescherming, maar ze verschillen in toepassing, samenstelling en prestatie. Deze blog biedt een gedetailleerde vergelijking tussen 3LPE- en 3LPP-coatings, met de nadruk op vijf belangrijke gebieden: coatingselectie, coatingsamenstelling, coatingprestatie, bouwvereisten en bouwproces.

1. Coatingselectie

3LPE-coating:
Gebruik: 3LPE wordt veel gebruikt voor onshore en offshore pijpleidingen in de olie- en gasindustrie. Het is met name geschikt voor omgevingen waar matige temperatuurbestendigheid en uitstekende mechanische bescherming vereist zijn.
Temperatuurbereik:De 3LPE-coating wordt doorgaans gebruikt voor pijpleidingen die werken bij temperaturen tussen -40 °C en 80 à 80 °C.
Kostenoverweging:3LPE is over het algemeen kosteneffectiever dan 3LPP, waardoor het een populaire keuze is voor projecten met budgetbeperkingen waarbij de temperatuurvereisten binnen het ondersteunde bereik vallen.
3LPP-coating:
Gebruik: 3LPP heeft de voorkeur in omgevingen met hoge temperaturen, zoals diepwater offshore pijpleidingen en pijpleidingen die hete vloeistoffen transporteren. Het wordt ook gebruikt in gebieden waar superieure mechanische bescherming nodig is.
Temperatuurbereik:3LPP-coatings zijn bestand tegen hogere temperaturen, doorgaans tussen -20°C en 140°C, waardoor ze geschikt zijn voor veeleisende toepassingen.
Kostenoverweging:3LPP-coatings zijn duurder vanwege hun superieure temperatuurbestendigheid en mechanische eigenschappen, maar ze zijn noodzakelijk voor pijpleidingen die onder extreme omstandigheden werken.
Selectie Samenvatting:De keuze tussen 3LPE en 3LPP hangt voornamelijk af van de bedrijfstemperatuur van de pijpleiding, de omgevingsomstandigheden en budgettaire overwegingen. 3LPE is ideaal voor gematigde temperaturen en kostengevoelige projecten, terwijl 3LPP de voorkeur heeft voor omgevingen met hoge temperaturen waar verbeterde mechanische bescherming essentieel is.

2. Coatingsamenstelling

Samenstelling van 3LPE-coating:
Laag 1: Fusion Bonded Epoxy (FBE):De binnenste laag zorgt voor een uitstekende hechting aan het stalen substraat en is de primaire corrosiebeschermingslaag.
Laag 2: Copolymeerlijm: Deze laag verbindt de FBE-laag met de polyethyleen toplaag, wat zorgt voor een sterke hechting en extra corrosiebescherming.
Laag 3: Polyethyleen (PE):De buitenste laag biedt mechanische bescherming tegen fysieke schade tijdens het hanteren, transporteren en installeren.
Samenstelling van 3LPP-coating:
Laag 1: Fusion Bonded Epoxy (FBE):Net als bij 3LPE fungeert de FBE-laag in 3LPP als primaire corrosiebeschermings- en hechtingslaag.
Laag 2: Copolymeerlijm: Deze kleeflaag verbindt de FBE met de polypropyleen toplaag, waardoor een sterke hechting ontstaat.
Laag 3: Polypropyleen (PP):De buitenste laag van polypropyleen biedt superieure mechanische bescherming en hogere temperatuurbestendigheid dan polyethyleen.
Samenstelling Samenvatting: Beide coatings delen een vergelijkbare structuur, met een FBE-laag, een copolymeerlijm en een buitenste beschermlaag. Het materiaal van de buitenste laag verschilt echter: polyethyleen in 3LPE en polypropyleen in 3LPP, wat leidt tot verschillen in prestatiekenmerken.

3. Coatingprestaties

Prestaties van 3LPE-coating:
Temperatuurbestendigheid: 3LPE presteert goed in gematigde temperaturen, maar is mogelijk niet geschikt voor temperaturen boven de 80°C.
Mechanische bescherming:De buitenste laag van polyethyleen biedt uitstekende weerstand tegen fysieke beschadigingen, waardoor het geschikt is voor pijpleidingen op land en op zee.
Corrosieweerstand:De combinatie van FBE- en PE-lagen biedt een robuuste bescherming tegen corrosie, vooral in vochtige of natte omgevingen.
Chemische weerstand:3LPE biedt een goede bestendigheid tegen chemicaliën, maar is minder effectief in omgevingen met agressieve chemische blootstelling vergeleken met 3LPP.
Prestaties van 3LPP-coating:
Temperatuurbestendigheid:3LPP is ontworpen om temperaturen tot 140°C te weerstaan, waardoor het ideaal is voor pijpleidingen die hete vloeistoffen transporteren of in omgevingen met hoge temperaturen.
Mechanische bescherming:De polypropyleenlaag biedt superieure mechanische bescherming, vooral in diepwater offshore pijpleidingen met hogere externe druk en fysieke belasting.
Corrosieweerstand:3LPP biedt een uitstekende corrosiebescherming, vergelijkbaar met 3LPE, maar presteert beter in omgevingen met hogere temperaturen.
Chemische weerstand:3LPP heeft een superieure chemische bestendigheid, waardoor het geschikter is voor omgevingen met agressieve chemicaliën of koolwaterstoffen.
Prestatiesamenvatting: 3LPP presteert beter dan 3LPE in omgevingen met hoge temperaturen en biedt betere mechanische en chemische bestendigheid. 3LPE is echter nog steeds zeer effectief voor gematigde temperaturen en minder agressieve omgevingen.

4. Bouwvereisten

3LPE-constructievereisten:
Voorbereiding van het oppervlak: Een goede oppervlaktevoorbereiding is cruciaal voor de effectiviteit van de 3LPE-coating. Het stalen oppervlak moet worden gereinigd en opgeruwd om de benodigde hechting voor de FBE-laag te bereiken.
Toepassingsvoorwaarden: De 3LPE-coating moet in een gecontroleerde omgeving worden aangebracht om een goede hechting van elke laag te garanderen.
Dikte specificaties:De dikte van elke laag is van cruciaal belang. De totale dikte varieert doorgaans van 1,8 mm tot 3,0 mm, afhankelijk van het beoogde gebruik van de pijpleiding.
3LPP-constructievereisten:
Voorbereiding van het oppervlak: Net als bij 3LPE is oppervlaktevoorbereiding cruciaal. Het staal moet worden gereinigd om verontreinigingen te verwijderen en ruw gemaakt om een goede hechting van de FBE-laag te garanderen.
Toepassingsvoorwaarden:Het aanbrengproces voor 3LPP is vergelijkbaar met dat van 3LPE, maar vereist vaak een nauwkeurigere controle vanwege de hogere temperatuurbestendigheid van de coating.
Dikte specificaties:3LPP-coatings zijn doorgaans dikker dan 3LPE, waarbij de totale dikte varieert van 2,0 mm tot 4,0 mm, afhankelijk van de specifieke toepassing.
Samenvatting van de bouwvereisten: 3LPE en 3LPP vereisen een nauwkeurige oppervlaktevoorbereiding en gecontroleerde applicatieomgevingen. 3LPP-coatings vereisen echter over het algemeen dikkere applicaties om hun beschermende kwaliteiten te verbeteren.

5. Bouwproces

3LPE-bouwproces:
Oppervlaktereiniging:De stalen buis wordt gereinigd met behulp van methoden zoals stralen om roest, aanslag en andere verontreinigingen te verwijderen.
FBE-aanvraag:De gereinigde pijp wordt voorverwarmd en de FBE-laag wordt elektrostatisch aangebracht, waardoor een stevige verbinding met het staal ontstaat.
Toepassing van de kleeflaag:Er wordt een copolymeerlijm over de FBE-laag aangebracht, waardoor de FBE aan de buitenste polyethyleenlaag wordt gehecht.
PE-laagtoepassing:De polyethyleenlaag wordt op de buis geëxtrudeerd en biedt mechanische bescherming en extra corrosiebestendigheid.
Koeling en inspectie:De gecoate buis wordt gekoeld, gecontroleerd op defecten en klaargemaakt voor transport.
3LPP-bouwproces:
Oppervlaktereiniging:Net als bij 3LPE wordt de stalen buis grondig gereinigd om een goede hechting van de coatinglagen te garanderen.
FBE-aanvraag:De FBE-laag wordt op de voorverwarmde buis aangebracht en dient als primaire corrosiebeschermingslaag.
Toepassing van de kleeflaag:Over de FBE-laag wordt een copolymeerlijm aangebracht, die zorgt voor een stevige verbinding met de polypropyleen toplaag.
PP-laagtoepassing:De polypropyleenlaag wordt door middel van extrusie aangebracht en biedt superieure mechanische en temperatuurbestendigheid.
Koeling en inspectie:De pijp wordt gekoeld, geïnspecteerd op defecten en gereedgemaakt voor gebruik.
Samenvatting van het bouwproces: De bouwprocessen voor 3LPE en 3LPP zijn vergelijkbaar, met verschillende materialen die worden gebruikt voor de buitenste beschermlaag. Beide methoden vereisen zorgvuldige controle van temperatuur, reinheid en laagdikte om optimale prestaties te garanderen.

Conclusie

De keuze tussen 3LPE- en 3LPP-coatings hangt af van verschillende factoren, waaronder de bedrijfstemperatuur, omgevingsomstandigheden, mechanische belasting en budget.
3LPE is ideaal voor pijpleidingen die werken bij gematigde temperaturen en waar kosten een belangrijke overweging zijn. Het biedt uitstekende corrosiebestendigheid en mechanische bescherming voor de meeste onshore en offshore toepassingen.
3LPPis daarentegen de voorkeurskeuze voor omgevingen met hoge temperaturen en toepassingen die superieure mechanische bescherming vereisen. De hogere kosten worden gerechtvaardigd door de verbeterde prestaties in veeleisende omstandigheden.

Het begrijpen van de specifieke vereisten van uw pijpleidingproject is essentieel bij het selecteren van de juiste coating. Zowel 3LPE als 3LPP hebben hun sterke punten en toepassingen, en de juiste keuze zorgt voor langdurige bescherming en duurzaamheid van uw pijpleidinginfrastructuur.

Onderzoek naar de vitale rol van stalen buizen bij olie- en gaswinning

Invoering

Stalen buizen zijn cruciaal in de olie- en gasindustrie en bieden ongeëvenaarde duurzaamheid en betrouwbaarheid onder extreme omstandigheden. Deze buizen zijn essentieel voor exploratie en transport en zijn bestand tegen hoge druk, corrosieve omgevingen en extreme temperaturen. Deze pagina onderzoekt de cruciale functies van stalen buizen in de olie- en gasexploratie en beschrijft hun belang voor boren, infrastructuur en veiligheid. Ontdek hoe het selecteren van geschikte stalen buizen de operationele efficiëntie kan verbeteren en kosten kan verlagen in deze veeleisende industrie.

I. Basiskennis van stalen buizen voor de olie- en gasindustrie

1. Terminologie-uitleg

API: Afkorting van Amerikaanse Petroleum Instituut.
OCTG: Afkorting van Olieland buisvormige goederen, inclusief oliebehuizingspijp, olieslang, boorpijp, boorkraag, boorbeitels, zuigstang, jonggewrichten, enz.
Olieslang: Buizen worden in oliebronnen gebruikt voor winning, gaswinning, waterinjectie en zuurfracturering.
Behuizing: Een buis die vanaf het grondoppervlak in een geboord boorgat wordt neergelaten als voering om instorting van de muur te voorkomen.
Boor pijp: Pijp gebruikt voor het boren van boorgaten.
Lijn pijp: Pijp gebruikt om olie of gas te transporteren.
Koppelingen: Cilinders die worden gebruikt om twee pijpen met schroefdraad en interne schroefdraad met elkaar te verbinden.
Koppelingsmateriaal: Pijp gebruikt voor het vervaardigen van koppelingen.
API-threads: Pijpschroefdraden gespecificeerd volgens de API 5B-norm, inclusief ronde schroefdraden voor olieleidingen, korte ronde schroefdraden voor mantels, lange ronde schroefdraden voor mantels, gedeeltelijk trapeziumvormige schroefdraden voor mantels, pijpschroefdraden, enz.
Premium-verbinding: Niet-API-schroefdraad met unieke afdichtingseigenschappen, verbindingseigenschappen en andere eigenschappen.
Storingen: vervorming, breuk, oppervlakteschade en verlies van oorspronkelijke functie onder specifieke gebruiksomstandigheden.
Primaire vormen van falen: verbrijzeling, wegglijden, scheuren, lekken, corrosie, hechting, slijtage, enz.

2. Aardoliegerelateerde normen

API-specificatie 5B, 17e editie – Specificatie voor het draadsnijden, meten en draadinspectie van de schroefdraad van behuizingen, buizen en leidingleidingen
API-specificatie 5L, 46e editie – Specificatie voor leidingpijp
API-specificatie 5CT, 11e editie – Specificatie voor behuizing en buizen
API-specificatie 5DP, 7e editie – Specificatie voor boorpijp
API-specificatie 7-1, 2e editie – Specificatie voor roterende boorsteelelementen
API-specificatie 7-2, 2e editie – Specificatie voor draadsnijden en meten van roterende schroefdraadverbindingen
API-specificatie 11B, 24e editie – Specificatie voor zuigstangen, gepolijste stangen en voeringen, koppelingen, zinkstaven, gepolijste stangklemmen, pakkingbussen en pomp-T-stukken
ISO3183:2019 – Aardolie- en aardgasindustrieën – Stalen buizen voor transportsystemen voor pijpleidingen
ISO11960:2020 – Aardolie- en aardgasindustrieën – Stalen buizen voor gebruik als behuizing of buizen voor putten
NACE MR0175 / ISO 15156:2020 – Aardolie- en aardgasindustrieën – Materialen voor gebruik in H2S-bevattende omgevingen bij de olie- en gasproductie

II. Olieslang

1. Classificatie van olieslangen

Olieslangen worden onderverdeeld in Non-Upsetted Oil Tubing (NU), External Upsetted Oil Tubing (EU) en Integral Joint (IJ) Oil Tubing. NU-olieslangen betekenen dat het uiteinde van de slang een gemiddelde dikte heeft, direct de draad draait en de koppelingen brengt. Upsetted tubing houdt in dat de uiteinden van beide buizen extern Upsetted zijn, vervolgens geschroefd en gekoppeld. Integral Joint tubing betekent dat één uiteinde van de buis Upset is met externe draden en het andere Upset is met interne draden die direct verbonden zijn zonder koppelingen.

2. Functie van olieslangen

① Winning van olie en gas: nadat de olie- en gasbronnen zijn geboord en gecementeerd, worden de buizen in de oliemantel geplaatst om olie en gas uit de grond te halen.
② Waterinjectie: wanneer de druk in het boorgat onvoldoende is, injecteert u water via de slangen in de put.
③ Stoominjectie: Bij het winnen van dikke olie wordt stoom via geïsoleerde olieleidingen in de put gebracht.
④ Verzuring en breukvorming: In de laatste fase van het boren van putten of om de productie van olie- en gasputten te verbeteren, is het noodzakelijk om verzurings- en breukmiddel of uithardingsmateriaal in de olie- en gaslaag in te voeren, en het middel en het uithardingsmateriaal worden door de olieleidingen getransporteerd.

3. Staalkwaliteit van olieslangen

De staalkwaliteiten van oliebuizen zijn H40, J55, N80, L80, C90, T95, P110.
N80 is onderverdeeld in N80-1 en N80Q, de twee hebben dezelfde treksterkte-eigenschappen; de twee verschillen zijn de leveringsstatus en de verschillen in slagvastheid, N80-1 levering in genormaliseerde toestand of wanneer de uiteindelijke walstemperatuur hoger is dan de kritische temperatuur Ar3 en spanningsvermindering na luchtkoeling en kan worden gebruikt om warmwalsen te vinden in plaats van genormaliseerd, slagvastheid en niet-destructief testen zijn niet vereist; N80Q moet worden getemperd (geblust en getemperd) Warmtebehandeling, slagvastheid moet in overeenstemming zijn met de bepalingen van API 5CT en moet niet-destructief testen zijn.
L80 is verdeeld in L80-1, L80-9Cr en L80-13Cr. Hun mechanische eigenschappen en leveringsstatus zijn hetzelfde. Verschillen in gebruik, productiemoeilijkheid en prijs: L80-1 is voor het algemene type, L80-9Cr en L80-13Cr zijn buizen met een hoge corrosiebestendigheid, productiemoeilijkheid en zijn duur en worden meestal gebruikt in putten met zware corrosie.
C90 en T95 zijn onderverdeeld in 1 en 2 typen, namelijk C90-1, C90-2 en T95-1, T95-2.

4. De vaak gebruikte staalsoort, staalnaam en leveringsstatus van de olieslangen

J55 (37Mn5) NU-olieslang: warmgewalst in plaats van genormaliseerd
J55 (37Mn5) EU-olieslang: genormaliseerd over de volledige lengte na verstoring
N80-1 (36Mn2V) NU-olieslang: warmgewalst in plaats van genormaliseerd
N80-1 (36Mn2V) EU-olieslang: volledige lengte genormaliseerd na verstoring
N80-Q (30Mn5) olieslang: 30Mn5, temperering over de volledige lengte
L80-1 (30Mn5) olieslang: 30Mn5, temperering over de volledige lengte
P110 (25CrMnMo) olieslang: 25CrMnMo, temperering over de volledige lengte
J55 (37Mn5) Koppeling: Warmgewalst online Genormaliseerd
N80 (28MnTiB) koppeling: tempereren over de volledige lengte
L80-1 (28MnTiB) Koppeling: gehard over de volledige lengte
P110 (25CrMnMo) koppeling: tempereren over de volledige lengte

III. Behuizing pijp

1. Classificatie en rol van behuizing

De behuizing is de stalen buis die de muur van olie- en gasbronnen ondersteunt. In elke put worden verschillende lagen boorbuis gebruikt, afhankelijk van de verschillende boordieptes en geologische omstandigheden. Cement wordt gebruikt om de behuizing te cementeren nadat deze in de put is neergelaten, en in tegenstelling tot oliepijpen en boorpijpen kan het niet worden hergebruikt en behoort het tot wegwerpbare verbruiksmaterialen. Daarom is het verbruik van behuizingen verantwoordelijk voor meer dan 70 procent van alle oliebronleidingen. De behuizing kan worden verdeeld in geleiderbehuizing, tussenbehuizing, productiebehuizing en voeringbehuizing, afhankelijk van het gebruik ervan, en hun structuren in oliebronnen worden getoond in figuur 1.

①Geleiderbehuizing: Doorgaans wordt gebruik gemaakt van API-kwaliteiten K55, J55 of H40. De geleidermantel stabiliseert de putmond en isoleert ondiepe watervoerende lagen met een diameter die gewoonlijk rond de 20 inch of 16 inch ligt.

②Tussenbehuizing: Tussenbehuizing, vaak gemaakt van API-kwaliteiten K55, N80, L80 of P110, wordt gebruikt om onstabiele formaties en variërende drukzones te isoleren, met typische diameters van 13 3/8 inch, 11 3/4 inch of 9 5/8 inch .

③Productiebehuizing: De productiebehuizing is gemaakt van hoogwaardig staal zoals API-kwaliteiten J55, N80, L80, P110 of Q125 en is ontworpen om productiedruk te weerstaan, gewoonlijk met diameters van 9 5/8 inch, 7 inch of 5 1/2 inch.

④Linerbehuizing: Liners verlengen de boorput in het reservoir met materialen zoals API-klassen L80, N80 of P110, met typische diameters van 7 inch, 5 inch of 4 1/2 inch.

⑤Slangen: Slangen transporteren koolwaterstoffen naar het oppervlak, met behulp van API-kwaliteiten J55, L80 of P110, en zijn verkrijgbaar in diameters van 4 1/2 inch, 3 1/2 inch of 2 7/8 inch.

IV. Boor pijp

1. Classificatie en functie van buizen voor boorgereedschap

De vierkante boorbuis, boorbuis, verzwaarde boorbuis en boorkraag in boorgereedschappen vormen de boorbuis. De boorbuis is het kernboorgereedschap dat de boor van de grond naar de bodem van de put drijft, en het is ook een kanaal van de grond naar de bodem van de put. Het heeft drie hoofdrollen:

① Om koppel over te brengen om de boor aan te drijven om te boren;

② Vertrouwen op zijn gewicht op de boor om de druk van de rots op de bodem van de put te breken;

③ Om wasvloeistof te transporteren, dat wil zeggen door modder door de grond te boren via de hogedrukmodderpompen, boorkolom in de boorgatstroom naar de bodem van de put om het steenafval weg te spoelen en de boor af te koelen, en het steenafval te dragen door het buitenoppervlak van de kolom en de wand van de put tussen de ring om terug te keren naar de grond, om het doel van het boren van de put te bereiken.

De boorbuis wordt gebruikt in het boorproces om een verscheidenheid aan complexe wisselende belastingen te weerstaan, zoals trek-, druk-, torsie-, buig- en andere spanningen. Het binnenoppervlak is ook onderhevig aan hogedruk modderschuring en corrosie.
(1) Vierkante boorpijp: Vierkante boorpijpen zijn er in twee typen: vierhoekig en zeshoekig. In de Chinese petroleumboorpijp gebruikt elke set boorkolommen meestal een vierhoekige boorpijp. De specificaties zijn 63,5 mm (2-1/2 inch), 88,9 mm (3-1/2 inch), 107,95 mm (4-1/4 inch), 133,35 mm (5-1/4 inch), 152,4 mm (6 inch), enzovoort. De gebruikte lengte is meestal 1214,5 m.
(2) Boorpijp: De boorstang is het primaire gereedschap voor het boren van putten, verbonden met het onderste uiteinde van de vierkante boorstang, en naarmate de boorput dieper wordt, blijft de boorstang de boorkolom één voor één verlengen. De specificaties van de boorstang zijn: 60,3 mm (2-3/8 inch), 73,03 mm (2-7/8 inch), 88,9 mm (3-1/2 inch), 114,3 mm (4-1/2 inch), 127 mm (5 inch), 139,7 mm (5-1/2 inch) enzovoort.
(3) Zware boorpijp: Een verzwaarde boorpijp is een overgangsgereedschap dat de boorpijp en de boorkraag verbindt, waardoor de krachttoestand van de boorpijp kan worden verbeterd en de druk op de boor kan worden verhoogd. De belangrijkste specificaties van de verzwaarde boorpijp zijn 88,9 mm (3-1/2 inch) en 127 mm (5 inch).
(4) Boorkraag: De boorkraag is verbonden met het onderste deel van de boorbuis, wat een speciale dikwandige buis is met een hoge stijfheid. Het oefent druk uit op de boor om de rots te breken en speelt een leidende rol bij het boren van een rechte put. De algemene specificaties van boorkragen zijn 158,75 mm (6-1/4 inch), 177,85 mm (7 inch), 203,2 mm (8 inch), 228,6 mm (9 inch), enzovoort.

V. Lijnpijp

1. Classificatie van leidingpijpen

De lijnpijp wordt gebruikt in de olie- en gasindustrie om olie, geraffineerde olie, aardgas en waterleidingen te transporteren met de afkorting van stalen pijp. Het transporteren van olie- en gasleidingen is onderverdeeld in hoofd-, zij- en stedelijke pijpleidingnetwerkleidingen. Drie soorten hoofdleidingtransmissie hebben de gebruikelijke specificaties van ∅406 ~ 1219 mm, een wanddikte van 10 ~ 25 mm, staalsoort X42 ~ X80; zijleidingpijpleidingen en stedelijke pijpleidingnetwerkleidingen hebben meestal specificaties voor ∅114 ~ 700 mm, de wanddikte van 6 ~ 20 mm, de staalsoort voor de X42 ~ X80. De staalsoort is X42 ~ X80. Lijnpijp is verkrijgbaar in gelaste en naadloze typen. Gelaste lijnpijp wordt meer gebruikt dan naadloze lijnpijp.

2. Standaard van lijnpijp

API Spec 5L – Specificatie voor lijnpijp
ISO 3183 – Petroleum- en aardgasindustrie – Stalen buizen voor transportsystemen voor pijpleidingen

3. PSL1 en PSL2

PSL is de afkorting voor productspecificatieniveau. Het specificatieniveau van het product van de leidingpijp is verdeeld in PSL 1 en PSL 2, en het kwaliteitsniveau is verdeeld in PSL 1 en PSL 2. PSL 2 is hoger dan PSL 1; de twee specificatieniveaus hebben niet alleen verschillende testvereisten, maar de chemische samenstelling en mechanische eigenschappen zijn verschillend, dus volgens de API 5L-order moeten de voorwaarden van het contract, naast het specificeren van de specificaties, staalsoort en andere algemene indicatoren, ook het productspecificatieniveau aangeven, dat wil zeggen PSL 1 of PSL 2. PSL 2 in de chemische samenstelling, treksterkte, slagkracht, niet-destructief testen en andere indicatoren zijn strenger dan PSL 1.

4. Lijnpijp Staalkwaliteit, chemische samenstelling en mechanische eigenschappen

Staalsoorten voor leidingbuizen van laag naar hoog worden onderverdeeld in A25, A, B, X42, X46, X52, X60, X65, X70 en X80. Voor gedetailleerde chemische samenstelling en mechanische eigenschappen, raadpleeg de API 5L-specificatie, 46e editie.

5. Hydrostatische test en niet-destructieve onderzoeksvereisten voor leidingpijpen

De leiding moet tak voor tak worden getest met een hydraulische test, en de norm staat geen niet-destructieve generatie van hydraulische druk toe, wat ook een groot verschil is tussen de API-norm en onze normen. PSL 1 vereist geen niet-destructieve tests; PSL 2 moet tak voor tak niet-destructief testen.

VI. Premium-verbindingen

1. Introductie van Premium-verbindingen

Premium Connection is een pijpdraad met een unieke structuur die verschilt van de API-draad. Hoewel de bestaande API-schroefdraadoliemantel veel wordt gebruikt bij de exploitatie van olieputten, worden de tekortkomingen ervan duidelijk getoond in de unieke omgeving van sommige olievelden: de API ronde schroefdraadpijpkolom, hoewel de afdichtingsprestaties beter zijn, is de trekkracht die door het schroefdraaddeel wordt gedragen slechts gelijk aan 60% tot 80% van de sterkte van het pijplichaam, en kan daarom niet worden gebruikt bij de exploitatie van diepe putten; de API voorgespannen trapeziumvormige schroefdraadpijpkolom, hoewel de trekkracht veel hoger is dan die van de API ronde schroefdraadverbinding, is de afdichtingsprestatie niet zo goed. Hoewel de trekkracht van de kolom veel hoger is dan die van de API ronde schroefdraadverbinding, is de afdichtingsprestatie niet erg goed, dus kan deze niet worden gebruikt bij de exploitatie van hogedrukgasputten; Bovendien kan het schroefdraadvet alleen zijn rol spelen in een omgeving met een temperatuur lager dan 95℃ en kan het daarom niet worden gebruikt bij de exploitatie van hogetemperatuurputten.

Vergeleken met de API-ronde draad en de gedeeltelijke trapeziumdraadverbinding heeft de premiumverbinding baanbrekende vooruitgang geboekt op de volgende aspecten:

(1) Goede afdichting, door de elasticiteit en het ontwerp van de metalen afdichtingsstructuur, maakt de gasafdichting van de verbinding bestand tegen het bereiken van de limiet van het buislichaam binnen de vloeidruk;

(2) Hoge sterkte van de verbinding, verbonden met een speciale gespverbinding van het olieomhulsel, de verbindingssterkte bereikt of overtreft de sterkte van het buislichaam, om het probleem van slippen fundamenteel op te lossen;

(3) Door de materiaalselectie en de verbetering van het oppervlaktebehandelingsproces werd in principe het probleem van het vastzitten van de draad opgelost;

(4) Door de optimalisatie van de constructie, zodat de gezamenlijke spanningsverdeling redelijker is en bevorderlijker voor de weerstand tegen spanningscorrosie;

(5) Door de schouderstructuur van het redelijke ontwerp, zodat de bediening van de gesp op de bediening beter toegankelijk is.

De olie- en gasindustrie kan bogen op meer dan 100 gepatenteerde premiumverbindingen, die een aanzienlijke vooruitgang in pijptechnologie vertegenwoordigen. Deze gespecialiseerde draadontwerpen bieden superieure afdichtingsmogelijkheden, verhoogde verbindingssterkte en verbeterde weerstand tegen omgevingsstress. Door uitdagingen zoals hoge druk, corrosieve omgevingen en extreme temperaturen aan te pakken, zorgen deze innovaties voor uitstekende betrouwbaarheid en efficiëntie in olie-gezonde operaties wereldwijd. Continue research en ontwikkeling in premiumverbindingen benadrukken hun cruciale rol in het ondersteunen van veiligere en productievere boorpraktijken, wat een voortdurende toewijding aan technologische excellentie in de energiesector weerspiegelt.

VAM®-verbinding: VAM®-verbindingen staan bekend om hun robuuste prestaties in uitdagende omgevingen en zijn voorzien van geavanceerde metaal-op-metaal afdichtingstechnologie en hoge koppelmogelijkheden, waardoor betrouwbare werking in diepe putten en hogedrukreservoirs wordt gegarandeerd.

TenarisHydril Wedge-serie: Deze serie biedt een reeks verbindingen zoals Blue®, Dopeless® en Wedge 521®, bekend om hun uitzonderlijke gasdichte afdichting en weerstand tegen compressie- en trekkrachten, waardoor de operationele veiligheid en efficiëntie worden verbeterd.

TSH® Blauw: TSH® Blue-verbindingen zijn ontworpen door Tenaris en maken gebruik van een gepatenteerd ontwerp met dubbele schouder en een hoogwaardig draadprofiel, dat uitstekende weerstand tegen vermoeidheid en gemakkelijke montage biedt bij kritische boortoepassingen.

Grant Prideco™ XT®-verbinding: De door NOV ontwikkelde XT®-verbindingen zijn voorzien van een unieke metaal-op-metaalafdichting en een robuuste schroefdraadvorm. Hierdoor is er sprake van een superieure koppelcapaciteit en weerstand tegen vreten, waardoor de levensduur van de verbinding wordt verlengd.

Jacht Seal-Lock®-verbinding: Met een metaal-op-metaal afdichting en een uniek draadprofiel staat de Seal-Lock®-verbinding van Hunting bekend om zijn superieure drukweerstand en betrouwbaarheid bij zowel onshore als offshore booroperaties.

Conclusie

Concluderend omvat het ingewikkelde netwerk van stalen buizen dat cruciaal is voor de olie- en gasindustrie een breed scala aan gespecialiseerde apparatuur die is ontworpen om zware omstandigheden en complexe operationele eisen te weerstaan. Van de fundamentele omhulselbuizen die gezonde wanden ondersteunen en beschermen tot de veelzijdige buizen die worden gebruikt in extractie- en injectieprocessen, elk type buis dient een specifiek doel bij het verkennen, produceren en transporteren van koolwaterstoffen. Standaarden zoals API-specificaties zorgen voor uniformiteit en kwaliteit in deze buizen, terwijl innovaties zoals premiumverbindingen de prestaties verbeteren in uitdagende omstandigheden. Naarmate de technologie evolueert, evolueren deze kritieke componenten, wat de efficiëntie en betrouwbaarheid van wereldwijde energieactiviteiten bevordert. Inzicht in deze buizen en hun specificaties onderstreept hun onmisbare rol in de infrastructuur van de moderne energiesector.

Super 13Cr SMSS 13Cr behuizing en buizen

SMSS 13Cr en DSS 22Cr in H₂S/CO₂-olie-wateromgeving

Invoering

Het corrosiegedrag van supermartensitisch roestvrij staal (SMS) 13Cr en duplex roestvrij staal (DSS) 22Cr in een H₂S/CO₂-olie-wateromgeving zijn van groot belang, vooral in de olie- en gasindustrie, waar deze materialen vaak worden blootgesteld aan zulke zware omstandigheden. Hier is een overzicht van hoe elk materiaal zich onder deze omstandigheden gedraagt:

1. Supermartensitisch roestvrij staal (SMSS) 13Cr:

Samenstelling: SMSS 13Cr bevat doorgaans ongeveer 12-14% chroom, met kleine hoeveelheden nikkel en molybdeen. Het hoge chroomgehalte zorgt voor een goede weerstand tegen corrosie, terwijl de martensitische structuur voor een hoge sterkte zorgt.
Corrosiegedrag:
CO₂-corrosie: SMSS 13Cr vertoont matige weerstand tegen CO₂-corrosie, voornamelijk door de vorming van een beschermende chroomoxidelaag. In aanwezigheid van CO₂ is lokale corrosie, zoals putcorrosie en spleetcorrosie, echter riskant.
H₂S-corrosie: H₂S verhoogt het risico op sulfide stress cracking (SSC) en waterstofbrosheid. SMSS 13Cr is enigszins resistent, maar niet immuun voor deze vormen van corrosie, vooral bij hogere temperaturen en drukken.
Olie-wateromgeving: Olie kan soms een beschermende barrière vormen, waardoor de blootstelling van het metalen oppervlak aan corrosieve stoffen wordt verminderd. Water, met name pekel, kan echter zeer corrosief zijn. De balans van olie- en waterfasen kan de algehele corrosiesnelheid aanzienlijk beïnvloeden.
Gebruikelijke problemen:
Sulfidespanningsscheuren (SSC): De martensitische structuur, hoewel sterk, is gevoelig voor SSC in aanwezigheid van H₂S.
Put- en spleetcorrosie: Dit zijn grote zorgen, vooral in omgevingen met chloriden en CO₂.

2. Duplex roestvrij staal (DSS) 22Cr:

Samenstelling: DSS 22Cr bevat ongeveer 22% Chroom, ongeveer 5% Nikkel, 3% Molybdeen en een gebalanceerde austeniet-ferriet microstructuur. Dit geeft DSS uitstekende corrosiebestendigheid en hoge sterkte.
Corrosiegedrag:
CO₂-corrosie: DSS 22Cr is beter bestand tegen CO₂-corrosie dan SMSS 13Cr. Het hoge chroomgehalte en de aanwezigheid van molybdeen helpen een stabiele en beschermende oxidelaag te vormen die bestand is tegen corrosie.
H₂S-corrosie: DSS 22Cr is zeer resistent tegen H₂S-geïnduceerde corrosie, inclusief SSC en waterstofbrosheid. De uitgebalanceerde microstructuur en legeringssamenstelling helpen deze risico's te beperken.
Olie-wateromgeving: DSS 22Cr presteert goed in gemengde olie-wateromgevingen en is bestand tegen algemene en lokale corrosie. De aanwezigheid van olie kan de corrosiebestendigheid verbeteren door een beschermende film te vormen, maar dit is minder kritisch voor DSS 22Cr vanwege de inherente corrosiebestendigheid.
Gebruikelijke problemen:
Spanningscorrosiescheuren (SCC): Hoewel resistenter dan SMSS 13Cr, kan DSS 22Cr onder bepaalde omstandigheden nog steeds gevoelig zijn voor SCC, zoals hoge chlorideconcentraties bij verhoogde temperaturen.
Gelokaliseerde corrosie: DSS 22Cr is over het algemeen zeer goed bestand tegen put- en spleetcorrosie, maar dit kan onder extreme omstandigheden toch nog optreden.

Vergelijkende samenvatting:

Corrosieweerstand: DSS 22Cr biedt over het algemeen een betere corrosiebestendigheid dan SMSS 13Cr, vooral in omgevingen met H₂S en CO₂.
Sterkte en taaiheid: SMSS 13Cr is robuuster, maar gevoeliger voor corrosieproblemen zoals SSC en pitting.
Toepassingsgeschiktheid: DSS 22Cr heeft vaak de voorkeur in omgevingen met een hoger corrosierisico, zoals omgevingen met hoge concentraties H₂S en CO₂, terwijl SMSS 13Cr kan worden gekozen voor toepassingen waarbij een hogere sterkte met een matig corrosierisico vereist is.

Conclusie:

Wanneer u kiest tussen SMSS 13Cr en DSS 22Cr voor gebruik in H₂S/CO₂-olie-wateromgevingen, is DSS 22Cr doorgaans de betere keuze om corrosie te weerstaan, vooral in agressievere omgevingen. Bij de uiteindelijke beslissing moeten echter rekening worden gehouden met de specifieke omstandigheden, waaronder temperatuur, druk en de relatieve concentraties van H₂S en CO₂.

Platen en oppervlakteprocessen voor het bouwen van olieopslagtanks

Het bouwen van olieopslagtanks: plaatselectie en processen

Invoering

Het bouwen van olieopslagtanks is cruciaal voor de olie- en gasindustrie. Deze tanks moeten nauwkeurig worden ontworpen en gebouwd om veiligheid, duurzaamheid en efficiëntie bij het opslaan van olieproducten te garanderen. Een van de meest cruciale onderdelen van deze tanks is de selectie en verwerking van platen die worden gebruikt bij de constructie. Deze blog biedt een gedetailleerd overzicht van de selectiecriteria voor platen, fabricageprocessen en overwegingen voor het bouwen van olieopslagtanks.

Belang van plaatselectie

Platen zijn het belangrijkste structurele onderdeel van olieopslagtanks. De selectie van geschikte platen is om verschillende redenen cruciaal:
Veiligheid:Het geschikte plaatmateriaal zorgt ervoor dat de tank bestand is tegen de interne druk van het opgeslagen product, de omgevingsomstandigheden en mogelijke chemische reacties.
Duurzaamheid: Hoogwaardige materialen verlengen de levensduur van de tank, waardoor onderhoudskosten en uitvaltijd worden verlaagd.
Naleving: Naleving van industriële normen en voorschriften is essentieel voor legale exploitatie en milieubescherming.
Kost efficiëntie: Het kiezen van de juiste materialen en verwerkingsmethoden kan de bouw- en operationele kosten aanzienlijk verlagen.

Soorten olieopslagtanks

Voordat u zich verdiept in de keuze van de platen, is het belangrijk om de verschillende soorten olieopslagtanks te begrijpen. Elk type heeft namelijk specifieke vereisten:
Vaste daktanks zijn het meest voorkomende type opslagtank dat wordt gebruikt voor olie en petroleumproducten. Ze zijn geschikt voor vloeistoffen met een lage dampspanning.
Drijvende daktanks: Deze tanks hebben een dak dat op het oppervlak van de opgeslagen vloeistof drijft, waardoor verdampingsverliezen en explosiegevaar worden verminderd.
Kogeltanks:In deze cilindrische tanks worden vloeibaar gemaakte gassen en vluchtige vloeistoffen opgeslagen.
Bolvormige tanks: Gebruikt voor het opslaan van vloeistoffen en gassen onder hoge druk, waardoor een gelijke spanningsverdeling wordt geboden.

Plaatselectiecriteria

1. Materiaalsamenstelling
Koolstofstaal: Op grote schaal gebruikt vanwege de kracht, betaalbaarheid en beschikbaarheid. Geschikt voor de meeste olie- en aardolieproducten.
Roestvrij staal: Aanbevolen voor de opslag van corrosieve producten of producten met hoge temperaturen vanwege de corrosieweerstand.
Aluminium: Lichtgewicht en corrosiebestendig, ideaal voor drijvende dakcomponenten en tanks in corrosieve omgevingen.
Composiet materialen: Af en toe gebruikt voor specifieke toepassingen die een hoge corrosieweerstand en lichtgewicht vereisen.
2. Dikte en maat
Dikte: Dit wordt bepaald door de ontwerpdruk, diameter en hoogte van de tank. Het varieert over het algemeen van 5 mm tot 30 mm.
Maat: Platen moeten groot genoeg zijn om lasnaden tot een minimum te beperken, maar beheersbaar zijn voor hantering en transport.
3. Mechanische eigenschappen
Treksterkte: Zorgt ervoor dat de tank interne druk en externe krachten kan weerstaan.
Ductiliteit: Maakt vervorming mogelijk zonder te breken, en biedt ruimte voor veranderingen in druk en temperatuur.
Impact weerstand: Belangrijk voor het weerstaan van plotselinge krachten, vooral in koudere omgevingen.
4. Omgevingsfactoren
Temperatuur schommelingen: Rekening houden met materiaalgedrag bij extreme temperaturen.
Corrosieve omgeving: Selectie van materialen die bestand zijn tegen omgevingscorrosie, vooral voor offshore- of kustinstallaties.

Materiaalnormen en kwaliteiten

Bij de selectie van materialen voor olietanks is het van cruciaal belang dat u zich houdt aan erkende normen en klassen. Zo bent u verzekerd van kwaliteit, prestaties en naleving van de industriële regelgeving.

Koolstofstaal

Normen: ASTM A36, ASTM A283, JIS G3101
Cijfers:
ASTM A36: Gangbare constructiestaalsoort die wordt gebruikt voor tankconstructies vanwege de goede lasbaarheid en bewerkbaarheid.
ASTM A283 klasse C: Biedt goede sterkte en flexibiliteit voor toepassingen met matige belasting.
JISG3101SS400: Een Japanse norm voor koolstofstaal gebruikt voor algemene structurele doeleinden, bekend om zijn goede mechanische eigenschappen en lasbaarheid.

Roestvrij staal

Normen: ASTM A240
Cijfers:
304/304L: Biedt een goede corrosiebestendigheid en wordt gebruikt voor de opslag van licht corrosieve producten in tanks.
Door toegevoegd molybdeen, 316/316L Biedt superieure corrosiebestendigheid, vooral in maritieme omgevingen.
904L (UNS N08904): Bekend om zijn hoge corrosieweerstand, vooral tegen chloriden en zwavelzuur.
Duplexroestvrij staal 2205 (UNS S32205): Combineert hoge sterkte met uitstekende corrosieweerstand, geschikt voor zware omstandigheden.

Aluminium

Normen: ASTM B209
Cijfers:
5083: Staat bekend om zijn hoge sterkte en uitstekende corrosiebestendigheid en is ideaal voor tanks in maritieme omgevingen.
6061: Biedt goede mechanische eigenschappen en lasbaarheid, geschikt voor structurele componenten.

Composiet materialen

Normen: ASME RTP-1
Toepassingen: Gebruikt in gespecialiseerde toepassingen die weerstand tegen chemische aantasting en gewichtsbesparing vereisen.

Soorten voeringen en coatings

Voeringen en coatings beschermen olieopslagtanks tegen corrosie en milieuschade. De keuze van de voering en coating hangt af van de locatie van de tank, de inhoud en de ecologische omstandigheden.

Externe coatings

Epoxycoatings:
Eigenschappen: Biedt uitstekende hechting en corrosiebestendigheid. Geschikt voor ruwe omgevingen.
Toepassingen: Gebruikt op de buitenkant van tanks om te beschermen tegen verwering en blootstelling aan chemicaliën.
Aanbevolen merken:
Hempel: Hempel's Epoxy 35540
AkzoNobel: Interseal 670HS
Jotun: Jotamastic 90
3M: Scotchkote Epoxycoating 162PWX
Aanbevolen DFT (droge filmdikte): 200-300 micron
Polyurethaan coatings:
Eigenschappen: Biedt uitstekende UV-bestendigheid en flexibiliteit.
Toepassingen: Ideaal voor tanks die worden blootgesteld aan zonlicht en wisselende weersomstandigheden.
Aanbevolen merken:
Hempel: Hempel's Polyurethaan Email 55300
AkzoNobel: Interthane 990
Jotun: Hardtop XP
Aanbevolen DFT: 50-100 micron
Zinkrijke primers:
Eigenschappen: Bied kathodische bescherming aan stalen oppervlakken.
Toepassingen: Gebruikt als basislaag om roesten te voorkomen.
Aanbevolen merken:
Hempel: Hempadur Zink 17360
AkzoNobel: Interzink 52
Jotun: Slagboom 77
Aanbevolen DFT: 120-150 micron

Interne voeringen

Fenolische epoxyvoeringen:
Eigenschappen: Uitstekende chemische bestendigheid tegen aardolieproducten en oplosmiddelen.
Toepassingen: Gebruikt in tanks waarin ruwe olie en geraffineerde producten worden opgeslagen.
Aanbevolen merken:
Hempel: Hempel's Fenol 35610
AkzoNobel: Interlijn 984
Jotun: Tankguard-opslag
Aanbevolen DFT: 400-600 micron
Coatings van glasschilfers:
Eigenschappen: Hoge chemische en slijtvastheid.
Toepassingen: Geschikt voor agressieve chemicaliënopslag en tankbodems.
Aanbevolen merken:
Hempel: Hempel's Glassflake 35620
AkzoNobel: Interzone 954
Jotun: Baltoflake
Aanbevolen DFT: 500-800 micron
Rubberen voeringen:
Eigenschappen: Biedt flexibiliteit en weerstand tegen chemicaliën.
Toepassingen: Gebruikt voor opslag van bijtende stoffen zoals zuren.
Aanbevolen merken:
3M: Scotchkote Poly-Tech 665
Aanbevolen DFT: 2-5mm

Selectieoverwegingen

Productcompatibiliteit: Zorg ervoor dat de voering of coating compatibel is met het opgeslagen product om reacties te voorkomen.
Milieu omstandigheden: Houd bij het selecteren van voeringen en coatings rekening met temperatuur, vochtigheid en blootstelling aan chemicaliën.
Onderhoud en duurzaamheid: Kies voeringen en coatings die langdurige bescherming bieden en gemakkelijk te onderhouden zijn.

Fabricageprocessen

Bij de productie van olietanks zijn verschillende belangrijke processen betrokken:
1. Snijden
Mechanisch snijden: omvat knippen, zagen en frezen om de platen te vormen.
Thermisch snijden: Maakt gebruik van zuurstof-brandstof-, plasma- of lasersnijden voor nauwkeurig en efficiënt vormgeven.
2. Lassen
Lassen is van cruciaal belang voor het verbinden van platen en het waarborgen van de structurele integriteit.
Afgeschermd metaalbooglassen (SMAW): Vaak gebruikt vanwege zijn eenvoud en veelzijdigheid.
Gaswolfraambooglassen (GTAW): Biedt hoogwaardige lasnaden voor kritische verbindingen.
Ondergedompeld booglassen (SAW): Geschikt voor dikke platen en lange naden, biedt diepe penetratie en hoge afzettingssnelheden.
3. Vorming
Rollend: Platen worden in de gewenste kromming gerold voor cilindrische tankwanden.
Druk op Vormen: Gebruikt voor het vormgeven van tankuiteinden en andere complexe componenten.
4. Inspectie en testen
Niet-destructief onderzoek (NDT): Technieken zoals ultrasoon testen en radiografie garanderen de laskwaliteit en structurele integriteit zonder het materiaal te beschadigen.
Druk testen: Zorgt ervoor dat de tank de ontwerpdruk kan weerstaan zonder te lekken.
5. Oppervlaktevoorbereiding en coating
Stralen: Reinigt en bereidt het oppervlak voor op coating.
Coating: Aanbrengen van beschermende coatings om corrosie te voorkomen en de levensduur van de tank te verlengen.
Industrienormen en -voorschriften
Naleving van industrienormen garandeert veiligheid, kwaliteit en naleving. Belangrijke normen omvatten:
API-650: Standaard voor gelaste stalen opslagtanks voor olie en gas.
API-620: Omvat het ontwerp en de constructie van grote lagedrukopslagtanks.
ASME Sectie VIII: Geeft richtlijnen voor de constructie van drukvaten.

Conclusie

De constructie van olieopslagtanks vereist nauwkeurige aandacht voor detail, met name bij de selectie en verwerking van platen. Door rekening te houden met factoren zoals materiaalsamenstelling, dikte, mechanische eigenschappen en omgevingsomstandigheden, kunnen bouwers de veiligheid, duurzaamheid en kosteneffectiviteit van deze kritieke structuren garanderen. Naleving van industrienormen en -regelgeving zorgt verder voor naleving en bescherming van het milieu. Naarmate de olie- en gasindustrie zich blijft ontwikkelen, zullen ontwikkelingen in materialen en fabricagetechnologieën de constructie van olieopslagtanks blijven verbeteren.