Blussing van SAE4140 naadloze stalen buizen

Analyse van de oorzaken van ringvormige scheuren in gebluste SAE 4140 naadloze stalen buizen

De reden voor de ringvormige scheur aan het uiteinde van de SAE 4140 naadloze stalen buis werd bestudeerd door middel van een chemische samenstellingstest, hardheidstest, metallografische observatie, scanning elektronenmicroscoop en energiespectrumanalyse. De resultaten tonen aan dat de ringvormige scheur van de SAE 4140 naadloze stalen buis een blusscheur is, die over het algemeen aan het uiteinde van de buis optreedt. De reden voor de blusscheur is de verschillende koelsnelheid tussen de binnen- en buitenwanden, en de koelsnelheid van de buitenwand is veel hoger dan die van de binnenwand, wat resulteert in scheurfalen veroorzaakt door spanningsconcentratie nabij de positie van de binnenwand. De ringvormige scheur kan worden geëlimineerd door de koelsnelheid van de binnenwand van de stalen buis tijdens het blussen te verhogen, de uniformiteit van de koelsnelheid tussen de binnen- en buitenwand te verbeteren en de temperatuur na het blussen te regelen tot binnen 150 ~ 200 ℃ om de blusspanning door zelftempering te verminderen.

SAE 4140 is een CrMo laaggelegeerd constructiestaal, is de Amerikaanse ASTM A519 standaardkwaliteit, in de nationale norm 42CrMo gebaseerd op de toename van het Mn-gehalte; daarom is de hardbaarheid van SAE 4140 verder verbeterd. SAE 4140 naadloze stalen buis, in plaats van massieve smeedstukken, kan de walsproductie van verschillende soorten holle assen, cilinders, hulzen en andere onderdelen de productie-efficiëntie aanzienlijk verbeteren en staal besparen; SAE 4140 stalen buis wordt veel gebruikt in olie- en gasveldmijnbouwschroefboorgereedschappen en andere boorapparatuur. SAE 4140 naadloze stalen buis temperbehandeling kan voldoen aan de vereisten van verschillende staalsterktes en taaiheidsmatching door het warmtebehandelingsproces te optimaliseren. Toch blijkt het vaak productleveringsdefecten in het productieproces te beïnvloeden. Dit artikel richt zich voornamelijk op SAE 4140 stalen buis in het blusproces in het midden van de wanddikte van het uiteinde van de buis, produceert een ringvormige scheurdefectanalyse en stelt verbeteringsmaatregelen voor.

1. Testmaterialen en -methoden

Een bedrijf produceerde specificaties voor ∅ 139,7 × 31,75 mm SAE 4140 staalkwaliteit naadloze stalen buis, het productieproces voor de billet verwarming → piercen → rollen → dimensioneren → temperen (850 ℃ weektijd van 70 min blussen + pijp roteren buiten de waterdouche koeling +735 ℃ weektijd van 2 uur temperen) → Foutdetectie en inspectie. Na de temperbehandeling onthulde de foutdetectie-inspectie dat er een ringvormige scheur in het midden van de wanddikte aan het uiteinde van de buis zat, zoals weergegeven in Afb. 1; de ringvormige scheur verscheen op ongeveer 21~24 mm afstand van de buitenkant, cirkelde rond de omtrek van de buis en was gedeeltelijk onderbroken, terwijl er geen dergelijk defect werd gevonden in het buislichaam.

Figuur 1 De ringvormige scheur aan het uiteinde van de pijp

Figuur 1 De ringvormige scheur aan het uiteinde van de pijp

Neem de partij stalen buisblusmonsters voor blusanalyse en observatie van de blusorganisatie, en spectrale analyse van de samenstelling van de stalen buis, en neem tegelijkertijd in de geharde stalen buisscheuren monsters met een hoog vergrotingsvermogen om de micromorfologie van de scheur, het korrelgrootteniveau en in de rasterelektronenmicroscoop met een spectrometer voor de interne samenstelling van de scheuren van de micro-oppervlakteanalyse te observeren.

2. Testresultaten

2.1 Chemische samenstelling

Tabel 1 toont de resultaten van de spectrale analyse van de chemische samenstelling. De samenstelling van de elementen voldoet aan de eisen van de ASTM A519-norm.

Tabel 1 Resultaten van de chemische samenstellingsanalyse (massafractie, %)

Element C Si Mn P S Cr ma Cu Ni
Inhoud 0.39 0.20 0.82 0.01 0.005 0.94 0.18 0.05 0.02
ASTM A519-vereiste 0.38-0.43 0.15-0.35 0.75-1.00 ≤ 0,04 ≤ 0,04 0.8-1.1 0.15-0.25 ≤ 0,35 ≤ 0,25

2.2 Test op buishardheid

Op de gebluste monsters van de totale wanddikte-blushardheidstest, zijn de resultaten van de totale wanddikte-hardheid, zoals weergegeven in Afbeelding 2, te zien in Afbeelding 2, in 21 ~ 24 mm van de buitenkant van de blushardheid begon aanzienlijk te dalen, en van de buitenkant van de 21 ~ 24 mm is de hogetemperatuurtempering van de pijp gevonden in het gebied van de ringscheur, het gebied onder en boven de wanddikte van de hardheid van het extreme verschil tussen de positie van de wanddikte van het gebied bereikte 5 (HRC) of zo. Het hardheidsverschil tussen de onderste en bovenste wanddikte van dit gebied is ongeveer 5 (HRC). De metallografische organisatie in de gebluste toestand wordt weergegeven in Afb. 3. Vanuit de metallografische organisatie in Afb. 3; het is te zien dat de organisatie in het buitenste gebied van de pijp een kleine hoeveelheid ferriet + martensiet is, terwijl de organisatie nabij het binnenoppervlak niet is geblust, met een kleine hoeveelheid ferriet en bainiet, wat leidt tot de lage blushardheid van het buitenoppervlak van de pijp tot het binnenoppervlak van de pijp op een afstand van 21 mm. De hoge mate van consistentie van ringscheuren in de pijpwand en de positie van extreem verschil in blushardheid suggereren dat ringscheuren waarschijnlijk worden geproduceerd in het blusproces. De hoge consistentie tussen de locatie van de ringscheuren en de inferieure blushardheid geeft aan dat de ringscheuren mogelijk zijn geproduceerd tijdens het blusproces.

Figuur 2 De waarde van de blushardheid in volledige wanddikte

Figuur 2 De waarde van de blushardheid in volledige wanddikte

Figuur 3 Blusstructuur van stalen buis

Figuur 3 Blusstructuur van stalen buis

2.3 De metallografische resultaten van de stalen buis worden respectievelijk weergegeven in figuur 4 en figuur 5.

De matrixorganisatie van de stalen buis is getemperd austeniet + een kleine hoeveelheid ferriet + een kleine hoeveelheid bainiet, met een korrelgrootte van 8, wat een gemiddelde getemperde organisatie is; de scheuren strekken zich uit langs de longitudinale richting, die langs de kristallijne scheuring hoort, en de twee zijden van de scheuren hebben de typische kenmerken van ingrijpen; er is het fenomeen van ontkoling aan beide zijden, en een grijze oxidelaag met hoge temperatuur is waarneembaar op het oppervlak van de scheuren. Er is ontkoling aan beide zijden, en een grijze oxidelaag met hoge temperatuur kan worden waargenomen op het scheuroppervlak, en er zijn geen niet-metalen insluitsels te zien in de buurt van de scheur.

Figuur 4 Observaties van scheurmorfologie

Figuur 4 Observaties van scheurmorfologie

Figuur 5 Microstructuur van de scheur

Figuur 5 Microstructuur van de scheur

2.4 Resultaten van de scheurbreukmorfologie en energiespectrumanalyse

Nadat de breuk is geopend, wordt de micromorfologie van de breuk waargenomen onder de scanning elektronenmicroscoop, zoals weergegeven in Fig. 6, die laat zien dat de breuk is blootgesteld aan hoge temperaturen en dat er oxidatie bij hoge temperaturen heeft plaatsgevonden op het oppervlak. De breuk bevindt zich voornamelijk langs de kristalbreuk, met een korrelgrootte variërend van 20 tot 30 μm, en er worden geen grove korrels en abnormale organisatorische defecten gevonden; de energiespectrumanalyse laat zien dat het oppervlak van de breuk voornamelijk is samengesteld uit ijzer en zijn oxiden, en er worden geen abnormale vreemde elementen gezien. Spectraalanalyse laat zien dat het breukoppervlak voornamelijk uit ijzer en zijn oxiden bestaat, zonder abnormale vreemde elementen.

Figuur 6 Fractuurmorfologie van de scheur

Figuur 6 Fractuurmorfologie van de scheur

3 Analyse en discussie

3.1 Analyse van scheurdefecten

Vanuit het oogpunt van de scheurmicromorfologie is de scheuropening recht; de staart is gebogen en scherp; het scheuruitbreidingspad vertoont de kenmerken van scheuren langs het kristal en de twee zijden van de scheur hebben typische meshing-kenmerken, wat de gebruikelijke kenmerken zijn van blusscheuren. Toch ontdekte het metallografisch onderzoek dat er aan beide zijden van de scheur ontkolingsverschijnselen zijn, wat niet in overeenstemming is met de kenmerken van de traditionele blusscheuren, rekening houdend met het feit dat de tempertemperatuur van de stalen buis 735 ℃ is en Ac1 738 ℃ is in SAE 4140, wat niet in overeenstemming is met de conventionele kenmerken van blusscheuren. Aangezien de voor de buis gebruikte ontlaattemperatuur 735 °C bedraagt en de Ac1 van SAE 4140 738 °C bedraagt, wat erg dicht bij elkaar ligt, wordt aangenomen dat de ontkoling aan beide zijden van de scheur verband houdt met de ontlating bij hoge temperatuur tijdens het ontlaten (735 °C) en niet een scheur is die al bestond vóór de warmtebehandeling van de buis.

3.2 Oorzaken van scheuren

De oorzaken van blusscheuren zijn over het algemeen gerelateerd aan de blusverwarmingstemperatuur, de bluskoelsnelheid, metallurgische defecten en blusspanningen. Uit de resultaten van de samenstellingsanalyse blijkt dat de chemische samenstelling van de pijp voldoet aan de vereisten van SAE 4140 staalsoort in de ASTM A519-norm en dat er geen overschrijdingen van elementen zijn gevonden; er zijn geen niet-metalen insluitsels gevonden in de buurt van de scheuren en de energiespectrumanalyse bij de scheurbreuk toonde aan dat de grijze oxidatieproducten in de scheuren Fe en zijn oxiden waren en dat er geen abnormale vreemde elementen werden gezien, dus kan worden uitgesloten dat metallurgische defecten de ringvormige scheuren hebben veroorzaakt; de korrelgroottegraad van de pijp was graad 8 en de korrelgroottegraad was graad 7 en de korrelgrootte was graad 8 en de korrelgrootte was graad 8. Het korrelgrootteniveau van de pijp is 8; de korrel is verfijnd en niet grof, wat aangeeft dat de blusscheur niets te maken heeft met de blusverwarmingstemperatuur.

De vorming van blusscheuren is nauw verwant aan de blusspanningen, verdeeld in thermische en organisatorische spanningen. Thermische spanning is te wijten aan het koelproces van de stalen buis; de oppervlaktelaag en het hart van de stalen buis koelsnelheid zijn niet consistent, wat resulteert in ongelijke samentrekking van het materiaal en interne spanningen; het resultaat is dat de oppervlaktelaag van de stalen buis wordt onderworpen aan drukspanningen en het hart van de trekspanningen; weefselspanningen zijn het blussen van de stalen buisorganisatie tot de martensiettransformatie, samen met de uitbreiding van het volume van inconsistentie in de generatie van de interne spanningen, de organisatie van spanningen gegenereerd door het resultaat is de oppervlaktelaag van trekspanningen, het centrum van de trekspanningen. Deze twee soorten spanningen in de stalen buis bestaan in hetzelfde onderdeel, maar de richtingrol is het tegenovergestelde; het gecombineerde effect van het resultaat is dat een van de twee spanningen' dominante factor, thermische spanning dominante rol is het resultaat van het werkstuk hart trek, oppervlaktedruk; De dominante rol van weefselspanning is het resultaat van de trekspanning van het hart van het werkstuk en de oppervlaktespanning.

SAE 4140 stalen buis blussen met behulp van roterende buitenste douche koeling productie, de koelsnelheid van het buitenoppervlak is veel groter dan het binnenoppervlak, het buitenste metaal van de stalen buis is allemaal geblust, terwijl het binnenste metaal niet volledig is geblust om een deel van de ferriet- en bainietorganisatie te produceren, het binnenste metaal als gevolg van het binnenste metaal kan niet volledig worden omgezet in martensitische organisatie, het binnenste metaal van de stalen buis wordt onvermijdelijk onderworpen aan de trekspanning die wordt gegenereerd door de uitzetting van de buitenwand van de martensiet, en tegelijkertijd, als gevolg van de verschillende soorten organisatie, is het specifieke volume verschillend tussen het binnenste en buitenste metaal Tegelijkertijd, als gevolg van de verschillende soorten organisatie, is het specifieke volume van de binnenste en buitenste lagen van het metaal verschillend, en is de krimpsnelheid niet hetzelfde tijdens het afkoelen, zal er ook trekspanning worden gegenereerd op het grensvlak van de twee soorten organisatie, en de verdeling van de spanning wordt gedomineerd door de thermische spanningen, en de trekspanning die wordt gegenereerd op het grensvlak van de twee soorten organisatie in de buis is de grootste, wat resulteert in de ringblusscheuren die optreden in het gebied van de wanddikte van de pijp dicht bij het binnenoppervlak (21~24 mm verwijderd van het buitenoppervlak); bovendien is het uiteinde van de stalen pijp een geometriegevoelig deel van de hele pijp, dat vatbaar is voor het genereren van spanning. Bovendien is het uiteinde van de pijp een geometrisch gevoelig deel van de hele pijp, dat vatbaar is voor spanningsconcentratie. Deze ringscheur treedt meestal alleen op aan het uiteinde van de pijp, en dergelijke scheuren zijn niet gevonden in het pijplichaam.

Samenvattend, gebluste SAE 4140 dikwandige stalen buis ringvormige scheuren worden veroorzaakt door ongelijkmatige koeling van de binnen- en buitenwanden; de koelsnelheid van de buitenwand is veel hoger dan die van de binnenwand; productie van SAE 4140 dikwandige stalen buis om de bestaande koelmethode te veranderen, kan niet alleen buiten het koelproces worden gebruikt, de noodzaak om de koeling van de binnenwand van de stalen buis te versterken, om de uniformiteit van de koelsnelheid van de binnen- en buitenwanden van de dikwandige stalen buis te verbeteren om de spanningsconcentratie te verminderen, waardoor de ringscheuren worden geëlimineerd. Ringscheuren.

3.3 Verbetermaatregelen

Om blusscheuren te voorkomen, zijn in het ontwerp van het blusproces alle omstandigheden die bijdragen aan de ontwikkeling van blustrekspanningen factoren voor de vorming van scheuren, inclusief de verwarmingstemperatuur, het koelproces en de afvoertemperatuur. Verbeterde procesmaatregelen die worden voorgesteld, omvatten: blustemperatuur van 830-850 ℃; het gebruik van een interne spuitmond die is afgestemd op de middellijn van de buis, controle van de juiste interne sproeistroom, verbetering van de koelsnelheid van het binnenste gat om ervoor te zorgen dat de koelsnelheid van de binnen- en buitenwanden van dikwandige stalen buis koelsnelheid uniformiteit; controle van de post-blustemperatuur van 150-200 ℃, het gebruik van stalen buisresttemperatuur van de zelftempering, vermindering van de blusspanningen in de stalen buis.

Het gebruik van verbeterde technologie produceert ∅158,75 × 34,93 mm, ∅139,7 × 31,75 mm, ∅254 × 38,1 mm, ∅224 × 26 mm, enzovoort, volgens tientallen specificaties voor stalen buizen. Na ultrasone foutinspectie worden de producten gekwalificeerd, zonder ring-quenching scheuren.

4. Conclusie

(1) Volgens de macroscopische en microscopische kenmerken van pijpscheuren behoren de ringvormige scheuren aan de pijpuiteinden van SAE 4140 stalen pijpen tot de scheurbreuk veroorzaakt door blusspanning, die gewoonlijk aan de pijpuiteinden optreedt.

(2) Gebluste SAE 4140 dikwandige stalen buis ringvormige scheuren worden veroorzaakt door ongelijkmatige koeling van de binnen- en buitenwanden. De koelsnelheid van de buitenwand is veel hoger dan die van de binnenwand. Om de uniformiteit van de koelsnelheid van de binnen- en buitenwanden van de dikwandige stalen buis te verbeteren, moet de productie van SAE 4140 dikwandige stalen buis de koeling van de binnenwand versterken.