Entradas

Explorando el papel vital de las tuberías de acero en la exploración de petróleo y gas

I. Conocimientos básicos de las tuberías para la industria del petróleo y el gas

1. Explicación de la terminología

API: Abreviación de Instituto Americano de Petróleo.
OCTG: Abreviación de Productos tubulares para campos petroleros, incluidos tubos de revestimiento de aceite, tubos de aceite, tubos de perforación, collares de perforación, brocas, varillas de bombeo, juntas de cachorro, etc.
Tubería de aceite: La tubería se utiliza en pozos petroleros para la extracción de petróleo, extracción de gas, inyección de agua y fracturación ácida.
Caja: Tubería que se baja desde la superficie del suelo hasta un pozo perforado como revestimiento para evitar el colapso de la pared.
Tubería de perforación: Tubería utilizada para perforar pozos.
Tuberia: Tubería utilizada para transportar petróleo o gas.
Acoplamientos: Cilindros utilizados para conectar dos tubos roscados con roscas internas.
Material de acoplamiento: Tubería utilizada para la fabricación de acoplamientos.
Hilos API: Roscas de tubería especificadas por el estándar API 5B, incluidas roscas redondas de tuberías de petróleo, roscas redondas cortas de carcasa, roscas redondas largas de carcasa, roscas trapezoidales parciales de carcasa, roscas de tubería de conducción, etc.
Conexión Premium: Roscas que no son API con propiedades especiales de sellado, propiedades de conexión y otras propiedades.
Fallos: deformación, fractura, daño superficial y pérdida de la función original bajo condiciones de servicio específicas.
Principales formas de fracaso: aplastamiento, deslizamiento, ruptura, fuga, corrosión, unión, desgaste, etc.

2. Normas relacionadas con el petróleo

Especificación API 5B, 17.ª edición – Especificación para roscado, calibrado e inspección de roscas de carcasas, tuberías y tuberías
Especificación API 5L, 46.a edición – Especificación para tubería de conducción
Especificación API 5CT, 11.ª edición – Especificaciones para revestimiento y tubería
Especificación API 5DP, séptima edición – Especificación para tubería de perforación
Especificación API 7-1, 2.ª edición – Especificación para elementos de vástago de taladro giratorio
Especificación API 7-2, segunda edición – Especificación para roscado y calibrado de conexiones roscadas con resalte giratorio
Especificación API 11B, 24.ª edición – Especificaciones para varillas de bombeo, varillas y revestimientos pulidos, acoplamientos, barras de plomo, abrazaderas para varillas pulidas, prensaestopas y tes de bombeo
ISO 3183:2019 – Industrias del petróleo y del gas natural — Tuberías de acero para sistemas de transporte por tuberías
ISO 11960:2020 – Industrias del petróleo y del gas natural — Tuberías de acero para uso como revestimiento o tubería para pozos
NACE MR0175/ISO 15156:2020 – Industrias del petróleo y del gas natural: materiales para uso en entornos que contienen H2S en la producción de petróleo y gas

II. Tubería de aceite

1. Clasificación de los tubos de petróleo

Los tubos de aceite se dividen en tubos de aceite sin recalcado (NU), tubos de aceite con recalcado externo (EU) y tubos de aceite con junta integral (IJ). El tubo de aceite NU significa que el extremo del tubo tiene un grosor normal y gira directamente la rosca y trae los acoplamientos. Tubería recalcada significa que los extremos de ambos tubos están recalcados externamente, luego roscados y acoplados. Tubo de junta integral significa que un extremo del tubo está retorcido con roscas externas y el otro extremo está retorcido con roscas internas y conectado directamente sin acoplamientos.

2. Función de los tubos de aceite

① Extracción de petróleo y gas: después de perforar y cementar los pozos de petróleo y gas, la tubería se coloca en la carcasa de petróleo para extraer petróleo y gas al suelo.
② Inyección de agua: cuando la presión del fondo del pozo sea insuficiente, inyecte agua en el pozo a través de la tubería.
③ Inyección de vapor: En la recuperación de petróleo espeso en caliente, el vapor debe ingresarse al pozo con tubería de petróleo aislada.
④ Acidificación y fracturamiento: en la última etapa de la perforación de pozos o para mejorar la producción de pozos de petróleo y gas, es necesario ingresar un medio de acidificación y fracturamiento o material de curado a la capa de petróleo y gas, y el medio y el material de curado son transportado a través de la tubería de aceite.

3. Grado de acero de los tubos de aceite

Los grados de acero de los tubos de aceite son H40, J55, N80, L80, C90, T95, P110.
N80 se divide en N80-1 y N80Q, los dos tienen las mismas propiedades de tracción, las dos diferencias son el estado de entrega y las diferencias de rendimiento del impacto, la entrega de N80-1 por estado normalizado o cuando la temperatura final de laminación es mayor que la la temperatura crítica Ar3 y la reducción de la tensión después del enfriamiento por aire y se pueden usar para encontrar laminación en caliente en lugar de pruebas normalizadas, de impacto y no destructivas; N80Q debe ser templado (templado y revenido). El tratamiento térmico, la función de impacto debe estar en línea con las disposiciones de API 5CT y debe ser una prueba no destructiva.
L80 se divide en L80-1, L80-9Cr y L80-13Cr. Sus propiedades mecánicas y estado de entrega son las mismas. Diferencias en uso, dificultad de producción y precio, L80-1 para el tipo general, L80-9Cr y L80-13Cr son tuberías de alta resistencia a la corrosión, dificultad de producción, costosas y generalmente utilizadas en pozos con alta corrosión.
C90 y T95 se dividen en 1 y 2 tipos, a saber, C90-1, C90-2 y T95-1, T95-2.

4. Grado de acero de uso común de los tubos de aceite, nombre del acero y estado de entrega

J55 (37Mn5) Tubería de aceite NU: Laminada en caliente en lugar de normalizada
Tubería de aceite EU J55 (37Mn5): longitud completa normalizada después de recalcar
Tubería de aceite NU N80-1 (36Mn2V): laminada en caliente en lugar de normalizada
Tubería de aceite EU N80-1 (36Mn2V): longitud completa normalizada después de recalcar
Tubería de aceite N80-Q (30Mn5): 30Mn5, templado de longitud completa
Tubería de aceite L80-1 (30Mn5): 30Mn5, templado de longitud completa
Tubo de aceite P110 (25CrMnMo): 25CrMnMo, templado de longitud completa
J55 (37Mn5) Acoplamiento: Laminado en caliente en línea Normalizado
Acoplamiento N80 (28MnTiB): templado de longitud completa
Acoplamiento L80-1 (28MnTiB): templado de longitud completa
Acoplamiento P110 (25CrMnMo): Templado de longitud completa

III. Tubería de revestimiento

1. Clasificación y función de la carcasa

La carcasa es la tubería de acero que sostiene la pared de los pozos de petróleo y gas. En cada pozo se utilizan varias capas de revestimiento según las diferentes profundidades de perforación y condiciones geológicas. El cemento se utiliza para cementar la carcasa después de su descenso al pozo y, a diferencia de las tuberías de petróleo y de perforación, no se puede reutilizar y pertenece a los materiales consumibles desechables. Por lo tanto, el consumo de revestimiento representa más del 70 por ciento de todas las tuberías de pozos petroleros. La carcasa se puede dividir en carcasa conductora, carcasa intermedia, carcasa de producción y carcasa de revestimiento según su uso, y sus estructuras en pozos petroleros se muestran en la Figura 1.

①Carcasa del conductor: Por lo general, utilizando grados API K55, J55 o H40, la carcasa del conductor estabiliza la boca del pozo y aísla los acuíferos poco profundos con diámetros comúnmente de alrededor de 20 o 16 pulgadas.

②Carcasa intermedia: El revestimiento intermedio, a menudo fabricado con grados API K55, N80, L80 o P110, se utiliza para aislar formaciones inestables y zonas de presión variables, con diámetros típicos de 13 3/8 pulgadas, 11 3/4 pulgadas o 9 5/8 pulgadas. .

③Carcasa de producción: Construida con acero de alta calidad, como los grados API J55, N80, L80, P110 o Q125, la carcasa de producción está diseñada para soportar presiones de producción, comúnmente con diámetros de 9 5/8 pulgadas, 7 pulgadas o 5 1/2 pulgadas.

④Carcasa del revestimiento: Los revestimientos extienden el pozo hacia el yacimiento, utilizando materiales como grados API L80, N80 o P110, con diámetros típicos de 7 pulgadas, 5 pulgadas o 4 1/2 pulgadas.

⑤Tubo: La tubería transporta hidrocarburos a la superficie, utilizando grados API J55, L80 o P110, y está disponible en diámetros de 4 1/2 pulgadas, 3 1/2 pulgadas o 2 7/8 pulgadas.

IV. Tubería de perforación

1. Clasificación y Función de Tuberías para Herramientas de Perforación

La tubería de perforación cuadrada, la tubería de perforación, la tubería de perforación ponderada y el collar de perforación en las herramientas de perforación forman la tubería de perforación. La tubería de perforación es la herramienta de perforación central que impulsa la broca desde el suelo hasta el fondo del pozo, y también es un canal desde el suelo hasta el fondo del pozo. Tiene tres funciones principales:

① Para transmitir torque para impulsar la broca a perforar;

② Apoyar su peso en la broca para romper la presión de la roca en el fondo del pozo;

③ Para transportar el fluido de lavado, es decir, el lodo de perforación a través del suelo a través de las bombas de lodo de alta presión, la columna de perforación en el pozo fluye hacia el fondo del pozo para eliminar los escombros de roca, enfriar la broca y transportar los escombros de roca. a través de la superficie exterior de la columna y la pared del pozo entre el anillo para regresar al suelo, para lograr el propósito de perforar el pozo.

La tubería de perforación en el proceso de perforación debe soportar una variedad de cargas alternas complejas, como tensión, compresión, torsión, flexión y otras tensiones, y la superficie interior también está sujeta a corrosión y abrasión por lodo a alta presión.
(1) Tubo de perforación cuadrado: La tubería de perforación cuadrada tiene dos tipos, tipo cuadrilátero y tipo hexagonal, la tubería de perforación de petróleo de China, cada conjunto de columnas de perforación generalmente utiliza una tubería de perforación de tipo cuadrilátero. Sus especificaciones son 63,5 mm (2-1/2 pulgadas), 88,9 mm (3-1/2 pulgadas), 107,95 mm (4-1/4 pulgadas), 133,35 mm (5-1/4 pulgadas), 152,4 mm ( 6 pulgadas) y así sucesivamente. Por lo general, la longitud utilizada es de 12 a 14,5 m.
(2) Tubería de perforación: La tubería de perforación es la herramienta principal para perforar pozos, está conectada al extremo inferior de la tubería de perforación cuadrada y, a medida que el pozo de perforación continúa profundizándose, la tubería de perforación continúa alargando la columna de perforación una tras otra. Las especificaciones de la tubería de perforación son: 60,3 mm (2-3/8 pulgadas), 73,03 mm (2-7/8 pulgadas), 88,9 mm (3-1/2 pulgadas), 114,3 mm (4-1/2 pulgadas) , 127 mm (5 pulgadas), 139,7 mm (5-1/2 pulgadas), etc.
(3) Tubería de perforación de servicio pesado: Una tubería de perforación ponderada es una herramienta de transición que conecta la tubería de perforación y el collar de perforación, lo que puede mejorar la condición de fuerza de la tubería de perforación y aumentar la presión sobre la broca. Las principales especificaciones de la tubería de perforación ponderada son 88,9 mm (3-1/2 pulgadas) y 127 mm (5 pulgadas).
(4) Collar de perforación: el collar de perforación está conectado a la parte inferior de la tubería de perforación, que es una tubería especial de paredes gruesas con alta rigidez, que ejerce presión sobre la broca para romper la roca y desempeña un papel de guía al perforar un pozo recto. Las especificaciones comunes de los portamechas son 158,75 mm (6-1/4 pulgadas), 177,85 mm (7 pulgadas), 203,2 mm (8 pulgadas), 228,6 mm (9 pulgadas), etc.

V. Tubería de conducción

1. Clasificación de tuberías

Las tuberías de conducción se utilizan en la industria del petróleo y el gas para la transmisión de tuberías de petróleo, petróleo refinado, gas natural y agua con la abreviatura de tubería de acero. El transporte de oleoductos y gasoductos se divide principalmente en oleoductos principales, ramales y redes de oleoductos urbanos. Tres tipos de transmisión por oleoductos principales con las especificaciones habituales para ∅406 ~ 1219 mm, espesor de pared de 10 ~ 25 mm, grado de acero X42 ~ X80. ; Las tuberías de ramales y las redes de tuberías urbanas generalmente tienen especificaciones para ∅114 ~ 700 mm, espesor de pared de 6 ~ 20 mm, el grado de acero para X42 ~ X80. El grado de acero es X42~X80. La tubería de conducción está disponible en tipo soldado y sin costura. Los tubos soldados se utilizan más que los tubos sin costura.

2. Estándar de tubería

API Spec 5L: especificación para tuberías de conducción
ISO 3183 – Industrias del petróleo y del gas natural – Tuberías de acero para sistemas de transporte por tuberías

3. PSL1 y PSL2

PSL es la abreviatura de Nivel de especificación del producto. El nivel de especificación del producto de tubería se divide en PSL 1 y PSL 2, también se puede decir que el nivel de calidad se divide en PSL 1 y PSL 2. PSL 2 es más alto que PSL 1, los 2 niveles de especificación no solo tienen diferentes requisitos de prueba, pero los requisitos de composición química y propiedades mecánicas son diferentes, por lo que de acuerdo con el pedido API 5L, los términos del contrato, además de especificar las especificaciones, el grado del acero y otros indicadores comunes, también deben indicar el nivel de especificación del producto, es decir, PSL. 1 o PSL 2. PSL 2 en composición química, propiedades de tracción, potencia de impacto, pruebas no destructivas y otros indicadores son más estrictos que PSL 1.

4. Grado de acero de tuberías, composición química y propiedades mecánicas

El grado de acero de las tuberías de menor a mayor se divide en: A25, A, B, X42, X46, X52, X60, X65, X70 y X80. Para obtener información detallada sobre la composición química y las propiedades mecánicas, consulte la especificación API 5L, libro de la 46.ª edición.

5. Requisitos de prueba hidrostática y examen no destructivo de tuberías de conducción

La tubería de conducción debe realizarse una prueba hidráulica rama por rama, y la norma no permite la generación no destructiva de presión hidráulica, lo que también es una gran diferencia entre la norma API y nuestras normas. PSL 1 no requiere pruebas no destructivas, PSL 2 debe ser pruebas no destructivas rama por rama.

VI. Conexiones Premium

1. Introducción de conexiones premium

Premium Connection es un hilo de tubería con una estructura especial diferente del hilo API. Aunque la carcasa de petróleo roscada API existente se usa ampliamente en la explotación de pozos petroleros, sus deficiencias se muestran claramente en el entorno especial de algunos campos petroleros: la columna de tubería roscada redonda API, aunque su rendimiento de sellado es mejor, la fuerza de tracción soportada por la rosca la pieza sólo equivale a 60% a 80% de la resistencia del cuerpo de la tubería, por lo que no puede ser utilizada en la explotación de pozos profundos; La columna de tubería roscada trapezoidal sesgada API, aunque su rendimiento de tracción es mucho mayor que el de la conexión roscada redonda API, su rendimiento de sellado no es tan bueno. Aunque el rendimiento de tracción de la columna es mucho mayor que el de la conexión de rosca redonda API, su rendimiento de sellado no es muy bueno, por lo que no se puede utilizar en la explotación de pozos de gas de alta presión; Además, la grasa para roscas sólo puede desempeñar su función en un ambiente con una temperatura inferior a 95 ℃, por lo que no puede utilizarse en la explotación de pozos de alta temperatura.

En comparación con la conexión de rosca redonda API y la conexión de rosca trapezoidal parcial, la conexión premium ha logrado grandes avances en los siguientes aspectos:

(1) Un buen sellado, a través de la elasticidad y el diseño de la estructura de sellado metálico, hace que el sellado de gas de la junta sea resistente a alcanzar el límite del cuerpo del tubo dentro de la presión de fluencia;

(2) Alta resistencia de la conexión, que se conecta con una conexión de hebilla especial de la carcasa de aceite, su resistencia de conexión alcanza o excede la resistencia del cuerpo del tubo, para resolver fundamentalmente el problema del deslizamiento;

(3) Mediante la mejora del proceso de selección de materiales y tratamiento de superficies, básicamente se resolvió el problema de la hebilla pegada al hilo;

(4) Mediante la optimización de la estructura, de modo que la distribución de tensiones en las juntas sea más razonable y más propicia para la resistencia a la corrosión por tensiones;

(5) A través de la estructura del hombro del diseño razonable, de modo que la operación de la hebilla en la operación sea más fácil de realizar.

En la actualidad, la industria del petróleo y el gas cuenta con más de 100 conexiones premium patentadas, lo que representa avances significativos en la tecnología de tuberías. Estos diseños de roscas especializados ofrecen capacidades de sellado superiores, mayor resistencia de la conexión y mayor resistencia a las tensiones ambientales. Al abordar desafíos como altas presiones, ambientes corrosivos y temperaturas extremas, estas innovaciones garantizan una mayor confiabilidad y eficiencia en las operaciones de pozos petroleros en todo el mundo. La investigación y el desarrollo continuos en conexiones premium subrayan su papel fundamental en el apoyo a prácticas de perforación más seguras y productivas, lo que refleja un compromiso continuo con la excelencia tecnológica en el sector energético.

Conexión VAM®: Conocidas por su sólido rendimiento en entornos desafiantes, las conexiones VAM® cuentan con tecnología avanzada de sellado de metal a metal y capacidades de alto torque, lo que garantiza operaciones confiables en pozos profundos y yacimientos de alta presión.

Serie de cuñas TenarisHydril: Esta serie ofrece una gama de conexiones como Blue®, Dopeless® y Wedge 521®, conocidas por su excepcional sellado hermético y resistencia a las fuerzas de compresión y tensión, lo que mejora la seguridad y eficiencia operativa.

TSH® Azul: Diseñadas por Tenaris, las conexiones TSH® Blue utilizan un diseño patentado de doble hombro y un perfil de rosca de alto rendimiento, lo que proporciona una excelente resistencia a la fatiga y facilidad de conexión en aplicaciones de perforación críticas.

Conexión Grant Prideco™ XT®: Diseñadas por NOV, las conexiones XT® incorporan un sello exclusivo de metal con metal y una forma de rosca robusta, lo que garantiza una capacidad de torsión superior y resistencia al desgaste, extendiendo así la vida operativa de la conexión.

Conexión Hunting Seal-Lock®: Con un sello de metal a metal y un perfil de rosca único, la conexión Seal-Lock® de Hunting es reconocida por su resistencia a la presión superior y confiabilidad en operaciones de perforación tanto en tierra como en alta mar.

Conclusión

En conclusión, la intrincada red de tuberías cruciales para la industria del petróleo y el gas abarca una amplia gama de equipos especializados diseñados para soportar entornos rigurosos y demandas operativas complejas. Desde las tuberías de revestimiento fundamentales que sostienen y protegen las paredes de los pozos hasta las tuberías versátiles utilizadas en los procesos de extracción e inyección, cada tipo de tubería tiene un propósito distinto en la exploración, producción y transporte de hidrocarburos. Estándares como las especificaciones API garantizan uniformidad y calidad en estas tuberías, mientras que innovaciones como las conexiones premium mejoran el rendimiento en condiciones difíciles. A medida que la tecnología evoluciona, estos componentes críticos continúan avanzando, impulsando la eficiencia y la confiabilidad en las operaciones energéticas globales. Comprender estas tuberías y sus especificaciones subraya su papel indispensable en la infraestructura del sector energético moderno.

¿Por qué utilizamos tuberías de acero para transportar petróleo y gas?

In the oil and gas industry, the safe and efficient transport of hydrocarbons from production sites to refineries and distribution centers is critical. Steel line pipes have become the material of choice for transporting oil and gas over vast distances, through challenging environments, and under extreme conditions. This blog delves into the reasons why steel line pipes are widely used for this purpose, exploring their key properties, advantages, and how they meet the demanding requirements of the oil and gas sector.

1. Introduction to Steel Line Pipes

Steel line pipes are cylindrical tubes made from carbon steel or other alloyed steels, specifically designed for transporting oil, natural gas, and other fluids in long-distance pipelines. These pipes must endure high pressures, extreme temperatures, and corrosive environments, making steel the ideal material for such applications.

Types of Steel Line Pipes:

  • Carbon Steel Line Pipes: Commonly used due to their strength, durability, and cost-effectiveness.
  • Alloy Steel Line Pipes: Used in more demanding environments, with added alloys like chromium or molybdenum for enhanced performance.
  • Stainless Steel Line Pipes: Offer excellent corrosion resistance, particularly in harsh environments.

2. Why Steel Line Pipes Are Preferred for Oil and Gas Transportation

Steel line pipes have several advantages that make them ideal for transporting oil and gas. Below are the primary reasons why the industry relies on steel for pipeline infrastructure.

2.1. Strength and Durability

Steel has unmatched strength and durability compared to alternative materials. Oil and gas pipelines need to withstand high internal pressures as well as external environmental factors such as soil movement, heavy loads, and even seismic activity. Steel’s high tensile strength ensures that the pipes can endure these forces without cracking, bursting, or deforming.

2.2. Resistencia a la corrosión

Oil and gas are often transported through corrosive environments, such as salty coastal regions, offshore platforms, or pipelines buried underground where moisture and chemicals can accelerate corrosion. Steel line pipes are manufactured with protective coatings like 3LPE (Three-Layer Polyethylene) o Epoxi adherido por fusión (FBE) to enhance corrosion resistance. Alloyed and stainless steels provide intrinsic protection in highly corrosive environments.

2.3. High Temperature and Pressure Resistance

Pipelines carrying oil and gas frequently operate at elevated temperatures and pressures, especially in deep-water or underground pipelines where conditions are extreme. Steel has a high melting point and excellent heat resistance, enabling it to handle the high-pressure and high-temperature conditions without compromising structural integrity.

2.4. Eficiencia de costo

While steel may not always be the cheapest material, it offers excellent lifecycle cost benefits. Steel line pipes are known for their longevity, reducing the need for frequent repairs and replacements. Additionally, the strength of steel enables manufacturers to produce thinner pipes with the same pressure rating, reducing material costs without sacrificing performance.

2.5. Ease of Fabrication and Installation

Steel is relatively easy to fabricate, allowing manufacturers to produce pipes in a wide range of sizes, lengths, and wall thicknesses to meet project-specific requirements. Steel pipes can be welded, rolled, or bent to fit complex pipeline routes, and can be produced in large quantities, making them highly adaptable for both onshore and offshore installations.

2.6. Leak Prevention and Safety

Steel pipes, especially those manufactured to stringent industry standards (such as API 5L for oil and gas pipelines), have superior resistance to leakage. The seamless or high-quality welded construction of steel line pipes minimizes weak points where leaks could occur. In addition, steel pipes can withstand harsh environmental conditions and mechanical damage, which reduces the likelihood of accidental spills or explosions.

3. Key Concerns Addressed by Steel Line Pipes

The oil and gas industry has several specific concerns regarding pipeline infrastructure, many of which are effectively addressed by using steel line pipes.

3.1. Corrosion Management

One of the most significant challenges for pipelines, particularly those buried underground or used offshore, is corrosion. Even though the external environment may be highly corrosive, the internal fluids, such as sour gas (H2S-rich natural gas), can also corrode pipelines. Steel line pipes combat this with advanced coatings, cathodic protection systems, and by using alloyed steels that resist chemical reactions, ensuring long-term protection and reliability.

3.2. Environmental Impact and Regulations

Environmental concerns, such as oil spills and gas leaks, can have devastating effects on ecosystems. Steel line pipes meet stringent environmental regulations due to their strength, durability, and ability to prevent leaks. These pipelines are often subjected to rigorous testing, including hydrostatic and X-ray tests, to ensure structural integrity. Many steel pipe systems also include real-time monitoring for early detection of leaks, helping mitigate environmental risks.

3.3. Operational Efficiency and Maintenance

Steel’s durability and ability to resist both external and internal forces minimize downtime and maintenance needs. With pipelines often spanning hundreds of miles, frequent repairs are impractical. Steel line pipes require less frequent maintenance and have a longer lifespan than other materials, providing higher operational efficiency and lower long-term costs for pipeline operators.

4. Steel Line Pipes and Industry Standards

The oil and gas industry is heavily regulated to ensure the safety, reliability, and environmental protection of pipeline systems. Steel line pipes are manufactured according to various standards to meet these stringent requirements.

Key Standards:

  • API 5L: Governs the manufacturing of steel line pipes for oil and natural gas transportation. It specifies material grades, sizes, and testing requirements to ensure the pipes can handle the pressures and environmental conditions of oil and gas pipelines.
  • ISO 3183: An international standard that outlines similar specifications as API 5L but focuses on pipeline materials and coatings for global applications.
  • ASTM A106: A standard for seamless carbon steel pipes used in high-temperature services, particularly in refineries and processing plants.

Adhering to these standards ensures that steel line pipes perform safely and effectively in the most demanding applications.

5. Advantages of Steel Line Pipes Over Alternative Materials

While other materials like polyethylene, PVC, or composite pipes may be used in low-pressure or small-diameter pipelines, steel remains the superior choice for large-scale oil and gas transport. Here’s why:

  • Higher Pressure Tolerance: Alternative materials typically cannot withstand the same high pressures as steel, making them unsuitable for long-distance transport of oil and gas.
  • Greater Temperature Resistance: Steel’s ability to endure extreme temperatures is unmatched by plastic or composite materials, which may become brittle or deform.
  • Longer Lifespan: Steel line pipes have an extended service life, often exceeding 50 years when properly maintained, while alternative materials may degrade more rapidly.
  • Recyclability: Steel is fully recyclable, which aligns with industry efforts to reduce environmental impact and promote sustainability.

6. Conclusion

Steel line pipes are indispensable in the oil and gas industry due to their exceptional strength, durability, corrosion resistance, and ability to withstand high-pressure and high-temperature environments. From the challenges of transporting oil and gas across vast distances to meeting stringent environmental and safety standards, steel line pipes have proven themselves as the most reliable and efficient option for pipeline infrastructure.

By choosing steel line pipes, oil and gas companies can achieve safer, more cost-effective, and long-lasting pipeline systems, ensuring the secure transportation of vital resources across the globe. The resilience and adaptability of steel continue to make it the material of choice for the industry’s ever-evolving needs.

¿Qué tipo de tubería es Line Pipe?

La definición de tubería

In industries where fluids like oil, gas, and water need to be transported over long distances, the choice of piping systems is critical to ensure safety, efficiency, and cost-effectiveness. One of the most commonly used components in these sectors is line pipe. This blog post provides a detailed look into what line pipe is, its key features, applications, and considerations for professionals working in the transmission of oil, gas, and water.

¿Qué es la tubería de conducción?

Line pipe is a type of steel pipe that is specifically designed for the transportation of liquids, gases, and sometimes solids. Typically manufactured from carbon or alloy steel, line pipe is engineered to withstand high pressure, corrosion, and extreme temperatures, making it ideal for industries such as oil and gas, where fluids need to be transported over vast distances.

Line pipe plays a pivotal role in pipelines that move oil, natural gas, water, and other fluids from production facilities to refineries, processing plants, or distribution networks. It serves as the backbone of energy infrastructure, ensuring that raw materials are efficiently and safely delivered.

Key Features of Line Pipe

Line pipes are manufactured to meet strict standards and are available in various grades, dimensions, and materials to suit the needs of specific transmission systems. Here are some critical features that make line pipe an essential component for fluid transport:

1. Material Strength and Durability

Line pipe is primarily made from carbon steel, but other alloys such as stainless steel and high-strength, low-alloy steel may be used depending on the application. These materials offer excellent tensile strength, allowing the pipe to withstand high internal pressures and the mechanical stresses of installation and operation.

2. Resistencia a la corrosión

Corrosion is a significant concern in pipelines, especially those transporting oil, gas, or water over long distances. Line pipes often undergo various coating and treatment processes, such as galvanization, epoxy coatings, or cathodic protection systems, to resist corrosion and extend their operational lifespan.

3. High Pressure and Temperature Tolerance

Line pipes are designed to operate under high-pressure conditions. Depending on the fluid being transported and the environmental conditions, the pipe must tolerate significant fluctuations in temperature. Pipeline grades, such as API 5L, specify performance standards for different pressures and temperatures.

4. Soldabilidad

Since pipelines are typically constructed in sections and welded together, line pipe must possess good weldability characteristics. Weldability ensures a secure, leak-proof connection between sections of pipe, contributing to the overall integrity of the pipeline.

Types of Line Pipe

Line pipes come in several types, each suited to specific needs. Here are the two primary types used in oil, gas, and water transmission:

1. Seamless Line Pipe

Seamless line pipe is manufactured without a seam, making it ideal for high-pressure applications. It is produced by rolling solid steel into a tube form and then extruding it to the desired thickness and diameter. Seamless line pipe offers higher strength and better resistance to corrosion and stress cracking.

2. Welded Line Pipe

Welded line pipe is made by forming flat steel into a cylindrical shape and welding the edges together. Welded pipe can be produced in large diameters, making it more cost-effective for low- to medium-pressure applications. However, welded pipe is more susceptible to stress at the seam, so it is often used where operating pressures are lower.

Common Applications of Line Pipe

Line pipe is used in a wide range of industries, including:

1. Oil Transmission

In the oil industry, line pipe is used to transport crude oil from extraction sites to refineries. The pipe must withstand high pressure, corrosive materials, and abrasive conditions, ensuring safe and continuous transportation over long distances.

2. Natural Gas Transmission

Natural gas pipelines require line pipe that can handle high pressures and remain leak-proof under fluctuating environmental conditions. Line pipes in natural gas applications also undergo additional testing for toughness and resistance to brittle fracture, especially in colder climates.

3. Water Distribution

Line pipes are extensively used for the distribution of potable water, wastewater, and industrial water. In water transmission, corrosion resistance is a major concern, and coatings or linings, such as cement mortar or polyethylene, are often applied to protect the steel and extend the pipe’s lifespan.

4. Chemical Transmission

Pipelines in the chemical industry transport a variety of liquids and gases, some of which may be corrosive or hazardous. Line pipe used in these applications must meet stringent safety standards to ensure there are no leaks or failures that could lead to environmental damage or safety hazards.

Key Standards for Line Pipe

Line pipes used in the oil, gas, and water transmission industries are subject to various international standards, which ensure that the pipes meet the necessary safety, performance, and quality requirements. Some of the most widely recognized standards include:

  • API 5L (American Petroleum Institute): This is the most commonly referenced standard for line pipes used in oil and gas transmission. API 5L defines requirements for pipe material, mechanical properties, and testing methods.
  • ISO 3183 (International Organization for Standardization): This standard covers the specifications for steel line pipes for pipeline transportation systems in the petroleum and natural gas industries. ISO 3183 ensures that line pipes are manufactured according to global best practices.
  • ASME B31.8 (American Society of Mechanical Engineers): This standard focuses on gas transmission and distribution piping systems. It provides guidelines on the design, materials, construction, testing, and operation of pipelines.
  • EN 10208-2 (European Standard): This standard applies to steel pipes used in the transmission of flammable liquids or gases in European countries. It sets performance benchmarks for materials, dimensions, and testing.

Estándar común y grado de acero

API 5L PSL1 

Propiedades mecánicas de la tubería PSL1
Calificación Límite elástico Rt0,5 Mpa(psi) Resistencia a la tracción Rm Mpa(psi) Alargamiento 50 mm o 2 pulgadas
A25/A25P ≥175(25400) ≥310(45000) Af
A ≥210(30500) ≥335(48600) Af
B ≥245(35500) ≥415(60200) Af
X42 ≥290(42100) ≥415(60200) Af
X46 ≥320(46400) ≥435(63100) Af
X52 ≥360(52200) ≥460(66700) Af
X56 ≥390(56600) ≥490(71100) Af
X60 ≥415(60200) ≥520(75400) Af
X65 ≥450(65300) ≥535(77600) Af
X70 ≥485(70300) ≥570(82700) Af

API 5LPSL2

Propiedades mecánicas de la tubería de conducción PSL2
Calificación Límite elástico Rt0,5 Mpa(psi) Resistencia a la tracción Rm Mpa(psi) Rt0,5/Habitación Alargamiento 50 mm o 2 pulgadas
BR/BN/BQ 245(35500)-450(65300) 415(60200)-655(95000) ≤0,93 Af
X42R/X42N/X42Q 290(42100)-495(71800) ≥415(60200) ≤0,93 Af
X46N/X46Q 320(46400)-525(76100) 435(63100)-655(95000) ≤0,93 Af
X52N/X52Q 360(52200)-530(76900) 460(66700)-760(110200) ≤0,93 Af
X56N/X56Q 390(56600)-545(79000) 490(71100)-760(110200) ≤0,93 Af
X60N/X60Q 415(60200)-565(81900) 520(75400)-760(110200) ≤0,93 Af
X65Q 450(65300)-600(87000) 535(77600)-760(110200) ≤0,93 Af
X70Q 485(70300)-635(92100) 570(82700)-760(110200) ≤0,93 Af

Practical Considerations for Line Pipe Selection

When selecting line pipe for oil, gas, or water transmission, it is essential to consider several factors to ensure optimal performance and safety. Here are some key considerations:

1. Operating Pressure and Temperature

The pipe material and wall thickness must be chosen to handle the expected operating pressure and temperature of the fluid. Over-pressurization can lead to pipeline failure, while insufficient tolerance for high temperatures may result in weakening or deformation.

2. Corrosiveness of the Fluid

Corrosive fluids such as crude oil or certain chemicals may require specialized coatings or materials. Selecting a pipe with the appropriate corrosion resistance can significantly extend the pipeline’s service life.

3. Distance and Terrain

The length and location of the pipeline will impact the type of line pipe needed. For example, pipelines crossing mountainous regions or areas with extreme temperatures may need more durable, thicker pipes to handle the stress and environmental conditions.

4. Regulatory and Safety Compliance

Compliance with local, national, and international regulations is critical. Ensure that the line pipe meets the required standards for the region and industry in which it will be used. This is especially important in hazardous industries like oil and gas, where pipeline failures can have severe environmental and safety consequences.

Conclusión

Line pipe is a critical component in the oil, gas, and water transmission industries. Its strength, durability, and ability to withstand extreme conditions make it indispensable for transporting fluids over long distances. By understanding the different types of line pipe, their applications, and key considerations for selection, professionals in these fields can ensure the safe and efficient operation of pipelines.

Whether you are working in oil extraction, natural gas distribution, or water infrastructure, selecting the right line pipe is essential for maintaining the integrity of your transmission systems. Always prioritize quality, safety, and compliance with industry standards to optimize pipeline performance and prevent costly failures.

¿Qué es el recubrimiento epoxi/FBE de unión por fusión para tubos de acero?

Tubería recubierta con epoxi adherido por fusión (FBE)

La tubería de acero anticorrosiva se refiere a una tubería de acero procesada con tecnología anticorrosiva y puede prevenir o ralentizar eficazmente el fenómeno de corrosión causado por reacciones químicas o electroquímicas en el proceso de transporte y uso.
Las tuberías de acero anticorrosión se utilizan principalmente en petróleo doméstico, productos químicos, gas natural, calor, tratamiento de aguas residuales, fuentes de agua, puentes, estructuras de acero y otros campos de ingeniería de tuberías. Los recubrimientos anticorrosión comúnmente utilizados incluyen recubrimiento 3PE, recubrimiento 3PP, recubrimiento FBE, recubrimiento aislante de espuma de poliuretano, recubrimiento epoxi líquido, recubrimiento epoxi de alquitrán de hulla, etc.

Qué es Recubrimiento anticorrosivo en polvo de epoxi unido por fusión (FBE)?

El polvo epoxi unido por fusión (FBE) es un tipo de material sólido que se transporta y dispersa por aire como portador y se aplica sobre la superficie de productos de acero precalentados. La fusión, nivelación y curado forman un recubrimiento anticorrosión uniforme, que se forma a altas temperaturas. El recubrimiento tiene las ventajas de fácil operación, sin contaminación, buen impacto, resistencia a la flexión y resistencia a altas temperaturas. El polvo epoxi es un recubrimiento termoestable y no tóxico que forma un recubrimiento de estructura reticulada de alto peso molecular después del curado. Tiene excelentes propiedades químicas anticorrosión y altas propiedades mecánicas, especialmente la mejor resistencia al desgaste y adherencia. Es un revestimiento anticorrosión de alta calidad para tuberías de acero subterráneas.

Clasificación de recubrimientos en polvo epoxi fundidos:

1) según el método de uso, se puede dividir en: revestimiento FBE dentro de la tubería, revestimiento FBE fuera de la tubería y revestimiento FBE dentro y fuera de la tubería. El revestimiento exterior FBE se divide en revestimiento FBE de una sola capa y revestimiento FBE de doble capa (recubrimiento DPS).
2) Según el uso, se puede dividir en: revestimiento FBE para tuberías de petróleo y gas natural, revestimiento FBE para tuberías de agua potable, revestimiento FBE para tuberías contra incendios, revestimiento para tuberías de ventilación antiestática en minas de carbón, revestimiento FBE para tuberías químicas, revestimiento FBE para tubos de perforación petrolera, revestimiento FBE para accesorios de tuberías, etc.
3) según las condiciones de curado, se puede dividir en dos tipos: curado rápido y curado ordinario. La condición de curado del polvo de curado rápido es generalmente de 230 ℃/0,5 ~ 2 min, que se utiliza principalmente para pulverización externa o estructura anticorrosión de tres capas. Debido al corto tiempo de curado y la alta eficiencia de producción, es adecuado para la operación en línea de montaje. La condición de curado del polvo de curado ordinario es generalmente superior a 230 ℃/5 min. Debido al largo tiempo de curado y a la buena nivelación del recubrimiento, es adecuado para pulverización en tubería.

Espesor del recubrimiento FBE

300-500um

Espesor del revestimiento DPS (FBE de doble capa)

450-1000um

estándar de recubrimiento

SY/T0315, PUEDE/CSA Z245.20,

AWWA C213, Q/CNPC38, etc.

Usar

Anticorrosión de tuberías terrestres y submarinas.

Ventajas

Excelente fuerza adhesiva

Alta resistencia de aislamiento

Antienvejecimiento

Pelado anticatodo

Anti-alta temperatura

Resistencia a las bacterias

Corriente de protección de cátodo pequeña (solo 1-5uA/m2)

 

Apariencia

Índice de rendimiento Método de prueba
Características térmicas Superficie lisa, color uniforme, sin burbujas, grietas ni vacaciones.                                                       Inspección visual

Desmontaje catódico 24h o 48h (mm)

≤6,5

SY/T0315-2005

Características térmicas (clasificación de)

1-4

Porosidad de la sección transversal (clasificación de)

1-4
Flexibilidad de 3 grados centígrados (pedido de temperatura mínima especificada+3 grados centígrados

No hay pista

Resistencia al impacto de 1,5 J (-30 grados centígrados)

Sin vacaciones
Adhesión 24h (clasificación de)

1-3

Tensión de ruptura (MV/m)

≥30
Resistividad de masa(Ωm)

≥1*1013

Método anticorrosión del polvo epoxi adherido por fusión:

Los métodos principales son pulverización electrostática, pulverización térmica, succión, lecho fluidizado, recubrimiento por laminación, etc. Generalmente, el método de pulverización electrostática por fricción, el método de succión o el método de pulverización térmica se utilizan para recubrir la tubería. Estos diversos métodos de recubrimiento tienen una característica común, que es necesario antes de rociar la pieza de trabajo precalentada a una cierta temperatura, un contacto con el polvo fundido, es decir, el calor debe poder hacer que la película continúe fluyendo, el flujo adicional cubre toda la superficie del acero. tubo, especialmente en la cavidad en la superficie del tubo de acero, y en ambos lados del revestimiento fundido de soldadura en el puente, combinado estrechamente con el revestimiento y el tubo de acero, minimiza los poros y cura dentro del tiempo prescrito, el último enfriamiento por agua Terminación del proceso de solidificación.

Introducción de tuberías recubiertas con 3LPE

Breve introducción:

El material base de Tubería de acero con revestimiento anticorrosivo 3PE Incluye tubos de acero sin costura, tubos de acero soldados en espiral y tubos de acero soldados con costura recta. El revestimiento anticorrosivo de polietileno de tres capas (3PE) se ha utilizado ampliamente en la industria de oleoductos por su buena resistencia a la corrosión, resistencia a la permeabilidad al vapor de agua y propiedades mecánicas. El recubrimiento anticorrosión 3PE es muy importante para la vida útil de las tuberías enterradas. Algunas tuberías del mismo material permanecen enterradas en el suelo durante décadas sin sufrir corrosión, y otras presentan fugas en unos pocos años. La razón es que utilizan diferentes recubrimientos.

Estructura anticorrosión:

El revestimiento anticorrosión 3PE generalmente se compone de tres capas de estructura: la primera capa es polvo epoxi (FBE) > 100 um, la segunda capa es adhesivo (AD) 170 ~ 250 um, la tercera capa es polietileno (PE) 1,8-3,7 mm . En la operación real, los tres materiales se mezclan e integran, los cuales se procesan para combinarlos firmemente con la tubería de acero para formar un excelente recubrimiento anticorrosivo. El método de procesamiento generalmente se divide en dos tipos: tipo de bobinado y tipo de cobertura de molde circular.

El revestimiento anticorrosivo para tuberías de acero 3PE (revestimiento anticorrosivo de polietileno de tres capas) es un nuevo revestimiento anticorrosivo para tuberías de acero producido por una ingeniosa combinación de revestimiento anticorrosivo 2PE en Europa y revestimiento FBE ampliamente utilizado en América del Norte. Ha sido reconocido y utilizado desde hace más de diez años en el mundo.

La primera capa de la tubería de acero anticorrosivo 3PE es un recubrimiento anticorrosivo en polvo epoxi y la capa intermedia es un adhesivo copolimerizado con un grupo funcional de estructura ramificada. La capa superficial es un revestimiento anticorrosivo de polietileno de alta densidad.

El revestimiento anticorrosivo 3LPE combina la alta impermeabilidad y las propiedades mecánicas de la resina epoxi y el polietileno. Hasta el momento ha sido reconocido como el mejor recubrimiento anticorrosivo con mejor efecto y desempeño del mundo, el cual ha sido aplicado en numerosos proyectos.

Ventajas:

La tubería de acero común se corroerá severamente en un ambiente de mal uso, lo que reducirá la vida útil de la tubería de acero. La vida útil de la tubería de acero anticorrosión y preservación del calor también es relativamente larga. Generalmente, se puede utilizar durante unos 30-50 años, y la instalación y el uso correctos también pueden reducir el coste de mantenimiento de la red de tuberías. La tubería de acero anticorrosión y preservación del calor también puede equiparse con un sistema de alarma, detección automática de fallas de fuga en la red de tuberías, conocimiento preciso de la ubicación de la falla y también alarma automática.

Las tuberías de acero 3PE anticorrosión y preservación del calor tienen un buen rendimiento de preservación del calor y la pérdida de calor es solo 25% de la de las tuberías tradicionales. La operación a largo plazo puede ahorrar muchos recursos, reducir significativamente los costos de energía y aún tener una gran capacidad de impermeabilidad y resistencia a la corrosión. Además, se puede enterrar directamente bajo tierra o en el agua sin necesidad de una zanja para tuberías adicional, lo que también es de construcción sencilla, rápida y completa. El costo también es relativamente bajo y tiene buena resistencia a la corrosión y al impacto en condiciones de baja temperatura, y también se puede enterrar directamente en suelo congelado.

Solicitud:

Para las tuberías de acero anticorrosión 3PE, muchas personas solo saben una cosa y no saben la otra. Su función es de cobertura realmente amplia. Es adecuado para suministro y drenaje de agua subterránea, hormigón proyectado subterráneo, ventilación con presión positiva y negativa, drenaje de gas, rociadores contra incendios y otras redes de tuberías. Tubería de transmisión de residuos y agua de retorno para agua de proceso de central térmica. Tiene una excelente aplicabilidad para tuberías de suministro de agua de sistemas anti-aspersión y rociadores. Funda protectora de cables de alimentación, comunicaciones, carreteras y otros. Es adecuado para el suministro de agua en edificios de gran altura, redes de suministro de calor, sistemas de abastecimiento de agua, transmisión de gas, transmisión de agua enterrada y otras tuberías. Tuberías de petróleo, industria química y farmacéutica, industria de impresión y teñido, etc. Tuberías de descarga de tratamiento de aguas residuales, tuberías de aguas residuales e ingeniería anticorrosión para piscinas biológicas. Se puede decir que la tubería de acero anticorrosión 3PE es indispensable en la construcción actual de tuberías de riego agrícola, tuberías de pozos profundos, tuberías de drenaje y otras aplicaciones de redes, y se cree que a través de la extensión de la ciencia y la tecnología, todavía tendrá logros más brillantes en el futuro.

Si necesita algún tipo de tubos de acero con revestimiento anticorrosión, como tubos de acero con revestimiento 3PE, tubos de acero con revestimiento FBE y tubos de acero con revestimiento 3PP, etc., ¡contáctenos!