3LPE-Beschichtung vs. 3LPP-Beschichtung

3LPE vs. 3LPP: Umfassender Vergleich von Rohrleitungsbeschichtungen

Einführung

Rohrleitungsbeschichtungen schützen Stahlrohrleitungen vor Korrosion und anderen Umwelteinflüssen. Zu den am häufigsten verwendeten Beschichtungen gehören 3-Schicht-Polyethylen (3LPE) Und 3-lagiges Polypropylen (3LPP) Beschichtungen. Beide Beschichtungen bieten robusten Schutz, unterscheiden sich jedoch in Anwendung, Zusammensetzung und Leistung. Dieser Blog bietet einen detaillierten Vergleich zwischen 3LPE- und 3LPP-Beschichtungen und konzentriert sich dabei auf fünf Schlüsselbereiche: Beschichtungsauswahl, Beschichtungszusammensetzung, Beschichtungsleistung, Konstruktionsanforderungen und Konstruktionsprozess.

1. Auswahl der Beschichtung

3LPE-Beschichtung:
Verwendung: 3LPE wird häufig für Onshore- und Offshore-Pipelines in der Öl- und Gasindustrie verwendet. Es eignet sich besonders für Umgebungen, in denen moderate Temperaturbeständigkeit und hervorragender mechanischer Schutz erforderlich sind.
Temperaturbereich: Die 3LPE-Beschichtung wird typischerweise für Rohrleitungen verwendet, die bei Temperaturen zwischen -40 °C und 80–80 °C betrieben werden.
Kostenbetrachtung: 3LPE ist im Allgemeinen kostengünstiger als 3LPP und daher eine beliebte Wahl für Projekte mit Budgetbeschränkungen, bei denen die Temperaturvoraussetzungen innerhalb des unterstützten Bereichs liegen.
3LPP-Beschichtung:
Verwendung: 3LPP wird bevorzugt in Umgebungen mit hohen Temperaturen eingesetzt, wie z. B. in Tiefsee-Offshore-Pipelines und Pipelines, die heiße Flüssigkeiten transportieren. Es wird auch in Bereichen eingesetzt, in denen ein hervorragender mechanischer Schutz erforderlich ist.
Temperaturbereich: 3LPP-Beschichtungen können höheren Temperaturen standhalten, typischerweise zwischen -20 °C und 140 °C, und sind daher für anspruchsvollere Anwendungen geeignet.
Kostenbetrachtung: 3LPP-Beschichtungen sind aufgrund ihrer höheren Temperaturbeständigkeit und mechanischen Eigenschaften teurer, aber für Pipelines, die unter extremen Bedingungen betrieben werden, erforderlich.
Auswahlzusammenfassung: Die Wahl zwischen 3LPE und 3LPP hängt in erster Linie von der Betriebstemperatur der Pipeline, den Umgebungsbedingungen und Budgetüberlegungen ab. 3LPE ist ideal für moderate Temperaturen und kostensensible Projekte, während 3LPP für Hochtemperaturumgebungen bevorzugt wird, in denen ein verbesserter mechanischer Schutz unerlässlich ist.

2. Beschichtungszusammensetzung

3LPE-Beschichtungszusammensetzung:
Schicht 1: Fusion Bonded Epoxy (FBE): Die innerste Schicht bietet eine hervorragende Haftung auf dem Stahlsubstrat und ist die primäre Korrosionsschutzschicht.
Schicht 2: Copolymer-Klebstoff: Diese Schicht verbindet die FBE-Schicht mit der Polyethylen-Deckschicht und sorgt so für eine starke Haftung und zusätzlichen Korrosionsschutz.
Schicht 3: Polyethylen (PE): Die äußere Schicht bietet mechanischen Schutz vor physischen Schäden während Handhabung, Transport und Installation.
3LPP-Beschichtungszusammensetzung:
Schicht 1: Fusion Bonded Epoxy (FBE): Ähnlich wie bei 3LPE dient die FBE-Schicht in 3LPP als primäre Korrosionsschutz- und Haftschicht.
Schicht 2: Copolymer-Klebstoff: Diese Klebeschicht verbindet das FBE mit der Polypropylen-Deckschicht und sorgt so für eine starke Haftung.
Schicht 3: Polypropylen (PP): Die äußere Schicht aus Polypropylen bietet besseren mechanischen Schutz und eine höhere Temperaturbeständigkeit als Polyethylen.
Zusammenfassung der Zusammensetzung: Beide Beschichtungen haben eine ähnliche Struktur mit einer FBE-Schicht, einem Copolymer-Klebstoff und einer äußeren Schutzschicht. Das Material der äußeren Schicht unterscheidet sich jedoch – Polyethylen bei 3LPE und Polypropylen bei 3LPP – was zu Unterschieden in den Leistungsmerkmalen führt.

3. Beschichtungsleistung

3LPE-Beschichtungsleistung:
Temperaturbeständigkeit: 3LPE funktioniert gut in Umgebungen mit gemäßigten Temperaturen, ist aber möglicherweise nicht für Temperaturen über 80 °C geeignet.
Mechanischer Schutz: Die äußere Schicht aus Polyethylen bietet eine ausgezeichnete Widerstandsfähigkeit gegen physikalische Beschädigungen und ist daher für Onshore- und Offshore-Pipelines geeignet.
Korrosionsbeständigkeit: Die Kombination aus FBE- und PE-Schichten bietet robusten Korrosionsschutz, insbesondere in feuchten oder nassen Umgebungen.
Chemische Resistenz: 3LPE bietet eine gute Chemikalienbeständigkeit, ist jedoch in Umgebungen mit aggressiver chemischer Belastung im Vergleich zu 3LPP weniger wirksam.
Leistung der 3LPP-Beschichtung:
Temperaturbeständigkeit: 3LPP ist für eine Temperaturbeständigkeit von bis zu 140 °C ausgelegt und eignet sich daher ideal für Rohrleitungen, in denen heiße Flüssigkeiten transportiert werden, oder für Umgebungen mit hohen Temperaturen.
Mechanischer Schutz: Die Polypropylenschicht bietet hervorragenden mechanischen Schutz, insbesondere bei Offshore-Pipelines in tiefen Gewässern mit höherem Außendruck und höherer physikalischer Belastung.
Korrosionsbeständigkeit: 3LPP bietet einen hervorragenden Korrosionsschutz, ähnlich wie 3LPE, zeigt jedoch in Umgebungen mit höheren Temperaturen eine bessere Leistung.
Chemische Resistenz: 3LPP verfügt über eine überragende chemische Beständigkeit und eignet sich daher besser für Umgebungen mit aggressiven Chemikalien oder Kohlenwasserstoffen.
Leistungsübersicht: 3LPP übertrifft 3LPE in Umgebungen mit hohen Temperaturen und bietet eine bessere mechanische und chemische Beständigkeit. 3LPE ist jedoch auch bei mittleren Temperaturen und weniger aggressiven Umgebungen äußerst wirksam.

4. Bauliche Anforderungen

3LPE-Konstruktionsanforderungen:
Oberflächenvorbereitung: Die richtige Oberflächenvorbereitung ist für die Wirksamkeit der 3LPE-Beschichtung entscheidend. Die Stahloberfläche muss gereinigt und aufgeraut werden, um die notwendige Haftung für die FBE-Schicht zu erreichen.
Verarbeitungsbedingungen: Die 3LPE-Beschichtung muss in einer kontrollierten Umgebung aufgetragen werden, um die ordnungsgemäße Haftung jeder Schicht sicherzustellen.
Dickenspezifikationen: Die Dicke jeder Schicht ist entscheidend. Die Gesamtdicke beträgt je nach Verwendungszweck der Pipeline normalerweise 1,8 mm bis 3,0 mm.
3LPP-Konstruktionsanforderungen:
Oberflächenvorbereitung: Wie bei 3LPE ist die Oberflächenvorbereitung entscheidend. Der Stahl muss gereinigt werden, um Verunreinigungen zu entfernen, und aufgeraut werden, um eine ordnungsgemäße Haftung der FBE-Schicht zu gewährleisten.
Verarbeitungsbedingungen: Der Applikationsprozess für 3LPP ähnelt dem von 3LPE, erfordert jedoch aufgrund der höheren Temperaturbeständigkeit der Beschichtung häufig eine präzisere Kontrolle.
Dickenspezifikationen: 3LPP-Beschichtungen sind normalerweise dicker als 3LPE, wobei die Gesamtdicke je nach spezifischer Anwendung zwischen 2,0 mm und 4,0 mm liegt.
Zusammenfassung der Bauanforderungen: 3LPE und 3LPP erfordern eine sorgfältige Oberflächenvorbereitung und kontrollierte Anwendungsumgebungen. 3LPP-Beschichtungen erfordern jedoch im Allgemeinen dickere Schichten, um ihre Schutzeigenschaften zu verbessern.

5. Bauprozess

3LPE-Bauprozess:
Oberflächenreinigung: Das Stahlrohr wird unter anderem durch Strahlen gereinigt, um Rost, Zunder und andere Verunreinigungen zu entfernen.
FBE-Anwendung: Das gereinigte Rohr wird vorgewärmt und die FBE-Schicht wird elektrostatisch aufgetragen, wodurch eine feste Verbindung mit dem Stahl entsteht.
Auftragen der Klebeschicht: Über der FBE-Schicht wird ein Copolymerklebstoff aufgetragen, der das FBE mit der äußeren Polyethylenschicht verbindet.
Auftragen der PE-Schicht: Die Polyethylenschicht wird auf das Rohr extrudiert und bietet mechanischen Schutz und zusätzliche Korrosionsbeständigkeit.
Kühlung und Inspektion: Das beschichtete Rohr wird abgekühlt, auf Defekte untersucht und für den Transport vorbereitet.
3LPP-Bauprozess:
Oberflächenreinigung: Ähnlich wie bei 3LPE wird das Stahlrohr gründlich gereinigt, um die ordnungsgemäße Haftung der Beschichtungsschichten sicherzustellen.
FBE-Anwendung: Die FBE-Schicht wird auf das vorgewärmte Rohr aufgetragen und dient als primäre Korrosionsschutzschicht.
Auftragen der Klebeschicht: Über der FBE-Schicht wird ein Copolymerklebstoff aufgetragen, der eine feste Verbindung mit der Polypropylen-Deckschicht gewährleistet.
PP-Schicht-Auftrag: Die Polypropylenschicht wird durch Extrusion aufgetragen und bietet höchste mechanische Beständigkeit und Temperaturbeständigkeit.
Kühlung und Inspektion: Das Rohr wird gekühlt, auf Defekte untersucht und für den Einsatz vorbereitet.
Zusammenfassung des Bauprozesses: Die Herstellungsverfahren für 3LPE und 3LPP sind ähnlich, für die äußere Schutzschicht werden jedoch unterschiedliche Materialien verwendet. Beide Methoden erfordern eine sorgfältige Kontrolle von Temperatur, Sauberkeit und Schichtdicke, um optimale Leistung zu gewährleisten.

Abschluss

Die Wahl zwischen 3LPE- und 3LPP-Beschichtungen hängt von mehreren Faktoren ab, darunter Betriebstemperatur, Umgebungsbedingungen, mechanische Belastung und Budget.
3LPE ist ideal für Pipelines, die bei moderaten Temperaturen betrieben werden und bei denen die Kosten eine wichtige Rolle spielen. Es bietet hervorragende Korrosionsbeständigkeit und mechanischen Schutz für die meisten Onshore- und Offshore-Anwendungen.
3LPPist dagegen die bevorzugte Wahl für Hochtemperaturumgebungen und Anwendungen, die einen hervorragenden mechanischen Schutz erfordern. Die höheren Kosten sind durch die verbesserte Leistung unter anspruchsvollen Bedingungen gerechtfertigt.

Um die richtige Beschichtung auszuwählen, müssen Sie die spezifischen Anforderungen Ihres Pipeline-Projekts kennen. Sowohl 3LPE als auch 3LPP haben ihre Stärken und Einsatzmöglichkeiten, und die richtige Wahl gewährleistet langfristigen Schutz und Haltbarkeit für Ihre Pipeline-Infrastruktur.

Die entscheidende Rolle von Stahlrohren bei der Öl- und Gasförderung

Einführung

Stahlrohre sind in der Öl- und Gasindustrie von entscheidender Bedeutung, da sie unter extremen Bedingungen unübertroffene Haltbarkeit und Zuverlässigkeit bieten. Diese Rohre sind für die Exploration und den Transport unverzichtbar und halten hohem Druck, korrosiven Umgebungen und extremen Temperaturen stand. Auf dieser Seite werden die entscheidenden Funktionen von Stahlrohren bei der Öl- und Gasexploration untersucht und ihre Bedeutung für Bohrungen, Infrastruktur und Sicherheit im Detail erläutert. Entdecken Sie, wie die Auswahl geeigneter Stahlrohre die Betriebseffizienz steigern und die Kosten in dieser anspruchsvollen Branche senken kann.

I. Grundkenntnisse zu Stahlrohren für die Öl- und Gasindustrie

1. Begriffserklärung

API: Abkürzung für Amerikanisches Erdölinstitut.
OCTG: Abkürzung für Rohrwaren aus der Ölindustrie, einschließlich Ölmantelrohr, Ölschläuche, Bohrgestänge, Bohrkragen, Bohrer, Pumpenstangen, Verbindungsstücke usw.
Ölschläuche: Rohre werden in Ölquellen zur Förderung, Gasextraktion, Wasserinjektion und Säurefrakturierung verwendet.
Gehäuse: Als Auskleidung zur Verhinderung des Einsturzes einer Wand wird ein Rohr von der Erdoberfläche in ein Bohrloch hinabgelassen.
Bohrgestänge: Rohr zum Bohren von Bohrlöchern.
Leitungsrohre: Rohr zum Transport von Öl oder Gas.
Kupplungen: Zylinder zum Verbinden zweier Gewinderohre mit Innengewinde.
Kupplungsmaterial: Rohr zur Herstellung von Kupplungen.
API-Threads: Rohrgewinde gemäß API 5B-Standard, einschließlich Rundgewinde für Ölrohre, kurze Rundgewinde für Gehäuse, lange Rundgewinde für Gehäuse, teilweise Trapezgewinde für Gehäuse, Leitungsrohrgewinde usw.
Premium-Verbindung: Nicht-API-Gewinde mit einzigartigen Dichtungseigenschaften, Verbindungseigenschaften und anderen Eigenschaften.
Fehler: Verformung, Bruch, Oberflächenschaden und Verlust der ursprünglichen Funktion unter bestimmten Betriebsbedingungen.
Primäre Ausfallarten: Quetschen, Rutschen, Bruch, Leckage, Korrosion, Verkleben, Verschleiß usw.

2. Normen im Bereich Erdöl

API Spec 5B, 17. Ausgabe – Spezifikation für Gewindeschneiden, Messen und Gewindeprüfung von Futterrohr-, Rohr- und Leitungsrohrgewinden
API Spec 5L, 46. Ausgabe – Spezifikation für Leitungsrohre
API Spec 5CT, 11. Ausgabe – Spezifikation für Gehäuse und Rohre
API Spec 5DP, 7. Ausgabe – Spezifikation für Bohrgestänge
API Spec 7-1, 2. Ausgabe – Spezifikation für rotierende Bohrgestängeelemente
API Spec 7-2, 2. Ausgabe – Spezifikation für das Gewindeschneiden und Messen von Drehbundgewindeverbindungen
API Spec 11B, 24. Ausgabe – Spezifikation für Pumpenstangen, polierte Stangen und Auskleidungen, Kupplungen, Senkstangen, polierte Stangenklemmen, Stopfbuchsen und Pumpen-T-Stücke
ISO 3183:2019 – Erdöl- und Erdgasindustrie — Stahlrohre für Pipeline-Transportsysteme
ISO 11960:2020 – Erdöl- und Erdgasindustrie — Stahlrohre zur Verwendung als Gehäuse oder Rohre für Bohrlöcher
NACE MR0175 / ISO 15156:2020 – Erdöl- und Erdgasindustrie – Materialien für den Einsatz in H2S-haltigen Umgebungen bei der Öl- und Gasproduktion

II. Ölschläuche

1. Klassifizierung von Ölschläuchen

Ölschläuche werden in nicht gestauchte Ölschläuche (NU), extern gestauchte Ölschläuche (EU) und Ölschläuche mit integrierter Verbindung (IJ) unterteilt. NU-Ölschläuche bedeuten, dass das Ende des Schlauchs eine durchschnittliche Dicke hat, direkt das Gewinde dreht und die Kupplungen mitbringt. Gestauchte Schläuche bedeuten, dass die Enden beider Schläuche extern gestaucht, dann mit Gewinden versehen und gekoppelt werden. Rohre mit integrierter Verbindung bedeuten, dass ein Ende des Schlauchs mit Außengewinde gestaucht ist und das andere mit Innengewinde gestaucht ist, die direkt ohne Kupplungen verbunden sind.

2. Funktion der Ölschläuche

① Öl- und Gasförderung: Nachdem die Öl- und Gasquellen gebohrt und zementiert wurden, werden die Rohre in die Ölverrohrung eingesetzt, um Öl und Gas aus der Erde zu fördern.
② Wasserinjektion: Wenn der Bohrlochdruck nicht ausreicht, injizieren Sie Wasser durch das Rohr in den Brunnen.
③ Dampfeinspritzung: Bei der Heißgewinnung von Dicköl wird Dampf über isolierte Ölleitungen in die Bohrung eingeleitet.
④ Ansäuerung und Aufbrechen: In der Spätphase der Bohrung oder zur Verbesserung der Produktion von Öl- und Gasquellen ist es notwendig, ein Ansäuerungs- und Aufbruchmedium oder ein Härtungsmittel in die Öl- und Gasschicht einzubringen und das Medium und das Härtungsmittel durch die Ölrohre zu transportieren.

3. Stahlqualität der Ölleitungen

Die Stahlsorten für Ölleitungen sind H40, J55, N80, L80, C90, T95, P110.
N80 wird in N80-1 und N80Q unterteilt. Beide weisen die gleichen Zugfestigkeitseigenschaften auf. Die beiden Unterschiede liegen im Lieferzustand und in der unterschiedlichen Schlagzähigkeit. N80-1 wird im normalisierten Zustand geliefert oder wenn die endgültige Walztemperatur über der kritischen Temperatur Ar3 liegt und die Spannung nach der Luftkühlung abnimmt. Es kann anstelle des normalisierten Zustands Warmwalzen verwendet werden. Schlagzähigkeits- und zerstörungsfreie Prüfungen sind nicht erforderlich. N80Q muss angelassen (vergütet) werden. Die Wärmebehandlung muss durchgeführt werden. Die Schlagzähigkeit muss den Bestimmungen von API 5CT entsprechen und es müssen zerstörungsfreie Prüfungen durchgeführt werden.
L80 wird in L80-1, L80-9Cr und L80-13Cr unterteilt. Ihre mechanischen Eigenschaften und ihr Lieferstatus sind gleich. Unterschiede in Verwendung, Produktionsschwierigkeiten und Preis: L80-1 ist für den allgemeinen Typ, L80-9Cr und L80-13Cr sind Rohre mit hoher Korrosionsbeständigkeit, Produktionsschwierigkeiten und hohen Kosten und werden normalerweise in stark korrosionsanfälligen Bohrlöchern verwendet.
C90 und T95 werden in 1 und 2 Typen unterteilt, nämlich C90-1, C90-2 und T95-1, T95-2.

4. Die für Ölrohre häufig verwendete Stahlsorte, Stahlname und Lieferstatus

J55 (37Mn5) NU Ölrohre: Warmgewalzt statt normalisiert
J55 (37Mn5) EU-Ölrohre: In voller Länge normalisiert nach dem Stauchen
N80-1 (36Mn2V) NU-Ölrohre: Warmgewalzt statt normalisiert
N80-1 (36Mn2V) EU-Ölrohr: In voller Länge normalisiert nach dem Stauchen
N80-Q (30Mn5) Ölrohr: 30Mn5, durchgehende Temperierung
L80-1 (30Mn5) Ölrohr: 30Mn5, durchgehende Temperierung
P110 (25CrMnMo) Ölrohr: 25CrMnMo, durchgehende Vergütung
J55 (37Mn5) Kupplung: Warmgewalzt, normalisiert
N80 (28MnTiB) Kupplung: Durchgehendes Temperieren
L80-1 (28MnTiB) Kupplung: Durchgehend gehärtet
P110 (25CrMnMo) Kupplung: Durchgehendes Anlassen

III. Mantelrohr

1. Klassifizierung und Rolle des Gehäuses

Das Gehäuse ist das Stahlrohr, das die Wand von Öl- und Gasquellen stützt. In jeder Quelle werden je nach Bohrtiefe und geologischen Bedingungen mehrere Schichten Gehäuse verwendet. Das Gehäuse wird nach dem Absenken in die Quelle mit Zement einzementiert. Im Gegensatz zu Öl- und Bohrrohren kann es nicht wiederverwendet werden und gehört zu den Einweg-Verbrauchsmaterialien. Daher macht der Verbrauch von Gehäusen mehr als 70 Prozent aller Ölquellenrohre aus. Das Gehäuse kann je nach Verwendung in Leitergehäuse, Zwischengehäuse, Produktionsgehäuse und Linergehäuse unterteilt werden. Ihre Strukturen in Ölquellen sind in Abbildung 1 dargestellt.

①Leitergehäuse: Normalerweise werden für die Leitungsverrohrung die API-Klassen K55, J55 oder H40 verwendet. Sie stabilisiert den Bohrlochkopf und isoliert flache Grundwasserleiter mit Durchmessern von üblicherweise etwa 20 oder 16 Zoll.

②Zwischengehäuse: Zwischenverrohrungen, häufig aus den API-Klassen K55, N80, L80 oder P110, werden zur Isolierung instabiler Formationen und unterschiedlicher Druckzonen verwendet und haben typische Durchmesser von 13 3/8 Zoll, 11 3/4 Zoll oder 9 5/8 Zoll.

③Produktionsgehäuse: Produktionsgehäuse werden aus hochwertigem Stahl wie etwa den API-Klassen J55, N80, L80, P110 oder Q125 hergestellt und sind so ausgelegt, dass sie dem Produktionsdruck standhalten. Normalerweise sind sie in den Durchmessern 9 5/8 Zoll, 7 Zoll oder 5 1/2 Zoll erhältlich.

④Liner-Gehäuse: Liner erweitern das Bohrloch unter Verwendung von Materialien wie den API-Klassen L80, N80 oder P110 mit typischen Durchmessern von 7 Zoll, 5 Zoll oder 4 1/2 Zoll in das Reservoir.

⑤Schläuche: Rohre transportieren Kohlenwasserstoffe an die Oberfläche. Sie verwenden die API-Klassen J55, L80 oder P110 und sind in den Durchmessern 4 1/2 Zoll, 3 1/2 Zoll oder 2 7/8 Zoll erhältlich.

IV. Bohrgestänge

1. Klassifizierung und Funktion von Rohren für Bohrwerkzeuge

Das quadratische Bohrrohr, das Bohrrohr, das gewichtete Bohrrohr und der Bohrkragen in Bohrwerkzeugen bilden das Bohrrohr. Das Bohrrohr ist das Kernbohrwerkzeug, das den Bohrer vom Boden zum Boden des Bohrlochs treibt, und es ist auch ein Kanal vom Boden zum Boden des Bohrlochs. Es hat drei Hauptrollen:

① Zur Übertragung des Drehmoments, um den Bohrer anzutreiben und zu bohren;

② Sich auf das Gewicht des Bohrers zu verlassen, um den Druck des Gesteins am Boden des Bohrlochs zu brechen;

③ Um Spülflüssigkeit, d. h. Bohrschlamm, durch den Boden zu transportieren, werden Hochdruckschlammpumpen eingesetzt. Die Bohrsäule fließt in das Bohrloch und fließt in den Boden des Brunnens, um das Gesteinsmaterial auszuspülen und den Bohrer abzukühlen. Außerdem wird das Gesteinsmaterial durch die Außenfläche der Säule und die Wand des Brunnens zwischen den Ringräumen zurück in den Boden befördert, um den Zweck des Bohrens des Brunnens zu erreichen.

Das Bohrgestänge muss beim Bohrvorgang einer Vielzahl komplexer Wechselbelastungen standhalten, wie Zug-, Druck-, Torsions-, Biege- und anderen Belastungen. Die Innenfläche ist außerdem der Auswaschung durch Hochdruckschlamm und Korrosion ausgesetzt.
(1) Quadratisches Bohrgestänge: Quadratische Bohrrohre gibt es in zwei Ausführungen: viereckig und sechseckig. In Chinas Erdölbohrrohren wird für jeden Satz Bohrsäulen normalerweise ein viereckiges Bohrrohr verwendet. Seine Spezifikationen sind 63,5 mm (2-1/2 Zoll), 88,9 mm (3-1/2 Zoll), 107,95 mm (4-1/4 Zoll), 133,35 mm (5-1/4 Zoll), 152,4 mm (6 Zoll) usw. Die verwendete Länge beträgt normalerweise 1214,5 m.
(2) Bohrgestänge: Das Bohrgestänge ist das Hauptwerkzeug zum Bohren von Brunnen. Es ist mit dem unteren Ende des quadratischen Bohrgestänges verbunden. Während der Bohrbrunnen tiefer wird, verlängert das Bohrgestänge die Bohrsäule nach und nach. Die Spezifikationen des Bohrgestänges sind: 60,3 mm (2-3/8 Zoll), 73,03 mm (2-7/8 Zoll), 88,9 mm (3-1/2 Zoll), 114,3 mm (4-1/2 Zoll), 127 mm (5 Zoll), 139,7 mm (5-1/2 Zoll) und so weiter.
(3) Hochleistungs-Bohrgestänge: Ein gewichtetes Bohrrohr ist ein Übergangswerkzeug, das das Bohrrohr und den Bohrkragen verbindet. Es kann den Kraftzustand des Bohrrohrs verbessern und den Druck auf den Bohrer erhöhen. Die Hauptspezifikationen des gewichteten Bohrrohrs sind 88,9 mm (3-1/2 Zoll) und 127 mm (5 Zoll).
(4) Bohrkragen: Der Bohrkragen ist mit dem unteren Teil des Bohrgestänges verbunden, einem speziellen dickwandigen Rohr mit hoher Steifigkeit. Er übt Druck auf den Bohrer aus, um das Gestein aufzubrechen, und spielt eine Führungsrolle beim Bohren eines geraden Bohrlochs. Die üblichen Spezifikationen für Bohrkragen sind 158,75 mm (6-1/4 Zoll), 177,85 mm (7 Zoll), 203,2 mm (8 Zoll), 228,6 mm (9 Zoll) usw.

V. Leitungsrohr

1. Klassifizierung von Leitungsrohren

In der Öl- und Gasindustrie werden Rohrleitungen mit der Abkürzung „Stahlrohr“ zum Transport von Öl, raffiniertem Öl, Erdgas und Wasser verwendet. Die Öl- und Gasleitungen werden in Hauptleitungen, Zweigleitungen und städtische Rohrleitungsnetze unterteilt. Drei Arten von Hauptleitungen haben die üblichen Spezifikationen von ∅406 bis 1219 mm, eine Wandstärke von 10 bis 25 mm, Stahlgüte X42 bis X80; Zweigleitungen und städtische Rohrleitungsnetze haben normalerweise Spezifikationen von ∅114 bis 700 mm, eine Wandstärke von 6 bis 20 mm, die Stahlgüte für X42 bis X80. Die Stahlgüte ist X42 bis X80. Leitungsrohre sind in geschweißter und nahtloser Ausführung erhältlich. Geschweißte Leitungsrohre werden häufiger verwendet als nahtlose Leitungsrohre.

2. Standard für Leitungsrohre

API Spec 5L – Spezifikation für Leitungsrohre
ISO 3183 – Erdöl- und Erdgasindustrie – Stahlrohre für Pipeline-Transportsysteme

3. PSL1 und PSL2

PSL ist die Abkürzung für Produktspezifikationsebene. Die Spezifikationsstufe des Leitungsrohrprodukts ist in PSL 1 und PSL 2 unterteilt, und die Qualitätsstufe ist in PSL 1 und PSL 2 unterteilt. PSL 2 ist höher als PSL 1; die beiden Spezifikationsstufen haben nicht nur unterschiedliche Testanforderungen, sondern auch unterschiedliche Anforderungen an die chemische Zusammensetzung und die mechanischen Eigenschaften. Daher müssen die Vertragsbedingungen gemäß der API 5L-Bestellung neben der Angabe der Spezifikationen, der Stahlsorte und anderer allgemeiner Indikatoren auch die Produktspezifikationsstufe angeben, d. h. PSL 1 oder PSL 2. PSL 2 ist hinsichtlich der chemischen Zusammensetzung, der Zugfestigkeitseigenschaften, der Schlagfestigkeit, der zerstörungsfreien Prüfung und anderer Indikatoren strenger als PSL 1.

4. Stahlsorte, chemische Zusammensetzung und mechanische Eigenschaften für Leitungsrohre

Die Stahlgüten für Leitungsrohre werden von niedrig bis hoch in A25, A, B, X42, X46, X52, X60, X65, X70 und X80 unterteilt. Detaillierte Angaben zur chemischen Zusammensetzung und zu den mechanischen Eigenschaften finden Sie in der Spezifikation API 5L, 46. Ausgabe.

5. Anforderungen an die hydrostatische Prüfung und zerstörungsfreie Prüfung von Leitungsrohren

Bei Leitungsrohren muss Zweig für Zweig ein hydraulischer Test durchgeführt werden, und der Standard erlaubt keine zerstörungsfreie Erzeugung von Hydraulikdruck, was ebenfalls einen großen Unterschied zwischen dem API-Standard und unseren Standards darstellt. PSL 1 erfordert keine zerstörungsfreie Prüfung; PSL 2 muss Zweig für Zweig eine zerstörungsfreie Prüfung durchführen.

VI. Premium-Anbindungen

1. Einführung von Premium-Verbindungen

Premium Connection ist ein Rohrgewinde mit einer einzigartigen Struktur, die sich vom API-Gewinde unterscheidet. Obwohl das vorhandene API-Gewinde-Ölgehäuse bei der Ölbohrungsausbeutung weit verbreitet ist, zeigen sich seine Mängel in der einzigartigen Umgebung einiger Ölfelder deutlich: Die API-Rundgewinderohrsäule hat zwar eine bessere Dichtleistung, aber die vom Gewindeteil getragene Zugkraft entspricht nur 60% bis 80% der Festigkeit des Rohrkörpers und kann daher nicht bei der Ausbeutung tiefer Bohrungen verwendet werden; die API-Rohrsäule mit vorgespanntem Trapezgewinde hat zwar eine viel höhere Zugleistung als die der API-Rundgewindeverbindung, aber ihre Dichtleistung ist nicht so gut. Obwohl die Zugleistung der Säule viel höher ist als die der API-Rundgewindeverbindung, ist ihre Dichtleistung nicht sehr gut, sodass sie nicht bei der Ausbeutung von Hochdruckgasbohrungen verwendet werden kann; außerdem kann das Gewindefett nur in einer Umgebung mit einer Temperatur unter 95℃ seine Rolle spielen, sodass es nicht bei der Ausbeutung von Hochtemperaturbohrungen verwendet werden kann.

Im Vergleich zur API-Rundgewinde- und Teiltrapezgewindeverbindung weist die Premiumverbindung in folgenden Punkten bahnbrechende Fortschritte auf:

(1) Eine gute Abdichtung durch die Elastizität und die Konstruktion der metallischen Dichtungsstruktur macht die Gasabdichtung der Verbindung widerstandsfähiger gegen das Erreichen der Grenze des Rohrkörpers innerhalb des Fließdrucks.

(2) Hohe Festigkeit der Verbindung. Verbindung mit einer speziellen Schnallenverbindung des Ölgehäuses, deren Verbindungsfestigkeit die Festigkeit des Rohrkörpers erreicht oder übersteigt, um das Problem des Schlupfs grundsätzlich zu lösen;

(3) Durch die Verbesserung des Materialauswahl- und Oberflächenbehandlungsprozesses wurde das Problem der am Faden hängenden Schnalle grundsätzlich gelöst.

(4) Durch Optimierung der Struktur wird eine vernünftigere Verteilung der Verbindungsspannungen erreicht, die die Beständigkeit gegen Spannungskorrosion verbessert.

(5) Durch die vernünftige Gestaltung der Schulterstruktur ist die Bedienung der Schnalle leichter zugänglich.

Die Öl- und Gasindustrie verfügt über mehr als 100 patentierte Premium-Verbindungen, die bedeutende Fortschritte in der Rohrtechnologie darstellen. Diese speziellen Gewindedesigns bieten überlegene Dichtungseigenschaften, erhöhte Verbindungsfestigkeit und verbesserte Widerstandsfähigkeit gegen Umweltbelastungen. Indem sie Herausforderungen wie hohen Druck, korrosive Umgebungen und extreme Temperaturen bewältigen, gewährleisten diese Innovationen hervorragende Zuverlässigkeit und Effizienz bei ölgesunden Operationen weltweit. Kontinuierliche Forschung und Entwicklung im Bereich Premium-Verbindungen unterstreichen ihre zentrale Rolle bei der Unterstützung sicherer und produktiverer Bohrverfahren und spiegeln ein anhaltendes Engagement für technologische Spitzenleistungen im Energiesektor wider.

VAM®-Verbindung: VAM®-Verbindungen sind für ihre robuste Leistung in anspruchsvollen Umgebungen bekannt und zeichnen sich durch fortschrittliche Metall-Metall-Dichtungstechnologie und hohe Drehmomentfähigkeiten aus, wodurch ein zuverlässiger Betrieb in Tiefbohrungen und Hochdruckreservoirs gewährleistet wird.

TenarisHydril Wedge-Serie: Diese Serie bietet eine Reihe von Verbindungen wie Blue®, Dopeless® und Wedge 521®, die für ihre außergewöhnliche gasdichte Abdichtung und Widerstandsfähigkeit gegen Druck- und Zugkräfte bekannt sind und so die Betriebssicherheit und Effizienz verbessern.

TSH® Blau: Die von Tenaris entwickelten TSH® Blue-Verbindungen nutzen ein proprietäres Doppelschulterdesign und ein Hochleistungsgewindeprofil und bieten so hervorragende Ermüdungsbeständigkeit und einfache Montage bei kritischen Bohranwendungen.

Grant Prideco™ XT®-Verbindung: Die von NOV entwickelten XT®-Verbindungen verfügen über eine einzigartige Metall-Metall-Dichtung und eine robuste Gewindeform, die eine überlegene Drehmomentkapazität und Beständigkeit gegen Abrieb gewährleisten und so die Lebensdauer der Verbindung verlängern.

Hunting Seal-Lock® Verbindung: Die Seal-Lock®-Verbindung von Hunting verfügt über eine Metall-Metall-Dichtung und ein einzigartiges Gewindeprofil und ist für ihre überragende Druckbeständigkeit und Zuverlässigkeit bei Bohrvorgängen an Land und auf See bekannt.

Abschluss

Zusammenfassend lässt sich sagen, dass das komplexe Netzwerk aus Stahlrohren, das für die Öl- und Gasindustrie von entscheidender Bedeutung ist, eine breite Palette von Spezialgeräten umfasst, die für raue Umgebungen und komplexe Betriebsanforderungen ausgelegt sind. Von den grundlegenden Mantelrohren, die gesunde Wände stützen und schützen, bis hin zu den vielseitigen Rohren, die bei Extraktions- und Injektionsprozessen verwendet werden, dient jeder Rohrtyp einem bestimmten Zweck bei der Erkundung, Produktion und dem Transport von Kohlenwasserstoffen. Standards wie API-Spezifikationen gewährleisten Einheitlichkeit und Qualität dieser Rohre, während Innovationen wie Premium-Verbindungen die Leistung unter schwierigen Bedingungen verbessern. Mit der Weiterentwicklung der Technologie werden diese kritischen Komponenten weiterentwickelt und steigern die Effizienz und Zuverlässigkeit im globalen Energiebetrieb. Das Verständnis dieser Rohre und ihrer Spezifikationen unterstreicht ihre unverzichtbare Rolle in der Infrastruktur des modernen Energiesektors.

Super 13Cr SMSS 13Cr Gehäuse und Rohre

SMSS 13Cr und DSS 22Cr in H₂S/CO₂-Öl-Wasser-Umgebung

Einführung

Das Korrosionsverhalten von supermartensitischem Edelstahl (SMSS) 13Cr und Duplex-Edelstahl (DSS) 22Cr in einer H₂S/CO₂-Öl-Wasser-Umgebung sind von großem Interesse, insbesondere in der Öl- und Gasindustrie, wo diese Materialien oft solch harten Bedingungen ausgesetzt sind. Hier ist ein Überblick darüber, wie sich jedes Material unter diesen Bedingungen verhält:

1. Supermartensitischer Edelstahl (SMSS) 13Cr:

Komposition: SMSS 13Cr enthält typischerweise etwa 12-14% Chrom sowie kleine Mengen Nickel und Molybdän. Der hohe Chromgehalt verleiht ihm eine gute Korrosionsbeständigkeit, während die martensitische Struktur für hohe Festigkeit sorgt.
Korrosionsverhalten:
CO₂-Korrosion: SMSS 13Cr weist eine mäßige Beständigkeit gegen CO₂-Korrosion auf, was hauptsächlich auf die Bildung einer schützenden Chromoxidschicht zurückzuführen ist. In Gegenwart von CO₂ besteht jedoch das Risiko lokaler Korrosion, wie Lochfraß und Spaltkorrosion.
H₂S-Korrosion: H₂S erhöht das Risiko von Sulfidspannungsrissen (SSC) und Wasserstoffversprödung. SMSS 13Cr ist gegenüber diesen Korrosionsformen einigermaßen beständig, aber nicht immun, insbesondere bei höheren Temperaturen und Drücken.
Öl-Wasser-Umgebung: Öl kann manchmal eine Schutzbarriere bilden und die Belastung der Metalloberfläche durch korrosive Stoffe verringern. Wasser, insbesondere Salzlauge, kann jedoch stark korrosiv sein. Das Gleichgewicht der Öl- und Wasserphasen kann die Gesamtkorrosionsrate erheblich beeinflussen.
Häufige Probleme:
Sulfidspannungsrissbildung (SSC): Die martensitische Struktur ist zwar stabil, in Gegenwart von H₂S jedoch anfällig für SSC.
Loch- und Spaltkorrosion: Dies ist insbesondere in Umgebungen mit Chloriden und CO₂ ein erhebliches Problem.

2. Duplex-Edelstahl (DSS) 22Cr:

Komposition: DSS 22Cr enthält etwa 22% Chrom, etwa 5% Nickel, 3% Molybdän und eine ausgewogene Austenit-Ferrit-Mikrostruktur. Dies verleiht DSS eine ausgezeichnete Korrosionsbeständigkeit und hohe Festigkeit.
Korrosionsverhalten:
CO₂-Korrosion: DSS 22Cr ist widerstandsfähiger gegen CO₂-Korrosion als SMSS 13Cr. Der hohe Chromgehalt und das Vorhandensein von Molybdän tragen zur Bildung einer stabilen und schützenden Oxidschicht bei, die Korrosion widersteht.
H₂S-Korrosion: DSS 22Cr ist äußerst beständig gegen H₂S-induzierte Korrosion, einschließlich SSC und Wasserstoffversprödung. Die ausgewogene Mikrostruktur und Legierungszusammensetzung tragen dazu bei, diese Risiken zu mindern.
Öl-Wasser-Umgebung: DSS 22Cr funktioniert gut in gemischten Öl-Wasser-Umgebungen und widersteht allgemeiner und lokaler Korrosion. Das Vorhandensein von Öl kann die Korrosionsbeständigkeit durch Bildung eines Schutzfilms verbessern, dies ist jedoch für DSS 22Cr aufgrund seiner inhärenten Korrosionsbeständigkeit weniger kritisch.
Häufige Probleme:
Spannungsrisskorrosion (SCC): Obwohl DSS 22Cr widerstandsfähiger als SMSS 13Cr ist, kann es unter bestimmten Bedingungen, wie z. B. bei hohen Chloridkonzentrationen bei erhöhten Temperaturen, dennoch zu Spannungsrisskorrosion kommen.
Lokale Korrosion: DSS 22Cr ist im Allgemeinen sehr beständig gegen Loch- und Spaltkorrosion, diese können unter extremen Bedingungen jedoch dennoch auftreten.

Vergleichende Zusammenfassung:

Korrosionsbeständigkeit: DSS 22Cr bietet im Allgemeinen eine bessere Korrosionsbeständigkeit als SMSS 13Cr, insbesondere in Umgebungen mit H₂S und CO₂.
Stärke und Zähigkeit: SMSS 13Cr ist robuster, aber anfällig für Korrosionsprobleme wie SSC und Lochfraß.
Anwendungseignung: DSS 22Cr wird häufig in Umgebungen mit höherem Korrosionsrisiko bevorzugt, beispielsweise mit hohen H₂S- und CO₂-Werten, während SMSS 13Cr für Anwendungen ausgewählt werden kann, die eine höhere Festigkeit bei mäßigem Korrosionsrisiko erfordern.

Abschluss:

Bei der Auswahl zwischen SMSS 13Cr und DSS 22Cr für den Einsatz in H₂S/CO₂-Öl-Wasser-Umgebungen ist DSS 22Cr in der Regel die bessere Wahl, da es korrosionsbeständig ist, insbesondere in aggressiveren Umgebungen. Bei der endgültigen Entscheidung sollten jedoch die spezifischen Bedingungen berücksichtigt werden, einschließlich Temperatur, Druck und die relativen Konzentrationen von H₂S und CO₂.

Platten und Oberflächenverfahren für den Bau von Öllagertanks

Bau von Öllagertanks: Plattenauswahl und Verfahren

Einführung

Der Bau von Öllagertanks ist für die Öl- und Gasindustrie von entscheidender Bedeutung. Diese Tanks müssen präzise entworfen und gebaut werden, um Sicherheit, Haltbarkeit und Effizienz bei der Lagerung von Ölprodukten zu gewährleisten. Eine der kritischsten Komponenten dieser Tanks ist die Auswahl und Verarbeitung der bei ihrer Konstruktion verwendeten Platten. Dieser Blog bietet einen detaillierten Überblick über die Plattenauswahlkriterien, Fertigungsprozesse und Überlegungen zum Bau von Öllagertanks.

Bedeutung der Plattenauswahl

Platten sind die wichtigste Strukturkomponente von Öllagertanks. Die Auswahl geeigneter Platten ist aus mehreren Gründen entscheidend:
Sicherheit: Das geeignete Plattenmaterial stellt sicher, dass der Tank dem Innendruck des gelagerten Produkts, den Umgebungsbedingungen und möglichen chemischen Reaktionen standhält.
Haltbarkeit: Hochwertige Materialien erhöhen die Lebensdauer des Tanks und reduzieren Wartungskosten und Ausfallzeiten.
Einhaltung: Die Einhaltung von Industrienormen und -vorschriften ist für einen gesetzeskonformen Betrieb und den Umweltschutz von entscheidender Bedeutung.
Kosteneffizienz: Durch die Wahl der richtigen Materialien und Verarbeitungsmethoden können die Bau- und Betriebskosten erheblich gesenkt werden.

Arten von Öllagertanks

Bevor Sie sich mit der Plattenauswahl befassen, müssen Sie die unterschiedlichen Typen von Öllagertanks kennen, da jeder Typ spezifische Anforderungen hat:
Festdachtanks sind die am häufigsten verwendeten Lagertanks für Öl und Erdölprodukte. Sie eignen sich für Flüssigkeiten mit niedrigem Dampfdruck.
Tanks mit schwimmendem Dach: Diese Tanks haben ein Dach, das auf der Oberfläche der gelagerten Flüssigkeit schwimmt und so Verdunstungsverluste und das Explosionsrisiko verringert.
Kugeltanks: Diese zylindrischen Tanks lagern verflüssigte Gase und flüchtige Flüssigkeiten.
Kugelbehälter: Wird zur Speicherung von Flüssigkeiten und Gasen unter hohem Druck verwendet und sorgt für eine gleichmäßige Spannungsverteilung.

Kriterien für die Plattenauswahl

1. Materialzusammensetzung
Kohlenstoffstahl: Weit verbreitet aufgrund seiner Stärke, Erschwinglichkeit und Verfügbarkeit. Geeignet für die meisten Öl- und Erdölprodukte.
Edelstahl: Aufgrund seiner Korrosionsbeständigkeit bevorzugt für die Lagerung korrosiver oder hochtemperierter Produkte.
Aluminium: Leicht und korrosionsbeständig, ideal für schwimmende Dachkomponenten und Tanks in korrosiven Umgebungen.
Kompositmaterialien: Wird gelegentlich für spezielle Anwendungen verwendet, die eine hohe Korrosionsbeständigkeit und ein geringes Gewicht erfordern.
2. Dicke und Größe
Dicke: Dies wird durch den Auslegungsdruck, den Durchmesser und die Höhe des Tanks bestimmt. Es liegt im Allgemeinen zwischen 5 mm und 30 mm.
Größe: Platten sollten groß genug sein, um Schweißnähte zu minimieren, jedoch handlich für Handhabung und Transport.
3. Mechanische Eigenschaften
Zugfestigkeit: Stellt sicher, dass der Tank dem inneren Druck und den äußeren Kräften standhält.
Duktilität: Ermöglicht Verformung ohne Bruch und gleicht Druck- und Temperaturänderungen aus.
Schlagfestigkeit: Wichtig, um plötzlichen Kräften standzuhalten, insbesondere in kälteren Umgebungen.
4. Umweltfaktoren
Temperaturschwankungen: Betrachtung des Materialverhaltens bei extremen Temperaturen.
Korrosive Umgebung: Auswahl umweltkorrosionsbeständiger Materialien, insbesondere für Offshore- oder Küsteninstallationen.

Werkstoffnormen und Güteklassen

Bei der Materialauswahl für Öllagertanks ist die Einhaltung anerkannter Normen und Güteklassen von entscheidender Bedeutung, da dadurch Qualität, Leistung und die Einhaltung der Branchenvorschriften sichergestellt werden.

Kohlenstoffstahl

Normen: ASTM A36, ASTM A283, JIS G3101
Noten:
ASTM A36: Aufgrund der guten Schweißbarkeit und Bearbeitbarkeit wird diese häufig verwendete Baustahlsorte für den Tankbau verwendet.
ASTM A283 Klasse C: Bietet gute Festigkeit und Flexibilität für Anwendungen mit mittlerer Beanspruchung.
JIS G3101 SS400: Ein japanischer Standard für Kohlenstoffstahl für allgemeine Strukturzwecke, der für seine guten mechanischen Eigenschaften und Schweißbarkeit bekannt ist.

Edelstahl

Normen: ASTM A240
Noten:
304/304L: Bietet eine gute Korrosionsbeständigkeit und wird zur Lagerung leicht korrosiver Produkte in Tanks verwendet.
Durch Molybdänzusatz ist 316/316L Bietet hervorragende Korrosionsbeständigkeit, insbesondere in Meeresumgebungen.
904L (UNS N08904): Bekannt für seine hohe Korrosionsbeständigkeit, insbesondere gegen Chloride und Schwefelsäure.
Duplex-Edelstahl 2205 (UNS S32205): Kombiniert hohe Festigkeit mit hervorragender Korrosionsbeständigkeit, geeignet für raue Umgebungen.

Aluminium

Normen: ASTM B209
Noten:
5083: Bekannt für seine hohe Festigkeit und hervorragende Korrosionsbeständigkeit, ist es ideal für Tanks in Meeresumgebungen.
6061: Bietet gute mechanische Eigenschaften und Schweißbarkeit, geeignet für Strukturkomponenten.

Kompositmaterialien

Normen: ASME RTP-1
Anwendungen: Wird in Spezialanwendungen verwendet, die Beständigkeit gegen chemische Angriffe und Gewichtseinsparungen erfordern.

Arten von Auskleidungen und Beschichtungen

Auskleidungen und Beschichtungen schützen Öllagertanks vor Korrosion und Umweltschäden. Die Wahl der Auskleidung und Beschichtung hängt vom Standort des Tanks, seinem Inhalt und den ökologischen Bedingungen ab.

Außenbeschichtungen

Epoxidbeschichtungen:
Eigenschaften: Bietet hervorragende Haftung und Korrosionsbeständigkeit. Geeignet für raue Umgebungen.
Anwendungen: Wird auf Tankaußenseiten zum Schutz vor Witterungseinflüssen und chemischen Einflüssen verwendet.
Empfohlene Marken:
Hempel: Hempel's Epoxy 35540
AkzoNobel: Interseal 670HS
Jotun: Jotamastic 90
3M: Scotchkote Epoxidbeschichtung 162PWX
Empfohlene DFT (Trockenfilmdicke): 200-300 Mikrometer
Polyurethan-Beschichtungen:
Eigenschaften: Bietet hervorragende UV-Beständigkeit und Flexibilität.
Anwendungen: Ideal für Tanks, die dem Sonnenlicht und unterschiedlichen Wetterbedingungen ausgesetzt sind.
Empfohlene Marken:
Hempel: Hempel's Polyurethan-Emaille 55300
AkzoNobel: Interthane 990
Jotun: Hardtop XP
Empfohlene DFT: 50-100 Mikrometer
Zinkreiche Grundierungen:
Eigenschaften: Sorgen Sie für kathodischen Schutz auf Stahloberflächen.
Anwendungen: Wird als Grundierung verwendet, um Rostbildung vorzubeugen.
Empfohlene Marken:
Hempel: Hempadur Zink 17360
AkzoNobel: Interzinc 52
Jotun: Barriere 77
Empfohlene DFT: 120-150 Mikrometer

Innenverkleidungen

Phenolische Epoxid-Auskleidungen:
Eigenschaften: Hervorragende chemische Beständigkeit gegenüber Erdölprodukten und Lösungsmitteln.
Anwendungen: Wird in Tanks zur Lagerung von Rohöl und raffinierten Produkten verwendet.
Empfohlene Marken:
Hempel: Hempel's Phenolic 35610
AkzoNobel: Interline 984
Jotun: Tankguard-Aufbewahrung
Empfohlene DFT: 400-600 Mikrometer
Glasflockenbeschichtungen:
Eigenschaften: Hohe Chemikalien- und Abriebbeständigkeit.
Anwendungen: Geeignet für Lager und Tankböden aggressiver Chemikalien.
Empfohlene Marken:
Hempel: Hempel's Glassflake 35620
AkzoNobel: Interzone 954
Jotun: Baltoflake
Empfohlene DFT: 500-800 Mikrometer
Gummiauskleidungen:
Eigenschaften: Bietet Flexibilität und Beständigkeit gegenüber Chemikalien.
Anwendungen: Wird zur Lagerung ätzender Substanzen wie Säuren verwendet.
Empfohlene Marken:
3M: Scotchkote Poly-Tech 665
Empfohlene DFT: 2-5 mm

Überlegungen zur Auswahl

Produktkompatibilität: Stellen Sie sicher, dass die Auskleidung oder Beschichtung mit dem gelagerten Produkt kompatibel ist, um Reaktionen zu vermeiden.
Umweltbedingungen: Berücksichtigen Sie bei der Auswahl von Auskleidungen und Beschichtungen Temperatur, Feuchtigkeit und chemische Belastung.
Wartung und Haltbarkeit: Wählen Sie Auskleidungen und Beschichtungen, die langfristigen Schutz bieten und leicht zu pflegen sind.

Fertigungsprozesse

Die Herstellung von Öllagertanks umfasst mehrere wichtige Prozesse:
1. Schneiden
Mechanisches Schneiden: Umfasst das Scheren, Sägen und Fräsen zum Formen der Platten.
Thermisches Schneiden: Verwendet Autogen-, Plasma- oder Laserschneiden für präzises und effizientes Formen.
2. Schweißen
Schweißen ist für das Verbinden von Platten und die Gewährleistung der strukturellen Integrität von entscheidender Bedeutung.
Lichtbogenschweißen mit Schutzgas (SMAW): Wird häufig aufgrund seiner Einfachheit und Vielseitigkeit verwendet.
Wolfram-Inertgasschweißen (WIG-Schweißen): Ermöglicht hochwertige Schweißnähte für kritische Verbindungen.
Unterpulverschweißen (UP): Geeignet für dicke Platten und lange Nähte, bietet tiefes Eindringen und hohe Ablagerungsraten.
3. Formgebung
Rollen: Für zylindrische Tankwände werden Platten in die gewünschte Krümmung gerollt.
Pressformen: Wird zum Formen von Tankböden und anderen komplexen Komponenten verwendet.
4. Inspektion und Prüfung
Zerstörungsfreie Prüfung (NDT): Techniken wie Ultraschallprüfung und Röntgenstrahlen gewährleisten die Schweißqualität und strukturelle Integrität, ohne das Material zu beschädigen.
Druckprüfung: Stellt sicher, dass der Tank dem Auslegungsdruck standhält, ohne zu lecken.
5. Oberflächenvorbereitung und Beschichtung
Strahlen: Reinigt und bereitet die Oberfläche für die Beschichtung vor.
Beschichtung: Auftragen von Schutzbeschichtungen, um Korrosion zu verhindern und die Lebensdauer des Tanks zu verlängern.
Industrienormen und Vorschriften
Die Einhaltung von Industrienormen gewährleistet Sicherheit, Qualität und Konformität. Zu den wichtigsten Normen gehören:
API 650: Standard für geschweißte Stahllagertanks für Öl und Gas.
API 620: Behandelt die Konstruktion und den Bau großer Niederdrucklagertanks.
ASME Abschnitt VIII: Bietet Richtlinien für den Druckbehälterbau.

Abschluss

Der Bau von Öllagertanks erfordert akribische Liebe zum Detail, insbesondere bei der Auswahl und Verarbeitung von Platten. Durch die Berücksichtigung von Faktoren wie Materialzusammensetzung, Dicke, mechanischen Eigenschaften und Umgebungsbedingungen können Bauherren die Sicherheit, Haltbarkeit und Kosteneffizienz dieser kritischen Strukturen gewährleisten. Die Einhaltung von Industrienormen und -vorschriften gewährleistet darüber hinaus die Einhaltung von Vorschriften und den Schutz der Umwelt. Da sich die Öl- und Gasindustrie weiterentwickelt, werden Fortschritte bei Materialien und Fertigungstechnologien den Bau von Öllagertanks weiter verbessern.

Treibstofftank und -leitung für Jet A-1

Auswahl der richtigen Epoxidgrundierung für Jet A-1-Kraftstoffleitungen

Einführung

Im hochspezialisierten Bereich des Transports von Flugbenzin ist die Gewährleistung der Integrität und Sicherheit von Treibstoffpipelines für Jet A-1 ist entscheidend. Diese Pipelines müssen rauen chemischen Umgebungen standhalten, Korrosion verhindern und das Risiko einer statischen Elektrizität minimieren. Die Auswahl der richtigen Epoxidgrundierung ist für das Erreichen dieser Ziele von entscheidender Bedeutung. In diesem Blog werden die besten Optionen für Epoxidgrundierungen für Jet A-1-Kraftstoffpipelines und ihre Bedeutung für die Aufrechterhaltung effizienter und sicherer Kraftstofftransportsysteme untersucht.

Warum Epoxid-Grundierungen?

Epoxidgrundierungen werden in der Kraftstoffindustrie aufgrund ihrer außergewöhnlichen Schutzeigenschaften häufig verwendet. Sie bieten eine robuste Barriere gegen Korrosion und chemische Angriffe, verlängern die Lebensdauer der Pipeline und gewährleisten die Reinheit des Kraftstoffs. Zu den wichtigsten Vorteilen der Verwendung von Epoxidgrundierungen für Jet A-1-Pipelines gehören:

  • Chemische Resistenz: Epoxidbeschichtungen bieten eine ausgezeichnete Beständigkeit gegen Kohlenwasserstoffe und stellen sicher, dass die Pipeline bei längerem Kontakt mit Jet A-1-Kraftstoff unbeeinflusst bleibt.
  • Korrosionsschutz: Epoxidgrundierungen verhindern Rost und Korrosion, erhalten die strukturelle Integrität der Rohrleitung und reduzieren Wartungskosten und Ausfallzeiten.
  • Antistatische Eigenschaften: Statische Elektrizität stellt beim Transport entzündlicher Flüssigkeiten wie Jet A-1 ein erhebliches Sicherheitsrisiko dar. Antistatische Epoxidbeschichtungen helfen bei der Ableitung statischer Ladungen und verringern so das Risiko von Funken und möglichen Explosionen.
  • Glatte Oberflächenbeschaffenheit: Durch das Auftragen einer Epoxidgrundierung entsteht eine glatte Innenfläche, die die Durchflusseffizienz der Pipeline verbessert und den Energieverbrauch beim Kraftstofftransport senkt.

Hochwertige Epoxidgrundierungen für Jet A-1-Kraftstoffleitungen

Bei der Auswahl einer Epoxidgrundierung für Jet A-1-Kraftstoffpipelines ist es wichtig, ein Produkt zu wählen, das speziell für Kohlenwasserstoffe entwickelt wurde und den Industriestandards entspricht. Hier sind einige der besten Optionen:

1. Hempel's Hempadur 35760

Hempadur 35760 von Hempel ist eine antistatische Epoxidgrundierung, die speziell für Flugbenzinpipelines und Lagertanks entwickelt wurde. Sie bietet eine hervorragende chemische Beständigkeit und antistatische Eigenschaften und ist daher ideal für Umgebungen, in denen die Verhinderung statischer Entladung von entscheidender Bedeutung ist. Ihre starke Haftung auf Metalloberflächen gewährleistet lang anhaltenden Schutz.

2. Hempels 876CN

Hempel 876CN ist ein Zweikomponenten-Hochleistungs-Epoxidprimer, der eine hervorragende Korrosionsbeständigkeit und einen hervorragenden chemischen Schutz bietet und sich daher für Jet A-1-Kraftstoffpipelines eignet. Seine Formel bietet eine robuste Barriere gegen die rauen Bedingungen, die in Flugzeugkraftstoffsystemen typisch sind, und verbessert so Sicherheit und Haltbarkeit. Dieser Primer wird besonders wegen seiner starken Hafteigenschaften und Abriebfestigkeit geschätzt, die in Umgebungen mit hohem Durchfluss entscheidend sind.

3. Interline 850 von International Paint

Interline 850 von International Paint (AkzoNobel) ist eine leistungsstarke Zweikomponenten-Epoxidbeschichtung. Sie bietet eine hervorragende chemische Beständigkeit und wurde speziell für Jet A-1 und andere Flugkraftstoffe entwickelt. Dank ihrer antistatischen Eigenschaften ist sie eine zuverlässige Wahl für Kraftstoffpipelines und gewährleistet Sicherheit und Einhaltung von Industriestandards.

4. Dura-Plate 235 von Sherwin-Williams

Dura-Plate 235 ist ein vielseitiger Epoxidgrund, der für seine Haltbarkeit und chemische Beständigkeit bekannt ist. Er eignet sich für anspruchsvolle Einsatzumgebungen und bietet robusten Schutz gegen Korrosion und Kohlenwasserstoffdurchdringung. Seine Flexibilität und Haftung machen ihn zu einer beliebten Wahl für Flugbenzinpipelines.

5. Jotuns Panzerwache 412

Tankguard 412 von Jotun ist eine spezielle Epoxidbeschichtung für Kraftstofftanks und Rohrleitungen. Sie bietet eine hervorragende Beständigkeit gegen verschiedene Chemikalien, einschließlich Jet A-1. Ihre glatte Oberfläche und ihre Schutzeigenschaften gewährleisten einen effizienten Kraftstofffluss und eine lang anhaltende Integrität der Rohrleitungen.

Anwendung und Wartung

Um die Vorteile von Epoxidgrundierungen optimal nutzen zu können, sind die richtige Anwendung und Pflege entscheidend:

  • Oberflächenvorbereitung: Stellen Sie sicher, dass die Rohrleitungsoberflächen vor dem Auftragen der Epoxidgrundierung gründlich gereinigt und vorbereitet sind. Dies kann Strahlen und Entfetten umfassen, um eine optimale Haftung zu erreichen.
  • Anwendungsverfahren: Befolgen Sie die Anweisungen des Herstellers bezüglich der Auftragungsmethode, die Sprühen, Streichen oder Rollen umfassen kann.
  • Regelmäßige Inspektion: Führen Sie regelmäßige Inspektionen der Rohrleitung durch, um Anzeichen von Verschleiß oder Beschädigungen rechtzeitig zu erkennen und zu beheben. Eine ordnungsgemäße Wartung trägt dazu bei, die Lebensdauer der Beschichtung und der Rohrleitung zu verlängern.

Abschluss

Die Auswahl der geeigneten Epoxidgrundierung für Jet A-1-Kraftstoffpipelines ist entscheidend, um Sicherheit, Effizienz und Langlebigkeit zu gewährleisten. Mit Optionen wie Hempadur 35760 von Hempel, Hempel 876CN, Interline 850 von International Paint, Dura-Plate 235 von Sherwin-Williams und Tankguard 412 von Jotun können Betreiber eine auf ihre spezifischen Anforderungen zugeschnittene Lösung finden. Kraftstofftransportsysteme können optimale Leistung und Zuverlässigkeit erreichen, indem sie in hochwertige Beschichtungen investieren und einen strengen Auftragungs- und Inspektionsprozess einhalten.

Nahtloses Super-Rohr 13Cr

Anwendung von Super 13Cr in Öl- und Gasfeldern

Einführung

In der immer anspruchsvolleren Welt der Öl- und Gasförderung, in der raue Umgebungen und extreme Bedingungen die Norm sind, ist die Auswahl geeigneter Materialien entscheidend für den Betriebserfolg und die Sicherheit. Unter den in der Branche verwendeten Materialien ist Super 13Cr-Edelstahl die erste Wahl für Anwendungen, die außergewöhnliche Korrosionsbeständigkeit und Haltbarkeit erfordern. Lassen Sie uns untersuchen, warum Super 13Cr das Material der Wahl für moderne Öl- und Gasfeldanwendungen ist und wie es anderen Optionen überlegen ist.

Was ist Super 13Cr-Edelstahl?

Super 13Cr-Edelstahl ist eine hochchromhaltige Legierung, die den harten Bedingungen im Öl- und Gasbereich standhält. Seine Zusammensetzung enthält normalerweise etwa 13% Chrom sowie zusätzliche Elemente wie Molybdän und Nickel. Im Vergleich zu Standard-13Cr-Sorten bietet diese Legierung eine verbesserte Korrosionsbeständigkeit und Hochtemperaturleistung.

Warum Super 13Cr?

1. Überlegene Korrosionsbeständigkeit

Öl- und Gasquellen sind häufig mit korrosiven Substanzen wie Schwefelwasserstoff (H2S), Kohlendioxid (CO2) und Chloriden konfrontiert. Edelstahl Super 13Cr eignet sich in diesen Umgebungen hervorragend aufgrund seines hohen Chromgehalts, der eine schützende Oxidschicht auf der Stahloberfläche bildet. Diese Schicht reduziert die Korrosionsrate erheblich und verhindert Lochfraß und Spannungsrisskorrosion, wodurch die Langlebigkeit und Zuverlässigkeit der Ausrüstung gewährleistet wird.

2. Hohe Festigkeit und Zähigkeit

Neben seiner Korrosionsbeständigkeit bietet Super 13Cr beeindruckende mechanische Eigenschaften. Die Legierung behält auch unter Hochdruck- und Hochtemperaturbedingungen ihre hohe Festigkeit und Zähigkeit. Dies macht sie ideal für kritische Komponenten wie Rohre, Gehäuse und Verbindungsstücke, die in Öl- und Gasquellen verwendet werden, bei denen die strukturelle Integrität von größter Bedeutung ist.

3. Beständigkeit gegen saure Betriebsbedingungen

Saure Serviceumgebungen, die durch H2S gekennzeichnet sind, stellen eine große Herausforderung für Materialien zur Öl- und Gasförderung dar. Super 13Cr ist präzise darauf ausgelegt, diesen harten Bedingungen standzuhalten, das Risiko von Materialversagen zu verringern und einen sicheren und effizienten Betrieb zu gewährleisten. Die Konformität mit den Normen NACE MR0175 / ISO 15156 bescheinigt seine Eignung für saure Serviceanwendungen zusätzlich.

4. Verbesserte Leistung in Umgebungen mit hohen Temperaturen

Öl- und Gasfelder arbeiten oft bei erhöhten Temperaturen, was Korrosion und Materialabbau verschlimmert. Super 13Cr-Edelstahl ist so konzipiert, dass er seine Leistung in solchen Umgebungen behält und seine Korrosionsbeständigkeit und mechanischen Eigenschaften auch bei höheren Temperaturen beibehält. Diese Zuverlässigkeit ist entscheidend für den sicheren und effizienten Betrieb der Produktionsanlagen.

Anwendungen in der Öl- und Gasindustrie

Super 13Cr-Edelstahl wird in verschiedenen wichtigen Anwendungen im Öl- und Gassektor eingesetzt:

  • Gehäuse und Rohre: Super 13Cr-Rohre sind wichtige Komponenten von Öl- und Gasquellen und werden aufgrund ihrer Fähigkeit ausgewählt, hohem Druck und korrosiven Umgebungen standzuhalten.
  • Bohrlochwerkzeuge: Super 13Cr wird in verschiedenen Bohrlochwerkzeugen und -geräten verwendet, einschließlich Bohrgestängen und Produktionsgeräten, bei denen Zuverlässigkeit und Leistung entscheidend sind.
  • Unterwasserausrüstung: Aufgrund ihrer Beständigkeit gegen Meerwasser und andere korrosive Substanzen ist die Legierung ideal für Unterwasseranwendungen geeignet, einschließlich Steigleitungen, Versorgungsleitungen und Verbindungsstücken.

Zukunftsperspektiven und Innovationen

Da die Öl- und Gasindustrie die Grenzen der Exploration und Produktion immer weiter ausdehnt, wird die Nachfrage nach modernen Werkstoffen wie Super 13Cr steigen. Laufende Forschung und Entwicklung zielen darauf ab, die Eigenschaften dieser Legierung weiter zu verbessern, neue Anwendungen zu erschließen und ihre Leistung zu steigern, um den sich entwickelnden Anforderungen der Branche gerecht zu werden.

Abschluss

Edelstahl Super 13Cr stellt den Höhepunkt der Materialwissenschaft im Öl- und Gassektor dar und kombiniert beispiellose Korrosionsbeständigkeit mit hoher Festigkeit und Zähigkeit. Seine Fähigkeit, in rauen Umgebungen mit hohem Druck und hohen Temperaturen zuverlässig zu funktionieren, macht ihn zur bevorzugten Wahl für kritische Anwendungen. Mit dem Fortschritt der Branche wird Super 13Cr weiterhin eine entscheidende Rolle bei der Gewährleistung sicherer, effizienter und erfolgreicher Öl- und Gasoperationen spielen.

Durch die Entscheidung für Super 13Cr können Betreiber und Ingenieure die Herausforderungen der modernen Öl- und Gasexploration selbstbewusst angehen, ihre Investitionen sichern und den Fortschritt in diesem Bereich vorantreiben.