เรื่อง

NACE MR0175 ISO 15156 เทียบกับ NACE MR0103 ISO 17495-1

NACE MR0175/ISO 15156 เทียบกับ NACE MR0103/ISO 17495-1

การแนะนำ

ในอุตสาหกรรมน้ำมันและก๊าซ โดยเฉพาะในสภาพแวดล้อมบนบกและนอกชายฝั่ง การรับประกันอายุการใช้งานและความน่าเชื่อถือของวัสดุที่สัมผัสกับสภาวะที่รุนแรงถือเป็นสิ่งสำคัญที่สุด นี่คือจุดที่มาตรฐานต่างๆ เช่น NACE MR0175/ISO 15156 เทียบกับ NACE MR0103/ISO 17495-1 เข้ามามีบทบาท มาตรฐานทั้งสองนี้ให้คำแนะนำที่สำคัญสำหรับการเลือกวัสดุในสภาพแวดล้อมการใช้งานที่มีกรดกัดกร่อน อย่างไรก็ตาม การทำความเข้าใจถึงความแตกต่างระหว่างทั้งสองมาตรฐานถือเป็นสิ่งสำคัญในการเลือกวัสดุที่เหมาะสมสำหรับการดำเนินงานของคุณ

ในโพสต์บล็อกนี้ เราจะสำรวจความแตกต่างที่สำคัญระหว่าง NACE MR0175/ISO 15156 เทียบกับ NACE MR0103/ISO 17495-1และเสนอคำแนะนำเชิงปฏิบัติสำหรับผู้เชี่ยวชาญด้านน้ำมันและก๊าซที่ต้องปฏิบัติตามมาตรฐานเหล่านี้ นอกจากนี้ เราจะหารือเกี่ยวกับการใช้งาน ความท้าทาย และโซลูชันเฉพาะที่มาตรฐานเหล่านี้มอบให้ โดยเฉพาะอย่างยิ่งในบริบทของสภาพแวดล้อมที่รุนแรงในแหล่งน้ำมันและก๊าซ

NACE MR0175/ISO 15156 และ NACE MR0103/ISO 17495-1 คืออะไร?

เอ็นเอซี MR0175/ISO15156:
มาตรฐานนี้ได้รับการยอมรับทั่วโลกในการควบคุมการเลือกใช้วัสดุและการกัดกร่อนในสภาพแวดล้อมที่มีก๊าซมีรสเปรี้ยว ซึ่งมีไฮโดรเจนซัลไฟด์ (H₂S) อยู่ มาตรฐานนี้ให้แนวทางสำหรับการออกแบบ การผลิต และการบำรุงรักษาวัสดุที่ใช้ในการดำเนินการน้ำมันและก๊าซบนบกและนอกชายฝั่ง เป้าหมายคือการบรรเทาความเสี่ยงที่เกี่ยวข้องกับการแตกร้าวที่เกิดจากไฮโดรเจน (HIC) การแตกร้าวจากความเค้นซัลไฟด์ (SSC) และการแตกร้าวจากการกัดกร่อนจากความเค้น (SCC) ซึ่งอาจส่งผลต่อความสมบูรณ์ของอุปกรณ์ที่สำคัญ เช่น ท่อ วาล์ว และหัวบ่อน้ำมัน

เอ็นเอซี MR0103/ISO 17495-1:
ในทางกลับกัน, เอ็นเอซี MR0103/ISO 17495-1 มุ่งเน้นไปที่วัสดุที่ใช้ในการกลั่นและสภาพแวดล้อมในการแปรรูปทางเคมีเป็นหลัก ซึ่งอาจเกิดการสัมผัสกับกรดกัดกร่อนได้ แต่มีขอบเขตที่แตกต่างกันเล็กน้อย โดยครอบคลุมถึงข้อกำหนดสำหรับอุปกรณ์ที่สัมผัสกับสภาวะกัดกร่อนเล็กน้อย โดยเน้นที่การรับรองว่าวัสดุสามารถทนต่อลักษณะที่ก้าวร้าวของกระบวนการกลั่นเฉพาะ เช่น การกลั่นหรือการแตกร้าว ซึ่งความเสี่ยงต่อการกัดกร่อนจะต่ำกว่าเมื่อเทียบกับการดำเนินการด้านน้ำมันและก๊าซต้นน้ำ

NACE MR0175 ISO 15156 เทียบกับ NACE MR0103 ISO 17495-1

NACE MR0175 ISO 15156 เทียบกับ NACE MR0103 ISO 17495-1

ความแตกต่างหลัก: NACE MR0175/ISO 15156 เทียบกับ NACE MR0103/ISO 17495-1

ตอนนี้เรามีภาพรวมของมาตรฐานแต่ละมาตรฐานแล้ว สิ่งสำคัญคือต้องเน้นย้ำถึงความแตกต่างที่อาจส่งผลต่อการเลือกใช้วัสดุในภาคสนาม ความแตกต่างเหล่านี้อาจส่งผลกระทบอย่างมากต่อประสิทธิภาพของวัสดุและความปลอดภัยในการปฏิบัติงาน

1. ขอบเขตการใช้งาน

ความแตกต่างหลักระหว่าง NACE MR0175/ISO 15156 เทียบกับ NACE MR0103/ISO 17495-1 อยู่ที่ขอบเขตของการประยุกต์ใช้

เอ็นเอซี MR0175/ISO15156 ได้รับการออกแบบมาเพื่อใช้กับอุปกรณ์ที่ใช้ในสภาพแวดล้อมที่มีก๊าซซัลไฟด์สูง ซึ่งมีความสำคัญอย่างยิ่งในกิจกรรมต้นน้ำ เช่น การสำรวจ การผลิต และการขนส่งน้ำมันและก๊าซ โดยเฉพาะอย่างยิ่งในพื้นที่นอกชายฝั่งและบนชายฝั่งที่เกี่ยวข้องกับก๊าซซัลไฟด์ (ก๊าซที่มีไฮโดรเจนซัลไฟด์)

เอ็นเอซี MR0103/ISO 17495-1ในขณะที่ยังคงกล่าวถึงบริการที่มีกลิ่นเปรี้ยว จะมุ่งเน้นไปที่อุตสาหกรรมการกลั่นและเคมีมากขึ้น โดยเฉพาะอย่างยิ่งเมื่อก๊าซที่มีกลิ่นเปรี้ยวมีส่วนเกี่ยวข้องในกระบวนการต่างๆ เช่น การกลั่น การกลั่น และการแตกร้าว

2. ความรุนแรงของสิ่งแวดล้อม

สภาพแวดล้อมยังเป็นปัจจัยสำคัญในการใช้มาตรฐานเหล่านี้ด้วย เอ็นเอซี MR0175/ISO15156 ครอบคลุมถึงเงื่อนไขที่รุนแรงมากขึ้นของบริการที่มีกรด เช่น ครอบคลุมถึงความเข้มข้นที่สูงขึ้นของไฮโดรเจนซัลไฟด์ ซึ่งกัดกร่อนได้มากกว่าและมีความเสี่ยงต่อการเสื่อมสภาพของวัสดุที่สูงขึ้นผ่านกลไกต่างๆ เช่น การแตกร้าวที่เกิดจากไฮโดรเจน (HIC) และการแตกร้าวจากความเค้นซัลไฟด์ (SSC)

ในทางตรงกันข้าม, เอ็นเอซี MR0103/ISO 17495-1 พิจารณาถึงสภาพแวดล้อมที่อาจมีการสัมผัสกับไฮโดรเจนซัลไฟด์น้อยลง แม้ว่าจะยังคงมีความสำคัญในสภาพแวดล้อมของโรงกลั่นและโรงงานเคมีก็ตาม องค์ประกอบทางเคมีของของเหลวที่เกี่ยวข้องในกระบวนการกลั่นอาจไม่รุนแรงเท่ากับที่พบในแหล่งก๊าซที่มีกรด แต่ยังคงมีความเสี่ยงต่อการกัดกร่อน

3. ข้อกำหนดด้านวัสดุ

มาตรฐานทั้งสองมีเกณฑ์เฉพาะสำหรับการเลือกวัสดุ แต่มีข้อกำหนดที่เข้มงวดแตกต่างกัน เอ็นเอซี MR0175/ISO15156 เน้นย้ำถึงการป้องกันการกัดกร่อนที่เกี่ยวข้องกับไฮโดรเจนในวัสดุมากขึ้น ซึ่งอาจเกิดขึ้นได้แม้ในไฮโดรเจนซัลไฟด์ที่มีความเข้มข้นต่ำมาก มาตรฐานนี้กำหนดให้ใช้วัสดุที่ทนทานต่อ SSC, HIC และการกัดกร่อนที่ล้าในสภาพแวดล้อมที่มีกรด

ในทางกลับกัน, เอ็นเอซี MR0103/ISO 17495-1 มีลักษณะกำหนดไว้ไม่มากนักในแง่ของการแตกร้าวที่เกี่ยวข้องกับไฮโดรเจน แต่ต้องใช้วัสดุที่สามารถจัดการกับสารกัดกร่อนในกระบวนการกลั่น โดยมักเน้นที่ความต้านทานการกัดกร่อนโดยทั่วไปมากกว่าความเสี่ยงที่เกี่ยวข้องกับไฮโดรเจนโดยเฉพาะ

4. การทดสอบและการตรวจสอบ

มาตรฐานทั้งสองต้องมีการทดสอบและการตรวจสอบเพื่อให้แน่ใจว่าวัสดุจะทำงานในสภาพแวดล้อมที่เกี่ยวข้อง อย่างไรก็ตาม เอ็นเอซี MR0175/ISO15156 เรียกร้องการทดสอบที่ครอบคลุมมากขึ้นและการตรวจสอบประสิทธิภาพของวัสดุอย่างละเอียดมากขึ้นภายใต้เงื่อนไขการใช้งานที่มีก๊าซเปรี้ยว การทดสอบประกอบด้วยแนวทางเฉพาะสำหรับ SSC, HIC และโหมดความล้มเหลวอื่นๆ ที่เกี่ยวข้องกับสภาพแวดล้อมก๊าซเปรี้ยว

เอ็นเอซี MR0103/ISO 17495-1แม้ว่าจะต้องทดสอบวัสดุด้วย แต่ก็มักจะมีความยืดหยุ่นมากกว่าในแง่ของเกณฑ์การทดสอบ โดยเน้นที่การรับรองว่าวัสดุเป็นไปตามมาตรฐานความต้านทานการกัดกร่อนทั่วไป แทนที่จะมุ่งเน้นเฉพาะความเสี่ยงที่เกี่ยวข้องกับไฮโดรเจนซัลไฟด์เท่านั้น

เหตุใดคุณจึงควรใส่ใจเกี่ยวกับมาตรฐาน NACE MR0175/ISO 15156 เทียบกับ NACE MR0103/ISO 17495-1?

การทำความเข้าใจความแตกต่างเหล่านี้สามารถช่วยป้องกันความล้มเหลวของวัสดุ รับรองความปลอดภัยในการปฏิบัติงาน และปฏิบัติตามกฎระเบียบของอุตสาหกรรม ไม่ว่าคุณจะทำงานบนแท่นขุดเจาะน้ำมันนอกชายฝั่ง โครงการท่อส่งน้ำมัน หรือในโรงกลั่น การใช้วัสดุที่เหมาะสมตามมาตรฐานเหล่านี้จะช่วยป้องกันความล้มเหลวที่มีค่าใช้จ่ายสูง การหยุดทำงานโดยไม่คาดคิด และอันตรายต่อสิ่งแวดล้อมที่อาจเกิดขึ้นได้

สำหรับการดำเนินการด้านน้ำมันและก๊าซ โดยเฉพาะอย่างยิ่งในสภาพแวดล้อมการบริการที่มีกรดกัดกร่อนทั้งบนบกและนอกชายฝั่ง เอ็นเอซี MR0175/ISO15156 เป็นมาตรฐานที่รับรองว่าวัสดุจะทนทานต่อสภาพแวดล้อมที่เลวร้ายที่สุด ช่วยลดความเสี่ยง เช่น SSC และ HIC ที่อาจนำไปสู่ความล้มเหลวร้ายแรงได้

ในทางตรงกันข้าม สำหรับการดำเนินการในการกลั่นหรือการแปรรูปทางเคมี เอ็นเอซี MR0103/ISO 17495-1 ให้คำแนะนำที่เหมาะสมยิ่งขึ้น ช่วยให้สามารถใช้สารต่างๆ ได้อย่างมีประสิทธิภาพในสภาพแวดล้อมที่มีก๊าซเปรี้ยว แต่มีเงื่อนไขที่ไม่รุนแรงเมื่อเทียบกับการสกัดน้ำมันและก๊าซ โดยเน้นที่ความต้านทานการกัดกร่อนทั่วไปในสภาพแวดล้อมการประมวลผลเป็นหลัก

คำแนะนำเชิงปฏิบัติสำหรับผู้เชี่ยวชาญด้านน้ำมันและก๊าซ

เมื่อเลือกวัสดุสำหรับโครงการในประเภทใดประเภทหนึ่ง ควรพิจารณาสิ่งต่อไปนี้:

เข้าใจสภาพแวดล้อมของคุณ:ประเมินว่าการดำเนินการของคุณเกี่ยวข้องกับการสกัดก๊าซเปรี้ยว (ต้นน้ำ) หรือการกลั่นและการแปรรูปทางเคมี (ปลายน้ำ) ซึ่งจะช่วยให้คุณกำหนดได้ว่าควรใช้มาตรฐานใด

การเลือกใช้วัสดุ:เลือกวัสดุที่เป็นไปตามมาตรฐานที่เกี่ยวข้องโดยพิจารณาจากสภาพแวดล้อมและประเภทของการใช้งาน (ก๊าซมีสภาพเป็นกรดหรือก๊าซที่ผ่านกระบวนการกลั่น) มักแนะนำให้ใช้สแตนเลส วัสดุที่มีโลหะผสมสูง และโลหะผสมที่ทนต่อการกัดกร่อน โดยพิจารณาจากความรุนแรงของสภาพแวดล้อม

การทดสอบและการตรวจสอบ:ให้แน่ใจว่าวัสดุทั้งหมดได้รับการทดสอบตามมาตรฐานที่เกี่ยวข้อง สำหรับสภาพแวดล้อมที่มีก๊าซเปรี้ยว อาจจำเป็นต้องทดสอบเพิ่มเติมสำหรับ SSC, HIC และความล้าจากการกัดกร่อน

ปรึกษากับผู้เชี่ยวชาญ:การปรึกษาผู้เชี่ยวชาญด้านการกัดกร่อนหรือวิศวกรด้านวัสดุที่คุ้นเคยเป็นความคิดที่ดีเสมอ NACE MR0175/ISO 15156 เทียบกับ NACE MR0103/ISO 17495-1 เพื่อให้มั่นใจถึงประสิทธิภาพของวัสดุที่เหมาะสมที่สุด

บทสรุป

สรุปแล้ว การเข้าใจความแตกต่างระหว่าง NACE MR0175/ISO 15156 เทียบกับ NACE MR0103/ISO 17495-1 ถือเป็นสิ่งสำคัญในการตัดสินใจเลือกวัสดุอย่างมีข้อมูลสำหรับทั้งการใช้งานน้ำมันและก๊าซในขั้นต้นและขั้นปลายน้ำ การเลือกมาตรฐานที่เหมาะสมสำหรับการดำเนินการของคุณจะช่วยให้มั่นใจได้ว่าอุปกรณ์ของคุณจะมีสภาพสมบูรณ์ในระยะยาว และช่วยป้องกันความล้มเหลวร้ายแรงที่อาจเกิดขึ้นจากวัสดุที่ระบุไม่ถูกต้อง ไม่ว่าคุณจะทำงานกับก๊าซมีสภาพเป็นกรดในแหล่งนอกชายฝั่งหรือกระบวนการทางเคมีในโรงกลั่น มาตรฐานเหล่านี้จะให้แนวทางที่จำเป็นในการปกป้องทรัพย์สินของคุณและรักษาความปลอดภัย

หากคุณไม่แน่ใจว่าควรปฏิบัติตามมาตรฐานใดหรือต้องการความช่วยเหลือเพิ่มเติมในการเลือกวัสดุ โปรดติดต่อผู้เชี่ยวชาญด้านวัสดุเพื่อขอคำแนะนำเฉพาะด้าน NACE MR0175/ISO 15156 เทียบกับ NACE MR0103/ISO 17495-1 และตรวจสอบให้แน่ใจว่าโครงการของคุณทั้งปลอดภัยและเป็นไปตามแนวปฏิบัติที่ดีที่สุดในอุตสาหกรรม

NACE MR0175 เทียบกับ NACE MR0103

ความแตกต่างระหว่าง NACE MR0175 และ NACE MR0103 คืออะไร?

การแนะนำ

ในอุตสาหกรรมเช่นน้ำมันและก๊าซ ซึ่งอุปกรณ์และโครงสร้างพื้นฐานมักเผชิญกับสภาพแวดล้อมที่รุนแรง การเลือกวัสดุที่สามารถทนต่อสภาวะกัดกร่อนจึงมีความสำคัญมาก มาตรฐานที่จำเป็นสองประการที่ใช้เป็นแนวทางในการเลือกวัสดุสำหรับสภาพแวดล้อมที่มีไฮโดรเจนซัลไฟด์ (H₂S) ได้แก่ เนซ MR0175 และ เอ็นเอซี MR0103แม้ว่ามาตรฐานทั้งสองจะมีจุดมุ่งหมายเพื่อป้องกันการแตกร้าวจากซัลไฟด์ (SSC) และความเสียหายอื่นๆ ที่เกิดจากไฮโดรเจน แต่มาตรฐานทั้งสองได้รับการออกแบบมาเพื่อการใช้งานและสภาพแวดล้อมที่แตกต่างกัน บล็อกนี้จะให้ภาพรวมที่ครอบคลุมเกี่ยวกับความแตกต่างระหว่างมาตรฐานที่สำคัญทั้งสองนี้

บทนำสู่มาตรฐาน NACE

NACE International ซึ่งปัจจุบันเป็นส่วนหนึ่งของ Association for Materials Protection and Performance (AMPP) ได้พัฒนา NACE MR0175 และ NACE MR0103 เพื่อรับมือกับความท้าทายที่เกิดจากสภาพแวดล้อมการใช้งานที่มีกรด-ด่างสูง ซึ่งประกอบไปด้วย H₂S สภาพแวดล้อมเหล่านี้อาจทำให้เกิดการกัดกร่อนและการแตกร้าวในรูปแบบต่างๆ ซึ่งอาจส่งผลต่อความสมบูรณ์ของวัสดุและอาจนำไปสู่ความล้มเหลวที่ร้ายแรงได้ วัตถุประสงค์หลักของมาตรฐานเหล่านี้คือเพื่อจัดทำแนวทางในการเลือกวัสดุที่สามารถต้านทานผลกระทบที่เป็นอันตรายเหล่านี้ได้

ขอบเขตและการประยุกต์ใช้

เนซ MR0175

จุดเน้นหลัก: NACE MR0175 หรือ ISO 15156 มุ่งเป้าไปที่อุตสาหกรรมน้ำมันและก๊าซต้นน้ำเป็นหลัก ซึ่งรวมถึงการสำรวจ การขุดเจาะ การผลิต และการขนส่งไฮโดรคาร์บอน
สิ่งแวดล้อม: มาตรฐานดังกล่าวครอบคลุมถึงวัสดุที่ใช้ในการผลิตน้ำมันและก๊าซในสภาพแวดล้อมที่มีกรด ซึ่งรวมถึงอุปกรณ์ใต้หลุม ส่วนประกอบของหัวบ่อ ท่อส่ง และโรงกลั่น
การใช้งานทั่วโลก: NACE MR0175 เป็นมาตรฐานที่ได้รับการยอมรับทั่วโลกซึ่งใช้กันอย่างแพร่หลายในการดำเนินการน้ำมันและก๊าซต้นน้ำเพื่อให้แน่ใจถึงความปลอดภัยและความน่าเชื่อถือของวัสดุในสภาพแวดล้อมที่มีรสเปรี้ยว

เอ็นเอซี MR0103

จุดเน้นหลัก: NACE MR0103 ได้รับการออกแบบมาโดยเฉพาะสำหรับอุตสาหกรรมการกลั่นและปิโตรเคมีโดยมุ่งเน้นที่การดำเนินการปลายน้ำ
สิ่งแวดล้อม: มาตรฐานนี้ใช้กับโรงงานแปรรูปที่มีไฮโดรเจนซัลไฟด์ โดยเฉพาะอย่างยิ่งในสภาพแวดล้อม H₂S ที่เปียก มาตรฐานนี้ได้รับการปรับแต่งให้เหมาะกับสภาพแวดล้อมที่พบในหน่วยการกลั่น เช่น หน่วยไฮโดรโปรเซสซิ่ง ซึ่งมีความเสี่ยงสูงที่ซัลไฟด์จะแตกร้าวเนื่องจากความเค้น
เฉพาะอุตสาหกรรม: ต่างจาก NACE MR0175 ซึ่งใช้ในแอปพลิเคชันที่หลากหลายกว่า NACE MR0103 มุ่งเน้นไปที่ภาคการกลั่นมากกว่า

ข้อกำหนดด้านวัสดุ

เนซ MR0175

ตัวเลือกวัสดุ: NACE MR0175 มีตัวเลือกวัสดุมากมาย เช่น เหล็กกล้าคาร์บอน เหล็กกล้าโลหะผสมต่ำ เหล็กกล้าไร้สนิม โลหะผสมนิกเกิล และอื่นๆ อีกมากมาย วัสดุแต่ละชนิดได้รับการแบ่งประเภทตามความเหมาะสมสำหรับสภาพแวดล้อมที่มีกรดกัดกร่อนเฉพาะ
คุณสมบัติ: วัสดุต้องเป็นไปตามเกณฑ์ที่เข้มงวดเพื่อให้มีคุณสมบัติใช้งานได้ รวมถึงความต้านทานต่อ SSC การแตกร้าวที่เกิดจากไฮโดรเจน (HIC) และการแตกร้าวจากการกัดกร่อนจากความเค้นซัลไฟด์ (SSCC)
ข้อจำกัดด้านสิ่งแวดล้อม: มาตรฐานจำกัดความดันบางส่วนของ H₂S อุณหภูมิ ค่า pH และปัจจัยด้านสิ่งแวดล้อมอื่นๆ ที่กำหนดความเหมาะสมของวัสดุสำหรับบริการที่มีรสเปรี้ยว

เอ็นเอซี MR0103

ความต้องการวัสดุ: NACE MR0103 มุ่งเน้นไปที่วัสดุที่ทนทานต่อ SSC ในสภาพแวดล้อมการกลั่น โดยกำหนดเกณฑ์เฉพาะสำหรับคาร์บอน โลหะผสมต่ำ และสเตนเลสบางชนิด
แนวทางแบบง่าย: เมื่อเปรียบเทียบกับ MR0175 แนวทางการเลือกวัสดุใน MR0103 จะตรงไปตรงมามากกว่า สะท้อนถึงเงื่อนไขที่ควบคุมได้และสอดคล้องกันมากกว่าซึ่งมักพบในการดำเนินการกลั่น
กระบวนการผลิต: มาตรฐานดังกล่าวยังระบุข้อกำหนดด้านการเชื่อม การอบด้วยความร้อน และการผลิต เพื่อให้แน่ใจว่าวัสดุจะคงความต้านทานต่อการแตกร้าวไว้ได้

การรับรองและการปฏิบัติตาม

เนซ MR0175
ใบรับรอง: หน่วยงานกำกับดูแลมักกำหนดให้ต้องปฏิบัติตามมาตรฐาน NACE MR0175 และถือเป็นสิ่งสำคัญในการรับรองความปลอดภัยและความน่าเชื่อถือของอุปกรณ์ในการดำเนินการเกี่ยวกับน้ำมันและก๊าซธรรมชาติที่มีกลิ่นเหม็น มาตรฐานดังกล่าวมีการอ้างอิงในข้อบังคับและสัญญาระหว่างประเทศหลายฉบับ
เอกสารประกอบ: โดยทั่วไปแล้ว ต้องมีเอกสารรายละเอียดเพื่อแสดงให้เห็นว่าวัสดุเป็นไปตามเกณฑ์เฉพาะที่ระบุไว้ใน MR0175 ซึ่งรวมถึงองค์ประกอบทางเคมี คุณสมบัติทางกล และการทดสอบความทนทานต่อสภาวะการใช้งานที่มีกรด
เอ็นเอซี MR0103
ใบรับรอง: โดยทั่วไปแล้ว สัญญาสำหรับอุปกรณ์และวัสดุที่ใช้ในโรงกลั่นและโรงงานปิโตรเคมีจะต้องปฏิบัติตาม NACE MR0103 ซึ่งจะช่วยให้มั่นใจได้ว่าวัสดุที่เลือกสามารถทนต่อความท้าทายเฉพาะของสภาพแวดล้อมโรงกลั่นได้
ข้อกำหนดแบบง่าย: แม้ว่าจะยังคงเข้มงวด แต่ข้อกำหนดด้านเอกสารและการทดสอบเพื่อให้เป็นไปตาม MR0103 มักจะซับซ้อนน้อยกว่าข้อกำหนดของ MR0175 ซึ่งสะท้อนให้เห็นถึงเงื่อนไขด้านสิ่งแวดล้อมและความเสี่ยงที่แตกต่างกันในการกลั่นเมื่อเทียบกับการดำเนินการต้นน้ำ

การทดสอบและการรับรองคุณสมบัติ

เนซ MR0175
การทดสอบอย่างเข้มงวด: วัสดุจะต้องผ่านการทดสอบอย่างละเอียด รวมถึงการทดสอบในห้องปฏิบัติการสำหรับ SSC, HIC และ SSCC เพื่อให้มีคุณสมบัติสำหรับใช้งานในสภาพแวดล้อมที่มีรสเปรี้ยว
มาตรฐานระดับโลก: มาตรฐานดังกล่าวสอดคล้องกับขั้นตอนการทดสอบระดับสากล และมักกำหนดให้วัสดุต้องเป็นไปตามเกณฑ์ประสิทธิภาพที่เข้มงวดในสภาวะที่รุนแรงที่สุดในการปฏิบัติการน้ำมันและก๊าซ
เอ็นเอซี MR0103
การทดสอบแบบกำหนดเป้าหมาย: ข้อกำหนดในการทดสอบมุ่งเน้นไปที่เงื่อนไขเฉพาะของสภาพแวดล้อมของโรงกลั่น ซึ่งรวมถึงการทดสอบความต้านทานต่อ H₂S เปียก SSC และรูปแบบการแตกร้าวอื่นๆ ที่เกี่ยวข้อง
เฉพาะการใช้งาน: โปรโตคอลการทดสอบได้รับการปรับแต่งให้เหมาะกับความต้องการของกระบวนการกลั่น ซึ่งโดยทั่วไปเกี่ยวข้องกับเงื่อนไขที่ไม่รุนแรงเท่ากับที่พบในการดำเนินการต้นน้ำ

บทสรุป

ในขณะที่ NACE MR0175 และ NACE MR0103 ทั้งป้องกันการแตกร้าวจากซัลไฟด์และรูปแบบอื่นๆ ของรอยแตกร้าวจากสิ่งแวดล้อมในสภาพแวดล้อมการบริการที่มีความเปรี้ยว โดยได้รับการออกแบบมาสำหรับการใช้งานที่แตกต่างกัน
เนซ MR0175 เป็นมาตรฐานสำหรับการดำเนินการด้านน้ำมันและก๊าซต้นน้ำ ครอบคลุมวัสดุและสภาพแวดล้อมที่หลากหลาย และมีกระบวนการทดสอบและการรับรองที่เข้มงวด
เอ็นเอซี MR0103 ได้รับการออกแบบมาสำหรับอุตสาหกรรมการกลั่นน้ำมัน โดยเน้นที่การดำเนินการขั้นปลายและใช้เกณฑ์การเลือกวัสดุที่เรียบง่ายและตรงเป้าหมายมากขึ้น

การทำความเข้าใจถึงความแตกต่างระหว่างมาตรฐานเหล่านี้ถือเป็นสิ่งสำคัญในการเลือกวัสดุที่เหมาะสมสำหรับการใช้งานเฉพาะของคุณ และเพื่อรับรองความปลอดภัย ความน่าเชื่อถือ และอายุการใช้งานยาวนานของโครงสร้างพื้นฐานของคุณในสภาพแวดล้อมไฮโดรเจนซัลไฟด์

การสำรวจบทบาทสำคัญของท่อเหล็กในการสำรวจน้ำมันและก๊าซ

การแนะนำ

ท่อเหล็กมีความสำคัญอย่างยิ่งในอุตสาหกรรมน้ำมันและก๊าซ โดยให้ความทนทานและความน่าเชื่อถือที่ไม่มีใครเทียบได้ภายใต้สภาวะที่รุนแรง ท่อเหล็กมีความจำเป็นสำหรับการสำรวจและการขนส่ง เนื่องจากสามารถทนต่อแรงดันสูง สภาพแวดล้อมที่กัดกร่อน และอุณหภูมิที่รุนแรงได้ หน้าเว็บนี้จะอธิบายหน้าที่สำคัญของท่อเหล็กในการสำรวจน้ำมันและก๊าซ พร้อมทั้งอธิบายรายละเอียดถึงความสำคัญของท่อเหล็กในด้านการขุดเจาะ โครงสร้างพื้นฐาน และความปลอดภัย ค้นพบว่าการเลือกใช้ท่อเหล็กที่เหมาะสมจะช่วยเพิ่มประสิทธิภาพในการดำเนินงานและลดต้นทุนในอุตสาหกรรมที่มีความต้องการสูงนี้ได้อย่างไร

I. ความรู้พื้นฐานเกี่ยวกับท่อเหล็กสำหรับอุตสาหกรรมน้ำมันและก๊าซ

1. คำอธิบายคำศัพท์

เอพีไอ: อักษรย่อของ สถาบันปิโตรเลียมอเมริกัน.
ต.ค.: อักษรย่อของ สินค้าท่อประเทศน้ำมันได้แก่ ท่อปลอกน้ำมัน, ท่อน้ำมัน, ท่อเจาะ, ปลอกเจาะ, ดอกสว่าน, ก้านดูด, ข้อต่อ Pup เป็นต้น
ท่อน้ำมัน: ท่อใช้ในบ่อน้ำมันเพื่อการสกัด การสกัดก๊าซ การฉีดน้ำ และการแตกกรด
ปลอก: ท่อที่ลดลงจากพื้นผิวดินลงไปในหลุมเจาะที่เจาะไว้เพื่อใช้เป็นท่อหุ้มเพื่อป้องกันผนังพังทลาย
ท่อเจาะ: ท่อที่ใช้สำหรับเจาะหลุมเจาะ
เส้นท่อ: ท่อที่ใช้ขนส่งน้ำมันหรือก๊าซ
ข้อต่อ: กระบอกสูบใช้เชื่อมต่อท่อเกลียวสองท่อกับเกลียวภายใน
วัสดุข้อต่อ: ท่อที่ใช้ในการผลิตข้อต่อ
เธรด API: เกลียวท่อที่กำหนดตามมาตรฐาน API 5B ได้แก่ เกลียวท่อกลมน้ำมัน เกลียวท่อกลมสั้น เกลียวท่อกลมยาว เกลียวท่อสี่เหลี่ยมคางหมูบางส่วน เกลียวท่อส่งน้ำมัน ฯลฯ
การเชื่อมต่อแบบพรีเมียม: เธรดที่ไม่ใช่ API ที่มีคุณสมบัติการปิดผนึก คุณสมบัติการเชื่อมต่อ และคุณสมบัติอื่นๆ ที่ไม่ซ้ำกัน
ความล้มเหลว: การเสียรูป การแตกหัก ความเสียหายของพื้นผิว และการสูญเสียการทำงานเดิมภายใต้เงื่อนไขการบริการเฉพาะ
รูปแบบหลักของความล้มเหลว: การบดอัด การลื่น การแตก การรั่วซึม การกัดกร่อน การยึดติด การสึกหรอ ฯลฯ

2. มาตรฐานที่เกี่ยวข้องกับปิโตรเลียม

API Spec 5B ฉบับที่ 17 – ข้อกำหนดสำหรับการทำเกลียว การวัด และการตรวจสอบเกลียวของท่อ ท่อ และเกลียวท่อ
ข้อมูลจำเพาะ API 5L ฉบับที่ 46 – ข้อกำหนดสำหรับท่อเส้น
API Spec 5CT ฉบับที่ 11 – ข้อกำหนดสำหรับปลอกและท่อ
ข้อมูลจำเพาะ API 5DP ฉบับที่ 7 – ข้อกำหนดสำหรับท่อเจาะ
ข้อมูลจำเพาะ API 7-1 ฉบับที่ 2 – ข้อกำหนดสำหรับองค์ประกอบต้นกำเนิดสว่านโรตารี
ข้อมูลจำเพาะ API 7-2 ฉบับที่ 2 – ข้อกำหนดสำหรับการทำเกลียวและการวัดการเชื่อมต่อเกลียวแบบมีไหล่แบบหมุน
ข้อมูลจำเพาะ API 11B ฉบับที่ 24 – ข้อกำหนดสำหรับแท่งดูด, แท่งและไลเนอร์ขัดเงา, ข้อต่อ, บาร์จม, ที่หนีบแท่งขัดเงา, กล่องบรรจุและประเดิมปั๊ม
ISO 3183:2019 – อุตสาหกรรมปิโตรเลียมและก๊าซธรรมชาติ — ท่อเหล็กสำหรับระบบขนส่งทางท่อ
ใบรับรองมาตรฐาน ISO 11960:2020 – อุตสาหกรรมปิโตรเลียมและก๊าซธรรมชาติ – ท่อเหล็กสำหรับใช้เป็นท่อหรือท่อสำหรับบ่อ
NACE MR0175 / ISO 15156:2020 – อุตสาหกรรมปิโตรเลียมและก๊าซธรรมชาติ — วัสดุสำหรับใช้ในสภาพแวดล้อมที่มี H2S ในการผลิตน้ำมันและก๊าซ

ครั้งที่สอง ท่อน้ำมัน

1. การจำแนกประเภทของท่อน้ำมัน

ท่อส่งน้ำมันแบ่งออกเป็นท่อส่งน้ำมันแบบไม่ยกตัว (NU), ท่อส่งน้ำมันแบบยกตัวภายนอก (EU) และท่อส่งน้ำมันแบบต่อท่อ (IJ) ท่อส่งน้ำมันแบบ NU หมายถึง ปลายท่อมีความหนาปานกลาง บิดเกลียวโดยตรง และต่อข้อต่อ ท่อยกตัว หมายถึง ปลายท่อทั้งสองข้างยกตัวภายนอก จากนั้นจึงขันเกลียวและต่อเข้าด้วยกัน ท่อแบบต่อท่อรวม หมายถึง ปลายด้านหนึ่งของท่อยกตัวด้วยเกลียวภายนอก และอีกด้านยกตัวด้วยเกลียวภายในที่ต่อโดยตรงโดยไม่ต้องใช้ข้อต่อ

2. ฟังก์ชั่นของท่อน้ำมัน

1 การสกัดน้ำมันและก๊าซ: หลังจากเจาะและประสานบ่อน้ำมันและก๊าซแล้ว ท่อจะถูกวางไว้ในท่อน้ำมันเพื่อแยกน้ำมันและก๊าซลงสู่พื้นดิน
2. การฉีดน้ำ: เมื่อแรงดันในหลุมเจาะไม่เพียงพอ ให้ฉีดน้ำเข้าไปในบ่อผ่านท่อ
③ การฉีดไอน้ำ: ในการกู้คืนน้ำมันหนาด้วยความร้อน ไอจะถูกป้อนเข้าไปในหลุมที่มีท่อน้ำมันที่หุ้มฉนวน
④ การเกิดกรดและการแตกหัก: ในขั้นตอนปลายของการขุดเจาะบ่อน้ำมันหรือเพื่อปรับปรุงการผลิตน้ำมันและก๊าซ จำเป็นต้องป้อนตัวกลางการเกิดกรดและการแตกหักหรือวัสดุบ่มลงในชั้นน้ำมันและก๊าซ จากนั้นตัวกลางและวัสดุบ่มจะถูกขนส่งผ่านท่อน้ำมัน

3. ท่อเหล็กเกรดเหล็ก

เกรดเหล็กของท่อน้ำมันคือ H40, J55, N80, L80, C90, T95, P110
N80 แบ่งออกเป็น N80-1 และ N80Q โดยทั้งสองมีสมบัติการดึงเหมือนกัน ความแตกต่างสองประการคือสถานะการส่งมอบและความแตกต่างของประสิทธิภาพในการรับแรงกระแทก โดยการส่งมอบ N80-1 โดยสถานะปกติหรือเมื่ออุณหภูมิการรีดขั้นสุดท้ายมากกว่าอุณหภูมิวิกฤต Ar3 และการลดแรงดึงหลังจากการระบายความร้อนด้วยอากาศ และสามารถใช้เพื่อค้นหาการรีดร้อนแทนการปกติ ไม่จำเป็นต้องทดสอบแรงกระแทกและไม่ทำลายล้าง N80Q ต้องผ่านการอบชุบ (ชุบแข็งและอบชุบ) การอบด้วยความร้อน ฟังก์ชันการกระแทกควรเป็นไปตามบทบัญญัติของ API 5CT และควรทดสอบแบบไม่ทำลายล้าง
L80 แบ่งออกเป็น L80-1, L80-9Cr และ L80-13Cr คุณสมบัติทางกลและสถานะการจัดส่งเหมือนกัน ความแตกต่างในการใช้งาน ความยากในการผลิต และราคา: L80-1 เป็นท่อประเภททั่วไป ส่วน L80-9Cr และ L80-13Cr เป็นท่อที่มีความต้านทานการกัดกร่อนสูง มีความยากในการผลิต และมีราคาแพง มักใช้ในบ่อน้ำที่มีการกัดกร่อนสูง
C90 และ T95 แบ่งออกเป็น 1 และ 2 ประเภท คือ C90-1, C90-2 และ T95-1, T95-2.

4. ท่อน้ำมันเกรดเหล็กที่ใช้กันทั่วไป ชื่อเหล็ก และสถานะการจัดส่ง

J55 (37Mn5) ท่อน้ำมัน NU: รีดร้อนแทนการทำให้เป็นมาตรฐาน
J55 (37Mn5) ท่อน้ำมันของ EU: ความยาวเต็มทำให้เป็นมาตรฐานหลังจากอารมณ์เสีย
ท่อน้ำมัน N80-1 (36Mn2V) NU: รีดร้อนแทนการทำให้เป็นมาตรฐาน
N80-1 (36Mn2V) ท่อน้ำมัน EU: ความยาวเต็มทำให้เป็นมาตรฐานหลังจากการปั่นป่วน
ท่อน้ำมัน N80-Q (30Mn5): 30Mn5, การแบ่งเบาบรรเทาแบบเต็มความยาว
L80-1 (30Mn5) ท่อน้ำมัน: 30Mn5, การแบ่งเบาบรรเทาแบบเต็มความยาว
P110 (25CrMnMo) ท่อน้ำมัน: 25CrMnMo, การแบ่งเบาบรรเทาเต็มความยาว
J55 (37Mn5) ข้อต่อ: เหล็กแผ่นรีดร้อนออนไลน์ทำให้เป็นมาตรฐาน
ข้อต่อ N80 (28MnTiB): การแบ่งเบาบรรเทาแบบเต็มความยาว
ข้อต่อ L80-1 (28MnTiB): นิรภัยเต็มความยาว
ข้อต่อ P110 (25CrMnMo): การแบ่งเบาบรรเทาแบบเต็มความยาว

สาม. ท่อปลอก

1. การจำแนกประเภทและบทบาทของปลอก

ตัวเรือนเป็นท่อเหล็กที่รองรับผนังบ่อน้ำมันและก๊าซ แต่ละหลุมใช้เคสหลายชั้นตามความลึกของการเจาะและสภาพทางธรณีวิทยาที่แตกต่างกัน ปูนซิเมนต์ใช้ในการประสานท่อหลังจากหย่อนลงไปในบ่อ และไม่เหมือนกับท่อน้ำมันและท่อเจาะตรงที่ไม่สามารถนำกลับมาใช้ใหม่ได้และเป็นของวัสดุสิ้นเปลืองแบบใช้แล้วทิ้ง ดังนั้นการใช้ท่อมีสัดส่วนมากกว่าร้อยละ 70 ของท่อบ่อน้ำมันทั้งหมด ปลอกสามารถแบ่งออกเป็นปลอกตัวนำ ปลอกกลาง ปลอกการผลิต และปลอกซับตามการใช้งาน และโครงสร้างในบ่อน้ำมันแสดงในรูปที่ 1

1. ปลอกตัวนำ: โดยทั่วไปแล้ว เมื่อใช้เกรด API K55, J55 หรือ H40 เคสตัวนำจะทำให้หลุมผลิตมีความเสถียร และแยกชั้นหินอุ้มน้ำตื้นๆ ที่มีเส้นผ่านศูนย์กลางโดยทั่วไปประมาณ 20 นิ้วหรือ 16 นิ้ว

②ปลอกระดับกลาง: เคสระดับกลางซึ่งมักทำจากเกรด API K55, N80, L80 หรือ P110 ใช้เพื่อแยกการก่อตัวที่ไม่เสถียรและโซนแรงดันที่แตกต่างกัน โดยมีเส้นผ่านศูนย์กลางทั่วไป 13 3/8 นิ้ว, 11 3/4 นิ้ว หรือ 9 5/8 นิ้ว .

3. ปลอกการผลิต: โครงสร้างผลิตจากเหล็กเกรดสูง เช่น เกรด API J55, N80, L80, P110 หรือ Q125 เคสการผลิตได้รับการออกแบบมาให้ทนต่อแรงกดดันในการผลิต โดยทั่วไปจะมีเส้นผ่านศูนย์กลาง 9 5/8 นิ้ว 7 นิ้ว หรือ 5 1/2 นิ้ว

④ปลอกไลเนอร์: แผ่นบุจะขยายรูเจาะเข้าไปในแหล่งเก็บน้ำมันโดยใช้วัสดุ เช่น เกรด API L80, N80 หรือ P110 โดยมีเส้นผ่านศูนย์กลางทั่วไปที่ 7 นิ้ว 5 นิ้ว หรือ 4 1/2 นิ้ว

⑤ท่อ: ท่อขนส่งไฮโดรคาร์บอนสู่พื้นผิวโดยใช้เกรด API J55, L80 หรือ P110 และมีจำหน่ายในเส้นผ่านศูนย์กลาง 4 1/2 นิ้ว, 3 1/2 นิ้ว หรือ 2 7/8 นิ้ว

IV. ท่อเจาะ

1. การจำแนกประเภทและหน้าที่ของท่อสำหรับเครื่องมือเจาะ

ท่อเจาะสี่เหลี่ยม ท่อเจาะ ท่อเจาะที่มีน้ำหนัก และปลอกเจาะในเครื่องมือเจาะประกอบกันเป็นท่อเจาะ ท่อเจาะเป็นเครื่องมือเจาะแกนที่ขับเคลื่อนหัวเจาะจากพื้นดินไปยังก้นหลุม และยังเป็นช่องทางจากพื้นดินไปยังก้นหลุมอีกด้วย ท่อเจาะมีบทบาทนำสามประการ:

1 เพื่อส่งแรงบิดเพื่อขับเคลื่อนสว่านเพื่อเจาะ

② การอาศัยน้ำหนักของมันไปที่ดอกสว่านเพื่อทำลายแรงดันของหินที่ก้นบ่อน้ำ

3 เพื่อขนส่งน้ำยาล้าง นั่นคือ การเจาะโคลนผ่านพื้นดินผ่านปั๊มโคลนแรงดันสูง เจาะคอลัมน์เข้าไปในรูเจาะที่ไหลลงด้านล่างของบ่อเพื่อล้างเศษหินและทำให้สว่านเย็นลง และขนเศษหิน ผ่านพื้นผิวด้านนอกของคอลัมน์และผนังของบ่อน้ำระหว่างวงแหวนเพื่อกลับสู่พื้นเพื่อให้บรรลุวัตถุประสงค์ของการขุดเจาะบ่อน้ำ

ท่อเจาะใช้ในกระบวนการเจาะเพื่อทนต่อแรงสลับซับซ้อนต่างๆ เช่น แรงดึง แรงอัด แรงบิด แรงดัด และแรงเครียดอื่นๆ นอกจากนี้ พื้นผิวด้านในยังต้องสัมผัสกับโคลนที่มีแรงดันสูงและการกัดกร่อนอีกด้วย
(1) ท่อเจาะสี่เหลี่ยม: ท่อเจาะสี่เหลี่ยมมี 2 ประเภท ได้แก่ สี่เหลี่ยมและหกเหลี่ยม ในท่อเจาะน้ำมันปิโตรเลียมของจีน คอลัมน์เจาะแต่ละชุดมักใช้ท่อเจาะประเภทสี่เหลี่ยม โดยมีข้อกำหนดคือ 63.5 มม. (2-1/2 นิ้ว), 88.9 มม. (3-1/2 นิ้ว), 107.95 มม. (4-1/4 นิ้ว), 133.35 มม. (5-1/4 นิ้ว), 152.4 มม. (6 นิ้ว) เป็นต้น ความยาวที่ใช้โดยทั่วไปคือ 1,214.5 ม.
(2) ท่อเจาะ: ท่อเจาะเป็นเครื่องมือหลักในการเจาะบ่อน้ำ โดยเชื่อมต่อกับปลายด้านล่างของท่อเจาะทรงสี่เหลี่ยม และเมื่อบ่อน้ำเจาะลึกมากขึ้น ท่อเจาะก็จะขยายความยาวของเสาเจาะทีละอัน ข้อมูลจำเพาะของท่อเจาะ ได้แก่ 60.3 มม. (2-3/8 นิ้ว) 73.03 มม. (2-7/8 นิ้ว) 88.9 มม. (3-1/2 นิ้ว) 114.3 มม. (4-1/2 นิ้ว) 127 มม. (5 นิ้ว) 139.7 มม. (5-1/2 นิ้ว) เป็นต้น
(3) ท่อเจาะสำหรับงานหนัก: ท่อเจาะถ่วงน้ำหนักเป็นเครื่องมือเปลี่ยนผ่านที่เชื่อมต่อท่อเจาะและปลอกเจาะ ซึ่งสามารถปรับปรุงสภาพแรงของท่อเจาะ และเพิ่มแรงดันบนดอกสว่าน ข้อมูลจำเพาะหลักของท่อเจาะถ่วงน้ำหนักคือ 88.9 มม. (3-1/2 นิ้ว) และ 127 มม. (5 นิ้ว)
(4) ปลอกเจาะ: ปลอกสว่านเชื่อมต่อกับส่วนล่างของท่อสว่าน ซึ่งเป็นท่อที่มีผนังหนาพิเศษที่มีความแข็งแกร่งสูง ท่อนี้จะสร้างแรงกดบนดอกสว่านเพื่อทำลายหิน และทำหน้าที่เป็นแนวทางในการเจาะหลุมตรง ข้อกำหนดทั่วไปของปลอกสว่านคือ 158.75 มม. (6-1/4 นิ้ว), 177.85 มม. (7 นิ้ว), 203.2 มม. (8 นิ้ว), 228.6 มม. (9 นิ้ว) เป็นต้น

ท่อวีไลน์

1. การจำแนกประเภทของท่อเส้น

ท่อส่งน้ำมันและก๊าซใช้ในอุตสาหกรรมน้ำมันและก๊าซเพื่อส่งน้ำมัน น้ำมันกลั่น ก๊าซธรรมชาติ และท่อส่งน้ำโดยใช้ตัวย่อว่าท่อเหล็ก ท่อส่งน้ำมันและก๊าซแบ่งออกเป็นท่อหลัก ท่อสาขา และท่อเครือข่ายท่อส่งในเมือง ท่อส่งหลักสามประเภทมีข้อกำหนดทั่วไปคือ ∅406 ~ 1219 มม. ความหนาของผนัง 10 ~ 25 มม. เกรดเหล็ก X42 ~ X80 ท่อสาขาและท่อเครือข่ายท่อส่งในเมืองมักมีข้อกำหนดสำหรับ ∅114 ~ 700 มม. ความหนาของผนัง 6 ~ 20 มม. เกรดเหล็กสำหรับ X42 ~ X80 เกรดเหล็กคือ X42~X80 ท่อส่งน้ำมันมีแบบเชื่อมและแบบไร้รอยต่อ ท่อส่งน้ำมันแบบเชื่อมใช้มากกว่าท่อส่งน้ำมันแบบไร้รอยต่อ

2. มาตรฐานของไลน์ท่อ

API Spec 5L – ข้อกำหนดสำหรับ Line Pipe
ISO 3183 - อุตสาหกรรมปิโตรเลียมและก๊าซธรรมชาติ - ท่อเหล็กสำหรับระบบขนส่งทางท่อ

3. PSL1 และ PSL2

PSL คือคำย่อของ ระดับคุณลักษณะของผลิตภัณฑ์ระดับข้อมูลจำเพาะของผลิตภัณฑ์ท่อแบ่งออกเป็น PSL 1 และ PSL 2 และระดับคุณภาพแบ่งออกเป็น PSL 1 และ PSL 2 โดย PSL 2 สูงกว่า PSL 1 ระดับข้อมูลจำเพาะทั้งสองระดับไม่เพียงแต่มีข้อกำหนดการทดสอบที่แตกต่างกัน แต่ข้อกำหนดองค์ประกอบทางเคมีและคุณสมบัติทางกลก็แตกต่างกันด้วย ดังนั้น ตามลำดับ API 5L เงื่อนไขของสัญญา นอกเหนือจากการระบุข้อมูลจำเพาะ เกรดเหล็ก และตัวบ่งชี้ทั่วไปอื่นๆ แล้ว ยังต้องระบุระดับข้อมูลจำเพาะของผลิตภัณฑ์ด้วย นั่นคือ PSL 1 หรือ PSL 2 โดย PSL 2 ในองค์ประกอบทางเคมี คุณสมบัติแรงดึง กำลังแรงกระแทก การทดสอบแบบไม่ทำลาย และตัวบ่งชี้อื่นๆ จะเข้มงวดกว่า PSL 1

4. เกรดเหล็กท่อเส้น องค์ประกอบทางเคมี และคุณสมบัติทางกล

เกรดเหล็กท่ออ่อนตั้งแต่ต่ำไปจนถึงสูงแบ่งออกเป็น A25, A, B, X42, X46, X52, X60, X65, X70 และ X80 สำหรับองค์ประกอบทางเคมีและคุณสมบัติเชิงกลโดยละเอียด โปรดดูที่หนังสือ API 5L Specification ฉบับที่ 46

5. ข้อกำหนดการทดสอบอุทกสถิตของท่อเส้นและข้อกำหนดการตรวจสอบแบบไม่ทำลาย

ท่อสายควรทำการทดสอบระบบไฮดรอลิกแบบแยกสาขา และมาตรฐานไม่อนุญาตให้สร้างแรงดันไฮดรอลิกแบบไม่ทำลายล้าง ซึ่งถือเป็นความแตกต่างอย่างมากระหว่างมาตรฐาน API และมาตรฐานของเรา PSL 1 ไม่ต้องการการทดสอบแบบไม่ทำลายล้าง ส่วน PSL 2 ควรทำการทดสอบแบบไม่ทำลายล้างแบบแยกสาขา

วี. การเชื่อมต่อระดับพรีเมียม

1. การแนะนำการเชื่อมต่อแบบพรีเมียม

การเชื่อมต่อแบบพรีเมี่ยมเป็นเกลียวท่อที่มีโครงสร้างเฉพาะที่แตกต่างจากเกลียว API แม้ว่าปลอกท่อน้ำมันแบบเกลียว API ที่มีอยู่จะถูกนำมาใช้กันอย่างแพร่หลายในการสำรวจแหล่งน้ำมัน แต่ข้อบกพร่องของปลอกท่อก็แสดงให้เห็นอย่างชัดเจนในสภาพแวดล้อมเฉพาะของแหล่งน้ำมันบางแห่ง: คอลัมน์ท่อเกลียวกลม API แม้ว่าประสิทธิภาพการปิดผนึกจะดีกว่า แต่แรงดึงที่ส่วนเกลียวรับได้นั้นเทียบเท่ากับความแข็งแรงของตัวท่อ 60% ถึง 80% เท่านั้น ดังนั้นจึงไม่สามารถใช้ในการสำรวจหลุมลึกได้ คอลัมน์ท่อเกลียวสี่เหลี่ยมคางหมูแบบมีอคติ API แม้ว่าประสิทธิภาพการดึงจะสูงกว่าการเชื่อมต่อเกลียวกลม API มาก แต่ประสิทธิภาพการปิดผนึกไม่ดีนัก แม้ว่าประสิทธิภาพการดึงของคอลัมน์จะสูงกว่าการเชื่อมต่อเกลียวกลม API มาก แต่ประสิทธิภาพการปิดผนึกไม่ดีนัก จึงไม่สามารถใช้ในการสำรวจหลุมก๊าซแรงดันสูงได้ นอกจากนี้ จารบีเกลียวจะทำหน้าที่ได้เฉพาะในสภาพแวดล้อมที่มีอุณหภูมิต่ำกว่า 95℃ เท่านั้น จึงไม่สามารถนำไปใช้ในการขุดเจาะบ่อน้ำที่มีอุณหภูมิสูงได้

เมื่อเปรียบเทียบกับการเชื่อมต่อเธรดแบบกลม API และเธรดสี่เหลี่ยมคางหมูบางส่วน การเชื่อมต่อแบบพรีเมียมมีความก้าวหน้าอย่างมากในด้านต่อไปนี้:

(1) การปิดผนึกที่ดี ด้วยความยืดหยุ่นและการออกแบบโครงสร้างการปิดผนึกด้วยโลหะ ทำให้การปิดผนึกก๊าซข้อต่อมีความทนทานต่อการเข้าถึงขีดจำกัดของตัวท่อภายในความดันผลผลิต

(2) ความแข็งแรงสูงของการเชื่อมต่อ โดยเชื่อมต่อด้วยการเชื่อมต่อหัวเข็มขัดพิเศษของท่อน้ำมัน ความแข็งแรงของการเชื่อมต่อถึงหรือเกินความแข็งแรงของตัวท่อ เพื่อแก้ปัญหาการลื่นไถลโดยพื้นฐาน

(3) โดยการเลือกวัสดุและการปรับปรุงกระบวนการรักษาพื้นผิว แก้ไขปัญหาของหัวเข็มขัดด้ายติดโดยทั่วไป

(4) ผ่านการเพิ่มประสิทธิภาพของโครงสร้างเพื่อให้การกระจายความเค้นร่วมมีความสมเหตุสมผลและเอื้อต่อความต้านทานต่อการกัดกร่อนของความเค้นมากขึ้น

(5) ผ่านโครงสร้างไหล่ที่มีการออกแบบที่สมเหตุสมผล ทำให้การใช้งานหัวเข็มขัดสามารถเข้าถึงได้มากขึ้น

อุตสาหกรรมน้ำมันและก๊าซมีข้อต่อพรีเมียมที่จดสิทธิบัตรมากกว่า 100 แบบ ซึ่งถือเป็นความก้าวหน้าครั้งสำคัญในเทคโนโลยีท่อ การออกแบบเกลียวแบบพิเศษเหล่านี้ให้ความสามารถในการปิดผนึกที่เหนือกว่า ความแข็งแรงของข้อต่อที่เพิ่มขึ้น และทนทานต่อความเครียดจากสิ่งแวดล้อมได้ดีขึ้น นวัตกรรมเหล่านี้ช่วยแก้ปัญหาต่างๆ เช่น แรงดันสูง สภาพแวดล้อมที่กัดกร่อน และอุณหภูมิที่รุนแรง ทำให้มั่นใจได้ว่ามีความน่าเชื่อถือและประสิทธิภาพที่ยอดเยี่ยมในการดำเนินการที่ปลอดภัยต่อน้ำมันทั่วโลก การวิจัยและพัฒนาอย่างต่อเนื่องในข้อต่อพรีเมียมเน้นย้ำถึงบทบาทสำคัญในการสนับสนุนแนวทางการขุดเจาะที่ปลอดภัยและมีประสิทธิผลมากขึ้น ซึ่งสะท้อนถึงความมุ่งมั่นอย่างต่อเนื่องเพื่อความเป็นเลิศทางเทคโนโลยีในภาคพลังงาน

การเชื่อมต่อVAM®: การเชื่อมต่อ VAM® เป็นที่รู้จักในด้านประสิทธิภาพที่แข็งแกร่งในสภาพแวดล้อมที่ท้าทาย มาพร้อมเทคโนโลยีการปิดผนึกระหว่างโลหะกับโลหะขั้นสูงและความสามารถด้านแรงบิดสูง ช่วยให้มั่นใจได้ถึงการทำงานที่เชื่อถือได้ในบ่อน้ำลึกและแหล่งกักเก็บแรงดันสูง

TenarisHydril Wedge Series: ซีรีส์นี้นำเสนอการเชื่อมต่อที่หลากหลาย เช่น Blue®, Dopeless® และ Wedge 521® ซึ่งขึ้นชื่อในเรื่องการปิดผนึกก๊าซอย่างดีเยี่ยมและความต้านทานต่อแรงอัดและแรงตึง ซึ่งช่วยเพิ่มความปลอดภัยและประสิทธิภาพในการปฏิบัติงาน

ทีเอสเอช® บลู: ออกแบบโดย Tenaris การเชื่อมต่อ TSH® Blue ใช้การออกแบบบ่าคู่ที่เป็นเอกสิทธิ์และโปรไฟล์เกลียวประสิทธิภาพสูง ให้ความทนทานต่อความล้าที่ดีเยี่ยมและง่ายต่อการประกอบในงานเจาะที่สำคัญ

ให้การเชื่อมต่อ Prideco™ XT®: การเชื่อมต่อ XT® ที่ออกแบบโดย NOV ประกอบด้วยซีลโลหะต่อโลหะที่เป็นเอกลักษณ์และรูปแบบเกลียวที่แข็งแรง ช่วยให้มั่นใจถึงความจุแรงบิดที่เหนือกว่าและความต้านทานต่อการสึกกร่อน จึงยืดอายุการใช้งานของการเชื่อมต่อได้

การเชื่อมต่อการล่าสัตว์ Seal-Lock®: การเชื่อมต่อ Seal-Lock® โดย Hunting โดดเด่นด้วยการซีลโลหะต่อโลหะและโปรไฟล์เกลียวที่เป็นเอกลักษณ์ มีชื่อเสียงในด้านความต้านทานแรงดันที่เหนือกว่าและความน่าเชื่อถือในการขุดเจาะทั้งบนบกและนอกชายฝั่ง

บทสรุป

โดยสรุป เครือข่ายท่อเหล็กที่ซับซ้อนซึ่งมีความสำคัญต่ออุตสาหกรรมน้ำมันและก๊าซประกอบด้วยอุปกรณ์เฉพาะทางมากมายที่ออกแบบมาเพื่อทนต่อสภาพแวดล้อมที่เข้มงวดและความต้องการในการดำเนินงานที่ซับซ้อน ตั้งแต่ท่อหุ้มพื้นฐานที่รองรับและปกป้องผนังที่แข็งแรงไปจนถึงท่ออเนกประสงค์ที่ใช้ในกระบวนการสกัดและฉีด ท่อแต่ละประเภทมีจุดประสงค์ที่แตกต่างกันในการสำรวจ ผลิต และขนส่งไฮโดรคาร์บอน มาตรฐานเช่นข้อกำหนดของ API ช่วยให้มั่นใจถึงความสม่ำเสมอและคุณภาพทั่วทั้งท่อเหล่านี้ ในขณะที่นวัตกรรม เช่น การเชื่อมต่อระดับพรีเมียมช่วยเพิ่มประสิทธิภาพในสภาวะที่ท้าทาย เมื่อเทคโนโลยีพัฒนาขึ้น ส่วนประกอบที่สำคัญเหล่านี้จะก้าวหน้าขึ้น ขับเคลื่อนประสิทธิภาพและความน่าเชื่อถือในการดำเนินการด้านพลังงานทั่วโลก การทำความเข้าใจท่อเหล่านี้และข้อกำหนดของท่อเน้นย้ำถึงบทบาทที่ขาดไม่ได้ของท่อเหล่านี้ในโครงสร้างพื้นฐานของภาคส่วนพลังงานสมัยใหม่

NACE MR0175/ISO 15156 คืออะไร

NACE MR0175/ISO 15156 คืออะไร

NACE MR0175/ISO 15156 เป็นมาตรฐานที่ได้รับการยอมรับทั่วโลกซึ่งให้แนวทางในการเลือกวัสดุที่ทนต่อการแตกร้าวจากความเครียดซัลไฟด์ (SSC) และการแตกร้าวที่เกิดจากไฮโดรเจนในรูปแบบอื่นๆ ในสภาพแวดล้อมที่มีไฮโดรเจนซัลไฟด์ (H₂S) มาตรฐานนี้จำเป็นสำหรับการรับรองความน่าเชื่อถือและความปลอดภัยของอุปกรณ์ที่ใช้ในอุตสาหกรรมน้ำมันและก๊าซ โดยเฉพาะอย่างยิ่งในสภาพแวดล้อมที่มีรสเปรี้ยว

ประเด็นสำคัญของ NACE MR0175/ISO 15156

  1. ขอบเขตและวัตถุประสงค์:
    • มาตรฐานนี้กล่าวถึงการเลือกวัสดุสำหรับอุปกรณ์ที่ใช้ในการผลิตน้ำมันและก๊าซที่สัมผัสกับสภาพแวดล้อมที่มี H₂S ซึ่งอาจทำให้เกิดการแตกร้าวในรูปแบบต่างๆ
    • มีวัตถุประสงค์เพื่อป้องกันความล้มเหลวของวัสดุเนื่องจากความเครียดของซัลไฟด์ การกัดกร่อน การแตกร้าวที่เกิดจากไฮโดรเจน และกลไกอื่นที่เกี่ยวข้อง
  2. การเลือกใช้วัสดุ:
    • คู่มือนี้ให้แนวทางในการเลือกวัสดุที่เหมาะสม ได้แก่ เหล็กกล้าคาร์บอน เหล็กกล้าอัลลอยด์ต่ำ เหล็กกล้าไร้สนิม โลหะผสมนิกเกิล และโลหะผสมทนการกัดกร่อนชนิดอื่นๆ
    • ระบุสภาวะแวดล้อมและระดับความเครียดที่วัสดุแต่ละชนิดสามารถทนได้โดยไม่เกิดการแตกร้าว
  3. คุณสมบัติและการทดสอบ:
    • เอกสารนี้จะสรุปขั้นตอนการทดสอบที่จำเป็นสำหรับการรับรองวัสดุสำหรับการบริการที่มีรสเปรี้ยว ซึ่งรวมถึงการทดสอบในห้องปฏิบัติการที่จำลองสภาวะกัดกร่อนที่พบในสภาพแวดล้อม H₂S
    • ระบุเกณฑ์สำหรับประสิทธิภาพที่ยอมรับได้ในการทดสอบเหล่านี้ โดยให้แน่ใจว่าวัสดุจะต้านทานการแตกร้าวภายใต้เงื่อนไขที่ระบุ
  4. การออกแบบและการผลิต:
    • รวมถึงคำแนะนำสำหรับการออกแบบและการผลิตอุปกรณ์เพื่อลดความเสี่ยงของการแตกร้าวอันเกิดจากไฮโดรเจน
    • เน้นความสำคัญของกระบวนการผลิต เทคนิคการเชื่อม และการบำบัดความร้อนที่อาจส่งผลต่อความต้านทานของวัสดุต่อการแตกร้าวที่เกิดจาก H₂S
  5. การบำรุงรักษาและการตรวจสอบ:
    • ให้คำแนะนำเกี่ยวกับแนวทางปฏิบัติในการบำรุงรักษาและกลยุทธ์การติดตามเพื่อตรวจจับและป้องกันการแคร็กในบริการ
    • แนะนำให้มีการตรวจสอบเป็นประจำและใช้วิธีการทดสอบแบบไม่ทำลายเพื่อให้แน่ใจว่าอุปกรณ์จะมีสภาพสมบูรณ์อย่างต่อเนื่อง

ความสำคัญในอุตสาหกรรม

  • ความปลอดภัย: รับประกันการทำงานที่ปลอดภัยของอุปกรณ์ในสภาพแวดล้อมการบริการที่เปรี้ยว โดยลดความเสี่ยงของความล้มเหลวร้ายแรงเนื่องจากการแตกร้าว
  • ความน่าเชื่อถือ: ช่วยเพิ่มความน่าเชื่อถือและอายุการใช้งานของอุปกรณ์ ลดการหยุดทำงานและค่าบำรุงรักษา
  • การปฏิบัติตาม: ช่วยให้บริษัทปฏิบัติตามข้อกำหนดด้านกฎระเบียบและมาตรฐานอุตสาหกรรม หลีกเลี่ยงผลกระทบทางกฎหมายและทางการเงิน

NACE MR0175/ISO 15156 แบ่งออกเป็นสามส่วน โดยแต่ละส่วนมุ่งเน้นไปที่แง่มุมที่แตกต่างกันของการเลือกใช้วัสดุสำหรับใช้ในสภาพแวดล้อมบริการที่มีรสเปรี้ยว ต่อไปนี้เป็นรายละเอียดเพิ่มเติม:

ส่วนที่ 1: หลักการทั่วไปในการเลือกวัสดุต้านทานการแตกร้าว

  • ขอบเขต:ให้แนวทางและหลักการครอบคลุมสำหรับการเลือกวัสดุที่ต้านทานการแตกร้าวในสภาพแวดล้อมที่มี H₂S
  • เนื้อหา:
    • กำหนดคำศัพท์และแนวคิดหลักที่เกี่ยวข้องกับสภาพแวดล้อมการให้บริการที่มีรสเปรี้ยวและการย่อยสลายวัสดุ
    • สรุปเกณฑ์ทั่วไปในการประเมินความเหมาะสมของวัสดุสำหรับการให้บริการที่มีรสเปรี้ยว
    • อธิบายความสำคัญของการพิจารณาปัจจัยด้านสิ่งแวดล้อม คุณสมบัติของวัสดุ และสภาวะการปฏิบัติงานเมื่อเลือกวัสดุ
    • ให้กรอบการทำงานสำหรับการประเมินความเสี่ยงและการตัดสินใจเลือกวัสดุอย่างมีข้อมูล

ส่วนที่ 2: เหล็กกล้าคาร์บอนและเหล็กกล้าผสมต่ำที่ทนต่อการแตกร้าวและการใช้เหล็กหล่อ

  • ขอบเขต:เอกสารนี้มุ่งเน้นไปที่ข้อกำหนดและแนวปฏิบัติในการใช้เหล็กกล้าคาร์บอน เหล็กกล้าอัลลอยด์ต่ำ และเหล็กหล่อในสภาพแวดล้อมการบริการที่มีรสเปรี้ยว
  • เนื้อหา:
    • ให้รายละเอียดเกี่ยวกับเงื่อนไขเฉพาะที่วัสดุเหล่านี้สามารถใช้ได้อย่างปลอดภัย
    • แสดงรายการคุณสมบัติทางกลและองค์ประกอบทางเคมีที่จำเป็นสำหรับวัสดุเหล่านี้ในการต้านทานการแตกร้าวจากความเครียดซัลไฟด์ (SSC) และความเสียหายที่เกิดจากไฮโดรเจนในรูปแบบอื่นๆ
    • ให้แนวทางสำหรับการบำบัดความร้อนและกระบวนการผลิตที่สามารถเพิ่มความต้านทานของวัสดุเหล่านี้ต่อการแตกร้าว
    • กล่าวถึงความจำเป็นของการทดสอบวัสดุที่เหมาะสมและขั้นตอนการตรวจสอบคุณสมบัติเพื่อให้มั่นใจว่าเป็นไปตามมาตรฐาน

ส่วนที่ 3: CRA ที่ทนต่อการแตกร้าว (โลหะผสมที่ทนต่อการกัดกร่อน) และโลหะผสมอื่น ๆ

  • ขอบเขต:จัดการกับโลหะผสมที่ทนต่อการกัดกร่อน (CRA) และโลหะผสมพิเศษอื่นๆ ในสภาพแวดล้อมการบริการที่มีรสเปรี้ยว
  • เนื้อหา:
    • ระบุ CRA ประเภทต่างๆ เช่น เหล็กกล้าไร้สนิม โลหะผสมที่มีนิกเกิลเป็นส่วนประกอบหลัก และโลหะผสมประสิทธิภาพสูงอื่นๆ และความเหมาะสมสำหรับการให้บริการที่มีกรด
    • ระบุองค์ประกอบทางเคมี คุณสมบัติทางกล และการบำบัดความร้อนที่จำเป็นสำหรับวัสดุเหล่านี้ในการต้านทานการแตกร้าว
    • ให้แนวทางในการคัดเลือก ทดสอบ และประเมินคุณสมบัติของ CRA เพื่อให้มั่นใจถึงประสิทธิภาพการทำงานในสภาพแวดล้อม H₂S
    • เอกสารนี้จะกล่าวถึงความสำคัญของการพิจารณาถึงความต้านทานการกัดกร่อนและคุณสมบัติเชิงกลของโลหะผสมเหล่านี้เมื่อเลือกวัสดุสำหรับการใช้งานเฉพาะ

NACE MR0175/ISO 15156 เป็นมาตรฐานที่ครอบคลุมซึ่งช่วยให้แน่ใจว่าวัสดุต่างๆ จะถูกใช้ในสภาพแวดล้อมที่มีก๊าซซัลเฟอร์ไดออกไซด์อย่างปลอดภัยและมีประสิทธิภาพ แต่ละส่วนจะกล่าวถึงวัสดุประเภทต่างๆ และให้แนวทางโดยละเอียดสำหรับการเลือก การทดสอบ และการรับรองคุณภาพ โดยการปฏิบัติตามแนวทางเหล่านี้ บริษัทต่างๆ สามารถลดความเสี่ยงของความล้มเหลวของวัสดุ และเพิ่มความปลอดภัยและความน่าเชื่อถือของการดำเนินงานในสภาพแวดล้อมที่มีก๊าซซัลเฟอร์ไดออกไซด์