เรื่อง

การสำรวจบทบาทสำคัญของท่อเหล็กในการสำรวจน้ำมันและก๊าซ

I. ความรู้พื้นฐานเกี่ยวกับท่อสำหรับอุตสาหกรรมน้ำมันและก๊าซ

1. คำอธิบายคำศัพท์

เอพีไอ: อักษรย่อของ สถาบันปิโตรเลียมอเมริกัน.
ต.ค.: อักษรย่อของ สินค้าท่อประเทศน้ำมันได้แก่ ท่อปลอกน้ำมัน, ท่อน้ำมัน, ท่อเจาะ, ปลอกเจาะ, ดอกสว่าน, ก้านดูด, ข้อต่อ Pup เป็นต้น
ท่อน้ำมัน: ท่อใช้ในบ่อน้ำมันสำหรับการสกัดน้ำมัน การแยกก๊าซ การฉีดน้ำ และการแตกหักของกรด
ปลอก: ท่อที่หย่อนลงจากผิวดินลงในหลุมเจาะที่เจาะไว้เพื่อเป็นวัสดุบุรองเพื่อป้องกันผนังพังทลาย
ท่อเจาะ: ท่อที่ใช้สำหรับเจาะหลุมเจาะ
เส้นท่อ: ท่อที่ใช้ขนส่งน้ำมันหรือก๊าซ
ข้อต่อ: กระบอกสูบใช้เชื่อมต่อท่อเกลียวสองท่อกับเกลียวภายใน
วัสดุข้อต่อ: ท่อที่ใช้ในการผลิตข้อต่อ
เธรด API: เกลียวท่อที่กำหนดตามมาตรฐาน API 5B ได้แก่ เกลียวท่อกลมน้ำมัน เกลียวท่อกลมสั้นสำหรับตัวเรือน เกลียวท่อกลมยาวสำหรับตัวเรือน เกลียวท่อสี่เหลี่ยมคางหมูบางส่วนสำหรับตัวเรือน เกลียวท่อส่งน้ำมัน เป็นต้น
การเชื่อมต่อแบบพรีเมียม: เกลียวที่ไม่ใช่ API ที่มีคุณสมบัติการปิดผนึกพิเศษ คุณสมบัติการเชื่อมต่อ และคุณสมบัติอื่นๆ
ความล้มเหลว: การเสียรูป การแตกหัก ความเสียหายของพื้นผิว และการสูญเสียการทำงานเดิมภายใต้เงื่อนไขการบริการเฉพาะ
รูปแบบหลักของความล้มเหลว: การบด การลื่น การแตก การรั่วไหล การกัดกร่อน การยึดติด การสึกหรอ และอื่นๆ

2. มาตรฐานที่เกี่ยวข้องกับปิโตรเลียม

API Spec 5B ฉบับที่ 17 – ข้อกำหนดสำหรับการทำเกลียว การวัด และการตรวจสอบเกลียวของท่อ ท่อ และเกลียวท่อ
ข้อมูลจำเพาะ API 5L ฉบับที่ 46 – ข้อกำหนดสำหรับท่อเส้น
API Spec 5CT ฉบับที่ 11 – ข้อกำหนดสำหรับปลอกและท่อ
ข้อมูลจำเพาะ API 5DP ฉบับที่ 7 – ข้อกำหนดสำหรับท่อเจาะ
ข้อมูลจำเพาะ API 7-1 ฉบับที่ 2 – ข้อกำหนดสำหรับองค์ประกอบต้นกำเนิดสว่านโรตารี
ข้อมูลจำเพาะ API 7-2 ฉบับที่ 2 – ข้อกำหนดสำหรับการทำเกลียวและการวัดการเชื่อมต่อเกลียวแบบมีไหล่แบบหมุน
ข้อมูลจำเพาะ API 11B ฉบับที่ 24 – ข้อกำหนดสำหรับแท่งดูด, แท่งและไลเนอร์ขัดเงา, ข้อต่อ, บาร์จม, ที่หนีบแท่งขัดเงา, กล่องบรรจุและประเดิมปั๊ม
ISO 3183:2019 – อุตสาหกรรมปิโตรเลียมและก๊าซธรรมชาติ — ท่อเหล็กสำหรับระบบขนส่งทางท่อ
ใบรับรองมาตรฐาน ISO 11960:2020 – อุตสาหกรรมปิโตรเลียมและก๊าซธรรมชาติ – ท่อเหล็กสำหรับใช้เป็นท่อหรือท่อสำหรับบ่อ
NACE MR0175 / ISO 15156:2020 – อุตสาหกรรมปิโตรเลียมและก๊าซธรรมชาติ — วัสดุสำหรับใช้ในสภาพแวดล้อมที่มี H2S ในการผลิตน้ำมันและก๊าซ

ครั้งที่สอง ท่อน้ำมัน

1. การจำแนกประเภทของท่อน้ำมัน

ท่อน้ำมันแบ่งออกเป็นท่อน้ำมันที่ไม่ทำให้เสียสภาพ (NU), ท่อน้ำมันที่เสียสภาพภายนอก (EU) และท่อน้ำมันแบบ Integral Joint (IJ) ท่อน้ำมัน NU หมายความว่าปลายท่อมีความหนาปกติและหมุนเกลียวโดยตรงและนำข้อต่อมา ท่อคว่ำหมายความว่าปลายของท่อทั้งสองถูกทำให้เสียจากภายนอก จากนั้นจึงทำการร้อยเกลียวและต่อเข้าด้วยกัน Integral Joint tubing หมายความว่าปลายด้านหนึ่งของท่อถูกบิดเกลียวด้วยเกลียวภายนอก และปลายอีกด้านหนึ่งบิดเบี้ยวด้วยเกลียวภายใน และเชื่อมต่อโดยตรงโดยไม่มีข้อต่อ

2. ฟังก์ชั่นของท่อน้ำมัน

1 การสกัดน้ำมันและก๊าซ: หลังจากเจาะและประสานบ่อน้ำมันและก๊าซแล้ว ท่อจะถูกวางไว้ในท่อน้ำมันเพื่อแยกน้ำมันและก๊าซลงสู่พื้นดิน
2. การฉีดน้ำ: เมื่อแรงดันในหลุมเจาะไม่เพียงพอ ให้ฉีดน้ำเข้าไปในบ่อผ่านท่อ
3 การฉีดไอน้ำ: ในการนำน้ำมันร้อนกลับมาใช้ใหม่แบบหนา ไอน้ำจะถูกป้อนเข้าไปในบ่อโดยใช้ท่อน้ำมันที่หุ้มฉนวน
④ การทำให้เป็นกรดและการแตกหัก: ในช่วงปลายของการขุดเจาะบ่อน้ำหรือเพื่อปรับปรุงการผลิตบ่อน้ำมันและก๊าซ จำเป็นต้องป้อนความเป็นกรดและการแตกหักของสื่อหรือวัสดุบ่มลงในชั้นน้ำมันและก๊าซ และสื่อและวัสดุบ่มคือ ลำเลียงผ่านท่อน้ำมัน

3. ท่อเหล็กเกรดเหล็ก

เกรดเหล็กของท่อน้ำมันคือ H40, J55, N80, L80, C90, T95, P110
N80 แบ่งออกเป็น N80-1 และ N80Q ทั้งสองมีคุณสมบัติแรงดึงเหมือนกัน ความแตกต่างสองประการคือสถานะการจัดส่งและความแตกต่างของประสิทธิภาพการกระแทก การส่งมอบ N80-1 โดยสถานะปกติหรือเมื่ออุณหภูมิการหมุนสุดท้ายมากกว่า อุณหภูมิวิกฤต Ar3 และการลดแรงตึงหลังการระบายความร้อนด้วยอากาศ และสามารถใช้เพื่อค้นหาการรีดร้อนแทนการทดสอบแบบปกติ ไม่จำเป็นต้องทดสอบการกระแทกและไม่ทำลาย N80Q จะต้องได้รับการปรับอุณหภูมิ (ดับและปรับอารมณ์) การอบชุบด้วยความร้อน ฟังก์ชั่นการกระแทกควรสอดคล้องกับข้อกำหนดของ API 5CT และควรเป็นการทดสอบแบบไม่ทำลาย
L80 แบ่งออกเป็น L80-1, L80-9Cr และ L80-13Cr คุณสมบัติทางกลและสถานะการจัดส่งเหมือนกัน ความแตกต่างในการใช้งาน ความยากในการผลิต และราคา L80-1 สำหรับรุ่นทั่วไป L80- 9Cr และ L80-13Cr เป็นท่อที่มีความต้านทานการกัดกร่อนสูง ความยากในการผลิต มีราคาแพง และมักจะใช้ในหลุมกัดกร่อนหนัก
C90 และ T95 แบ่งออกเป็น 1 และ 2 ประเภท คือ C90-1, C90-2 และ T95-1, T95-2.

4. ท่อน้ำมันเกรดเหล็กที่ใช้กันทั่วไป ชื่อเหล็ก และสถานะการจัดส่ง

J55 (37Mn5) ท่อน้ำมัน NU: รีดร้อนแทนการทำให้เป็นมาตรฐาน
J55 (37Mn5) ท่อน้ำมันของ EU: ความยาวเต็มทำให้เป็นมาตรฐานหลังจากอารมณ์เสีย
ท่อน้ำมัน N80-1 (36Mn2V) NU: รีดร้อนแทนการทำให้เป็นมาตรฐาน
N80-1 (36Mn2V) ท่อน้ำมัน EU: ความยาวเต็มทำให้เป็นมาตรฐานหลังจากการปั่นป่วน
ท่อน้ำมัน N80-Q (30Mn5): 30Mn5, การแบ่งเบาบรรเทาแบบเต็มความยาว
L80-1 (30Mn5) ท่อน้ำมัน: 30Mn5, การแบ่งเบาบรรเทาแบบเต็มความยาว
P110 (25CrMnMo) ท่อน้ำมัน: 25CrMnMo, การแบ่งเบาบรรเทาเต็มความยาว
J55 (37Mn5) ข้อต่อ: เหล็กแผ่นรีดร้อนออนไลน์ทำให้เป็นมาตรฐาน
ข้อต่อ N80 (28MnTiB): การแบ่งเบาบรรเทาแบบเต็มความยาว
ข้อต่อ L80-1 (28MnTiB): นิรภัยเต็มความยาว
ข้อต่อ P110 (25CrMnMo): การแบ่งเบาบรรเทาแบบเต็มความยาว

สาม. ท่อปลอก

1. การจำแนกประเภทและบทบาทของปลอก

ตัวเรือนเป็นท่อเหล็กที่รองรับผนังบ่อน้ำมันและก๊าซ แต่ละหลุมใช้เคสหลายชั้นตามความลึกของการเจาะและสภาพทางธรณีวิทยาที่แตกต่างกัน ปูนซิเมนต์ใช้ในการประสานท่อหลังจากหย่อนลงไปในบ่อ และไม่เหมือนกับท่อน้ำมันและท่อเจาะตรงที่ไม่สามารถนำกลับมาใช้ใหม่ได้และเป็นของวัสดุสิ้นเปลืองแบบใช้แล้วทิ้ง ดังนั้นการใช้ท่อมีสัดส่วนมากกว่าร้อยละ 70 ของท่อบ่อน้ำมันทั้งหมด ปลอกสามารถแบ่งออกเป็นปลอกตัวนำ ปลอกกลาง ปลอกการผลิต และปลอกซับตามการใช้งาน และโครงสร้างในบ่อน้ำมันแสดงในรูปที่ 1

1. ปลอกตัวนำ: โดยทั่วไปแล้ว เมื่อใช้เกรด API K55, J55 หรือ H40 เคสตัวนำจะทำให้หลุมผลิตมีความเสถียร และแยกชั้นหินอุ้มน้ำตื้นๆ ที่มีเส้นผ่านศูนย์กลางโดยทั่วไปประมาณ 20 นิ้วหรือ 16 นิ้ว

②ปลอกระดับกลาง: เคสระดับกลางซึ่งมักทำจากเกรด API K55, N80, L80 หรือ P110 ใช้เพื่อแยกการก่อตัวที่ไม่เสถียรและโซนแรงดันที่แตกต่างกัน โดยมีเส้นผ่านศูนย์กลางทั่วไป 13 3/8 นิ้ว, 11 3/4 นิ้ว หรือ 9 5/8 นิ้ว .

3. ปลอกการผลิต: โครงสร้างผลิตจากเหล็กเกรดสูง เช่น เกรด API J55, N80, L80, P110 หรือ Q125 เคสการผลิตได้รับการออกแบบมาให้ทนต่อแรงกดดันในการผลิต โดยทั่วไปจะมีเส้นผ่านศูนย์กลาง 9 5/8 นิ้ว 7 นิ้ว หรือ 5 1/2 นิ้ว

④ปลอกไลเนอร์: ไลเนอร์ขยายหลุมเจาะเข้าไปในแหล่งกักเก็บ โดยใช้วัสดุ เช่น เกรด API L80, N80 หรือ P110 โดยมีเส้นผ่านศูนย์กลางทั่วไป 7 นิ้ว, 5 นิ้ว หรือ 4 1/2 นิ้ว

⑤ท่อ: ท่อขนส่งไฮโดรคาร์บอนสู่พื้นผิวโดยใช้เกรด API J55, L80 หรือ P110 และมีจำหน่ายในเส้นผ่านศูนย์กลาง 4 1/2 นิ้ว, 3 1/2 นิ้ว หรือ 2 7/8 นิ้ว

IV. ท่อเจาะ

1. การจำแนกประเภทและหน้าที่ของท่อสำหรับเครื่องมือเจาะ

ท่อเจาะสี่เหลี่ยม ท่อเจาะ ท่อเจาะถ่วงน้ำหนัก และปลอกเจาะในเครื่องมือขุดเจาะจะสร้างท่อเจาะ ท่อเจาะเป็นเครื่องมือเจาะแกนกลางที่ขับเคลื่อนดอกสว่านจากพื้นลงสู่ก้นบ่อ และยังเป็นช่องทางจากพื้นลงสู่ก้นบ่อด้วย มีสามบทบาทหลัก:

1 เพื่อส่งแรงบิดเพื่อขับเคลื่อนสว่านเพื่อเจาะ

② การอาศัยน้ำหนักของมันไปที่ดอกสว่านเพื่อทำลายแรงดันของหินที่ก้นบ่อน้ำ

3 เพื่อขนส่งน้ำยาล้าง นั่นคือ การเจาะโคลนผ่านพื้นดินผ่านปั๊มโคลนแรงดันสูง เจาะคอลัมน์เข้าไปในรูเจาะที่ไหลลงด้านล่างของบ่อเพื่อล้างเศษหินและทำให้สว่านเย็นลง และขนเศษหิน ผ่านพื้นผิวด้านนอกของคอลัมน์และผนังของบ่อน้ำระหว่างวงแหวนเพื่อกลับสู่พื้นเพื่อให้บรรลุวัตถุประสงค์ของการขุดเจาะบ่อน้ำ

ท่อเจาะในกระบวนการเจาะสามารถทนต่อโหลดสลับซับซ้อนต่างๆ เช่น แรงดึง แรงอัด แรงบิด การดัดงอ และความเครียดอื่นๆ พื้นผิวด้านในยังอยู่ภายใต้การขัดถูและการกัดกร่อนของโคลนแรงดันสูง
(1) ท่อเจาะสี่เหลี่ยม: ท่อเจาะสี่เหลี่ยมมีสองประเภทรูปสี่เหลี่ยมขนมเปียกปูนและชนิดหกเหลี่ยม ท่อเจาะปิโตรเลียมของจีนแต่ละชุดของคอลัมน์เจาะมักจะใช้ท่อเจาะชนิดรูปสี่เหลี่ยมขนมเปียกปูน ข้อมูลจำเพาะของมันคือ 63.5 มม. (2-1/2 นิ้ว), 88.9 มม. (3-1/2 นิ้ว), 107.95 มม. (4-1/4 นิ้ว), 133.35 มม. (5-1/4 นิ้ว), 152.4 มม. ( 6 นิ้ว) และอื่นๆ โดยปกติแล้ว ความยาวที่ใช้คือ 12~14.5ม.
(2) ท่อเจาะ: ท่อเจาะเป็นเครื่องมือหลักสำหรับการเจาะหลุม ซึ่งเชื่อมต่อกับปลายล่างของท่อเจาะสี่เหลี่ยม และในขณะที่หลุมเจาะยังคงลึกลงไป ท่อเจาะก็จะทำให้คอลัมน์เจาะยาวขึ้นเรื่อยๆ ข้อมูลจำเพาะของท่อเจาะคือ: 60.3 มม. (2-3/8 นิ้ว), 73.03 มม. (2-7/8 นิ้ว), 88.9 มม. (3-1/2 นิ้ว), 114.3 มม. (4-1/2 นิ้ว) , 127 มม. (5 นิ้ว), 139.7 มม. (5-1/2 นิ้ว) และอื่นๆ
(3) ท่อเจาะสำหรับงานหนัก: ท่อเจาะถ่วงน้ำหนักเป็นเครื่องมือเปลี่ยนผ่านที่เชื่อมต่อท่อเจาะและปลอกเจาะ ซึ่งสามารถปรับปรุงสภาพแรงของท่อเจาะ และเพิ่มแรงดันบนดอกสว่าน ข้อมูลจำเพาะหลักของท่อเจาะถ่วงน้ำหนักคือ 88.9 มม. (3-1/2 นิ้ว) และ 127 มม. (5 นิ้ว)
(4) ปลอกเจาะ: คอสว่านเชื่อมต่อกับส่วนล่างของท่อเจาะซึ่งเป็นท่อผนังหนาพิเศษที่มีความแข็งแกร่งสูง ออกแรงกดบนดอกสว่านให้พังหิน และมีบทบาทนำทางเมื่อเจาะบ่อตรง ข้อมูลจำเพาะทั่วไปของปลอกเจาะคือ 158.75 มม. (6-1/4 นิ้ว), 177.85 มม. (7 นิ้ว), 203.2 มม. (8 นิ้ว), 228.6 มม. (9 นิ้ว) เป็นต้น

ท่อวีไลน์

1. การจำแนกประเภทของท่อเส้น

ท่อเส้นใช้ในอุตสาหกรรมน้ำมันและก๊าซสำหรับการส่งน้ำมัน น้ำมันกลั่น ก๊าซธรรมชาติ และท่อส่งน้ำ โดยมีตัวย่อของท่อเหล็ก การลำเลียงน้ำมันและท่อส่งก๊าซส่วนใหญ่แบ่งออกเป็นท่อหลัก ท่อสาขา และท่อเครือข่ายท่อในเมือง ท่อส่งท่อหลักสามชนิดตามข้อกำหนดปกติสำหรับ ∅406 ~ 1219 มม. ความหนาของผนัง 10 ~ 25 มม. เกรดเหล็ก X42 ~ X80 ; ไปป์ไลน์สาขาและไปป์ไลน์เครือข่ายไปป์ไลน์ในเมืองมักจะเป็นข้อกำหนดสำหรับ ∅114 ~ 700 มม. ความหนาของผนัง 6 ~ 20 มม. เกรดเหล็กสำหรับ X42 ~ X80 เกรดเหล็กคือ X42 ~ X80 ท่อเส้นมีให้เลือกทั้งแบบเชื่อมและแบบไม่มีรอยต่อ Welded Line Pipe ใช้มากกว่า Seamless Line Pipe

2. มาตรฐานของไลน์ท่อ

API Spec 5L – ข้อกำหนดสำหรับ Line Pipe
ISO 3183 - อุตสาหกรรมปิโตรเลียมและก๊าซธรรมชาติ - ท่อเหล็กสำหรับระบบขนส่งทางท่อ

3. PSL1 และ PSL2

PSL เป็นตัวย่อของ ระดับข้อมูลจำเพาะของผลิตภัณฑ์- ระดับข้อกำหนดผลิตภัณฑ์ท่อเส้นแบ่งออกเป็น PSL 1 และ PSL 2 อาจกล่าวได้ว่าระดับคุณภาพแบ่งออกเป็น PSL 1 และ PSL 2 PSL 2 สูงกว่า PSL 1 ระดับข้อกำหนด 2 ระดับไม่เพียง แต่มีข้อกำหนดการทดสอบที่แตกต่างกันเท่านั้น แต่ข้อกำหนดองค์ประกอบทางเคมีและคุณสมบัติทางกลจะแตกต่างกัน ดังนั้นตามคำสั่ง API 5L เงื่อนไขของสัญญานอกเหนือจากการระบุข้อกำหนด เกรดเหล็ก และตัวชี้วัดทั่วไปอื่นๆ แต่ยังต้องระบุระดับ Specification ของผลิตภัณฑ์ด้วย นั่นคือ PSL 1 หรือ PSL 2 PSL 2 ในองค์ประกอบทางเคมี สมบัติแรงดึง กำลังกระแทก การทดสอบแบบไม่ทำลาย และตัวชี้วัดอื่นๆ มีความเข้มงวดมากกว่า PSL 1

4. เกรดเหล็กท่อเส้น องค์ประกอบทางเคมี และคุณสมบัติทางกล

เกรดเหล็กท่อเส้นจากต่ำไปสูงแบ่งออกเป็น: A25, A, B, X42, X46, X52, X60, X65, X70 และ X80 สำหรับรายละเอียดองค์ประกอบทางเคมีและคุณสมบัติทางกล โปรดดูที่ข้อกำหนด API 5L หนังสือฉบับที่ 46

5. ข้อกำหนดการทดสอบอุทกสถิตของท่อเส้นและข้อกำหนดการตรวจสอบแบบไม่ทำลาย

ท่อสายควรทำการทดสอบระบบไฮดรอลิกแบบแยกสาขา และมาตรฐานไม่อนุญาตให้สร้างแรงดันไฮดรอลิกแบบไม่ทำลายล้าง ซึ่งถือเป็นความแตกต่างอย่างมากระหว่างมาตรฐาน API และมาตรฐานของเรา PSL 1 ไม่ต้องการการทดสอบแบบไม่ทำลายล้าง ส่วน PSL 2 ควรทำการทดสอบแบบไม่ทำลายล้างแบบแยกสาขา

วี. การเชื่อมต่อระดับพรีเมียม

1. การแนะนำการเชื่อมต่อแบบพรีเมียม

การเชื่อมต่อแบบพรีเมียมคือเธรดไปป์ที่มีโครงสร้างพิเศษที่แตกต่างจากเธรด API แม้ว่าท่อน้ำมันแบบเกลียว API ที่มีอยู่นั้นถูกนำมาใช้กันอย่างแพร่หลายในการแสวงหาผลประโยชน์จากบ่อน้ำมัน แต่ข้อบกพร่องของมันจะแสดงอย่างชัดเจนในสภาพแวดล้อมพิเศษของแหล่งน้ำมันบางแห่ง: คอลัมน์ท่อเกลียวแบบกลม API แม้ว่าประสิทธิภาพการปิดผนึกจะดีกว่า แต่แรงดึงที่เกิดจากเกลียว ส่วนหนึ่งเทียบเท่ากับความแข็งแรงของตัวท่อ 60% ถึง 80% เท่านั้น ดังนั้นจึงไม่สามารถใช้ในการใช้ประโยชน์จากบ่อน้ำลึกได้ คอลัมน์ท่อเกลียวสี่เหลี่ยมคางหมูแบบ API เอนเอียง แม้ว่าประสิทธิภาพแรงดึงจะสูงกว่าการเชื่อมต่อเกลียวแบบกลม API มาก แต่ประสิทธิภาพการปิดผนึกนั้นไม่ดีนัก แม้ว่าประสิทธิภาพแรงดึงของคอลัมน์จะสูงกว่าการเชื่อมต่อเกลียวกลม API มาก แต่ประสิทธิภาพการปิดผนึกไม่ดีนัก ดังนั้นจึงไม่สามารถใช้ในการใช้ประโยชน์จากหลุมก๊าซแรงดันสูงได้ นอกจากนี้ จาระบีแบบเกลียวสามารถมีบทบาทในสภาพแวดล้อมที่มีอุณหภูมิต่ำกว่า 95 ℃เท่านั้น ดังนั้นจึงไม่สามารถใช้ในการใช้ประโยชน์จากบ่อที่มีอุณหภูมิสูงได้

เมื่อเปรียบเทียบกับการเชื่อมต่อเธรดแบบกลม API และเธรดสี่เหลี่ยมคางหมูบางส่วน การเชื่อมต่อแบบพรีเมียมมีความก้าวหน้าอย่างมากในด้านต่อไปนี้:

(1) การปิดผนึกที่ดี ด้วยความยืดหยุ่นและการออกแบบโครงสร้างการปิดผนึกด้วยโลหะ ทำให้การปิดผนึกก๊าซข้อต่อมีความทนทานต่อการเข้าถึงขีดจำกัดของตัวท่อภายในความดันผลผลิต

(2) ความแข็งแรงสูงของการเชื่อมต่อ โดยเชื่อมต่อด้วยการเชื่อมต่อหัวเข็มขัดพิเศษของท่อน้ำมัน ความแข็งแรงของการเชื่อมต่อถึงหรือเกินความแข็งแรงของตัวท่อ เพื่อแก้ปัญหาการลื่นไถลโดยพื้นฐาน

(3) โดยการเลือกวัสดุและการปรับปรุงกระบวนการรักษาพื้นผิว แก้ไขปัญหาของหัวเข็มขัดด้ายติดโดยทั่วไป

(4) ผ่านการเพิ่มประสิทธิภาพของโครงสร้างเพื่อให้การกระจายความเค้นร่วมมีความสมเหตุสมผลและเอื้อต่อความต้านทานต่อการกัดกร่อนของความเค้นมากขึ้น

(5) การออกแบบที่เหมาะสมผ่านโครงสร้างไหล่เพื่อให้การดำเนินงานของหัวเข็มขัดในการทำงานได้ง่ายขึ้น

ปัจจุบัน อุตสาหกรรมน้ำมันและก๊าซมีการเชื่อมต่อระดับพรีเมียมที่ได้รับการจดสิทธิบัตรมากกว่า 100 รายการ ซึ่งแสดงถึงความก้าวหน้าครั้งสำคัญในเทคโนโลยีท่อ การออกแบบเกลียวแบบพิเศษเหล่านี้มีความสามารถในการปิดผนึกที่เหนือกว่า เพิ่มความแข็งแรงในการเชื่อมต่อ และเพิ่มความต้านทานต่อความเครียดจากสิ่งแวดล้อม ด้วยการรับมือกับความท้าทายต่างๆ เช่น แรงกดดันสูง สภาพแวดล้อมที่มีการกัดกร่อน และอุณหภูมิสุดขั้ว นวัตกรรมเหล่านี้รับประกันความน่าเชื่อถือและประสิทธิภาพที่มากขึ้นในการปฏิบัติงานของบ่อน้ำมันทั่วโลก การวิจัยและพัฒนาอย่างต่อเนื่องในการเชื่อมต่อระดับพรีเมี่ยมเน้นย้ำถึงบทบาทสำคัญในการสนับสนุนการปฏิบัติงานขุดเจาะที่ปลอดภัยและมีประสิทธิผลมากขึ้น ซึ่งสะท้อนให้เห็นถึงความมุ่งมั่นอย่างต่อเนื่องเพื่อความเป็นเลิศทางเทคโนโลยีในภาคพลังงาน

การเชื่อมต่อVAM®: การเชื่อมต่อ VAM® เป็นที่รู้จักในด้านประสิทธิภาพที่แข็งแกร่งในสภาพแวดล้อมที่ท้าทาย มาพร้อมเทคโนโลยีการปิดผนึกระหว่างโลหะกับโลหะขั้นสูงและความสามารถด้านแรงบิดสูง ช่วยให้มั่นใจได้ถึงการทำงานที่เชื่อถือได้ในบ่อน้ำลึกและแหล่งกักเก็บแรงดันสูง

TenarisHydril Wedge Series: ซีรีส์นี้นำเสนอการเชื่อมต่อที่หลากหลาย เช่น Blue®, Dopeless® และ Wedge 521® ซึ่งขึ้นชื่อในเรื่องการปิดผนึกก๊าซอย่างดีเยี่ยมและความต้านทานต่อแรงอัดและแรงตึง ซึ่งช่วยเพิ่มความปลอดภัยและประสิทธิภาพในการปฏิบัติงาน

ทีเอสเอช® บลู: ออกแบบโดย Tenaris การเชื่อมต่อ TSH® Blue ใช้การออกแบบบ่าคู่ที่เป็นเอกสิทธิ์และโปรไฟล์เกลียวประสิทธิภาพสูง ให้ความทนทานต่อความล้าที่ดีเยี่ยมและง่ายต่อการประกอบในงานเจาะที่สำคัญ

ให้การเชื่อมต่อ Prideco™ XT®: ออกแบบโดย NOV การเชื่อมต่อ XT® รวมเอาการผนึกระหว่างโลหะกับโลหะที่เป็นเอกลักษณ์และรูปแบบเกลียวที่แข็งแกร่ง ช่วยให้มั่นใจถึงความสามารถในการบิดที่เหนือกว่าและความต้านทานต่อการครูด จึงช่วยยืดอายุการใช้งานของการเชื่อมต่อ

การเชื่อมต่อการล่าสัตว์ Seal-Lock®: การเชื่อมต่อ Seal-Lock® โดย Hunting โดดเด่นด้วยการซีลโลหะต่อโลหะและโปรไฟล์เกลียวที่เป็นเอกลักษณ์ มีชื่อเสียงในด้านความต้านทานแรงดันที่เหนือกว่าและความน่าเชื่อถือในการขุดเจาะทั้งบนบกและนอกชายฝั่ง

บทสรุป

โดยสรุป เครือข่ายท่อที่ซับซ้อนซึ่งมีความสำคัญต่ออุตสาหกรรมน้ำมันและก๊าซนั้นครอบคลุมอุปกรณ์พิเศษมากมายที่ออกแบบมาเพื่อทนต่อสภาพแวดล้อมที่เข้มงวดและความต้องการในการปฏิบัติงานที่ซับซ้อน ตั้งแต่ท่อปลอกพื้นฐานที่รองรับและปกป้องผนังบ่อไปจนถึงท่ออเนกประสงค์ที่ใช้ในกระบวนการสกัดและฉีด ท่อแต่ละประเภทมีจุดประสงค์ที่แตกต่างกันในการสำรวจ การผลิต และการขนส่งไฮโดรคาร์บอน มาตรฐาน เช่น ข้อกำหนด API ช่วยให้มั่นใจได้ถึงความสม่ำเสมอและคุณภาพทั่วทั้งไปป์เหล่านี้ ในขณะที่นวัตกรรม เช่น การเชื่อมต่อระดับพรีเมียมช่วยเพิ่มประสิทธิภาพในสภาวะที่ท้าทาย ขณะที่เทคโนโลยีพัฒนาไป ส่วนประกอบที่สำคัญเหล่านี้ยังคงก้าวหน้าต่อไป โดยขับเคลื่อนประสิทธิภาพและความน่าเชื่อถือในการดำเนินงานด้านพลังงานทั่วโลก การทำความเข้าใจท่อเหล่านี้และข้อกำหนดเฉพาะของท่อเหล่านี้เน้นย้ำถึงบทบาทที่ขาดไม่ได้ในโครงสร้างพื้นฐานของภาคพลังงานสมัยใหม่

เหตุใดเราจึงใช้ท่อเหล็กเพื่อขนส่งน้ำมันและก๊าซ?

In the oil and gas industry, the safe and efficient transport of hydrocarbons from production sites to refineries and distribution centers is critical. Steel line pipes have become the material of choice for transporting oil and gas over vast distances, through challenging environments, and under extreme conditions. This blog delves into the reasons why steel line pipes are widely used for this purpose, exploring their key properties, advantages, and how they meet the demanding requirements of the oil and gas sector.

1. Introduction to Steel Line Pipes

Steel line pipes are cylindrical tubes made from carbon steel or other alloyed steels, specifically designed for transporting oil, natural gas, and other fluids in long-distance pipelines. These pipes must endure high pressures, extreme temperatures, and corrosive environments, making steel the ideal material for such applications.

Types of Steel Line Pipes:

  • Carbon Steel Line Pipes: Commonly used due to their strength, durability, and cost-effectiveness.
  • Alloy Steel Line Pipes: Used in more demanding environments, with added alloys like chromium or molybdenum for enhanced performance.
  • Stainless Steel Line Pipes: Offer excellent corrosion resistance, particularly in harsh environments.

2. Why Steel Line Pipes Are Preferred for Oil and Gas Transportation

Steel line pipes have several advantages that make them ideal for transporting oil and gas. Below are the primary reasons why the industry relies on steel for pipeline infrastructure.

2.1. Strength and Durability

Steel has unmatched strength and durability compared to alternative materials. Oil and gas pipelines need to withstand high internal pressures as well as external environmental factors such as soil movement, heavy loads, and even seismic activity. Steel’s high tensile strength ensures that the pipes can endure these forces without cracking, bursting, or deforming.

2.2. ความต้านทานการกัดกร่อน

Oil and gas are often transported through corrosive environments, such as salty coastal regions, offshore platforms, or pipelines buried underground where moisture and chemicals can accelerate corrosion. Steel line pipes are manufactured with protective coatings like 3LPE (Three-Layer Polyethylene) หรือ อีพ็อกซี่พันธะฟิวชั่น (FBE) to enhance corrosion resistance. Alloyed and stainless steels provide intrinsic protection in highly corrosive environments.

2.3. High Temperature and Pressure Resistance

Pipelines carrying oil and gas frequently operate at elevated temperatures and pressures, especially in deep-water or underground pipelines where conditions are extreme. Steel has a high melting point and excellent heat resistance, enabling it to handle the high-pressure and high-temperature conditions without compromising structural integrity.

2.4. ประสิทธิภาพต้นทุน

While steel may not always be the cheapest material, it offers excellent lifecycle cost benefits. Steel line pipes are known for their longevity, reducing the need for frequent repairs and replacements. Additionally, the strength of steel enables manufacturers to produce thinner pipes with the same pressure rating, reducing material costs without sacrificing performance.

2.5. Ease of Fabrication and Installation

Steel is relatively easy to fabricate, allowing manufacturers to produce pipes in a wide range of sizes, lengths, and wall thicknesses to meet project-specific requirements. Steel pipes can be welded, rolled, or bent to fit complex pipeline routes, and can be produced in large quantities, making them highly adaptable for both onshore and offshore installations.

2.6. Leak Prevention and Safety

Steel pipes, especially those manufactured to stringent industry standards (such as API 5L for oil and gas pipelines), have superior resistance to leakage. The seamless or high-quality welded construction of steel line pipes minimizes weak points where leaks could occur. In addition, steel pipes can withstand harsh environmental conditions and mechanical damage, which reduces the likelihood of accidental spills or explosions.

3. Key Concerns Addressed by Steel Line Pipes

The oil and gas industry has several specific concerns regarding pipeline infrastructure, many of which are effectively addressed by using steel line pipes.

3.1. Corrosion Management

One of the most significant challenges for pipelines, particularly those buried underground or used offshore, is corrosion. Even though the external environment may be highly corrosive, the internal fluids, such as sour gas (H2S-rich natural gas), can also corrode pipelines. Steel line pipes combat this with advanced coatings, cathodic protection systems, and by using alloyed steels that resist chemical reactions, ensuring long-term protection and reliability.

3.2. Environmental Impact and Regulations

Environmental concerns, such as oil spills and gas leaks, can have devastating effects on ecosystems. Steel line pipes meet stringent environmental regulations due to their strength, durability, and ability to prevent leaks. These pipelines are often subjected to rigorous testing, including hydrostatic and X-ray tests, to ensure structural integrity. Many steel pipe systems also include real-time monitoring for early detection of leaks, helping mitigate environmental risks.

3.3. Operational Efficiency and Maintenance

Steel’s durability and ability to resist both external and internal forces minimize downtime and maintenance needs. With pipelines often spanning hundreds of miles, frequent repairs are impractical. Steel line pipes require less frequent maintenance and have a longer lifespan than other materials, providing higher operational efficiency and lower long-term costs for pipeline operators.

4. Steel Line Pipes and Industry Standards

The oil and gas industry is heavily regulated to ensure the safety, reliability, and environmental protection of pipeline systems. Steel line pipes are manufactured according to various standards to meet these stringent requirements.

Key Standards:

  • เอพีไอ 5 ลิตร: Governs the manufacturing of steel line pipes for oil and natural gas transportation. It specifies material grades, sizes, and testing requirements to ensure the pipes can handle the pressures and environmental conditions of oil and gas pipelines.
  • ISO 3183: An international standard that outlines similar specifications as API 5L but focuses on pipeline materials and coatings for global applications.
  • ASTM A106: A standard for seamless carbon steel pipes used in high-temperature services, particularly in refineries and processing plants.

Adhering to these standards ensures that steel line pipes perform safely and effectively in the most demanding applications.

5. Advantages of Steel Line Pipes Over Alternative Materials

While other materials like polyethylene, PVC, or composite pipes may be used in low-pressure or small-diameter pipelines, steel remains the superior choice for large-scale oil and gas transport. Here’s why:

  • Higher Pressure Tolerance: Alternative materials typically cannot withstand the same high pressures as steel, making them unsuitable for long-distance transport of oil and gas.
  • Greater Temperature Resistance: Steel’s ability to endure extreme temperatures is unmatched by plastic or composite materials, which may become brittle or deform.
  • Longer Lifespan: Steel line pipes have an extended service life, often exceeding 50 years when properly maintained, while alternative materials may degrade more rapidly.
  • Recyclability: Steel is fully recyclable, which aligns with industry efforts to reduce environmental impact and promote sustainability.

6. Conclusion

Steel line pipes are indispensable in the oil and gas industry due to their exceptional strength, durability, corrosion resistance, and ability to withstand high-pressure and high-temperature environments. From the challenges of transporting oil and gas across vast distances to meeting stringent environmental and safety standards, steel line pipes have proven themselves as the most reliable and efficient option for pipeline infrastructure.

By choosing steel line pipes, oil and gas companies can achieve safer, more cost-effective, and long-lasting pipeline systems, ensuring the secure transportation of vital resources across the globe. The resilience and adaptability of steel continue to make it the material of choice for the industry’s ever-evolving needs.

Line Pipe เป็นท่อชนิดใด ?

ความหมายของท่อเส้น

In industries where fluids like oil, gas, and water need to be transported over long distances, the choice of piping systems is critical to ensure safety, efficiency, and cost-effectiveness. One of the most commonly used components in these sectors is line pipe. This blog post provides a detailed look into what line pipe is, its key features, applications, and considerations for professionals working in the transmission of oil, gas, and water.

ไลน์ไปป์คืออะไร?

Line pipe is a type of steel pipe that is specifically designed for the transportation of liquids, gases, and sometimes solids. Typically manufactured from carbon or alloy steel, line pipe is engineered to withstand high pressure, corrosion, and extreme temperatures, making it ideal for industries such as oil and gas, where fluids need to be transported over vast distances.

Line pipe plays a pivotal role in pipelines that move oil, natural gas, water, and other fluids from production facilities to refineries, processing plants, or distribution networks. It serves as the backbone of energy infrastructure, ensuring that raw materials are efficiently and safely delivered.

Key Features of Line Pipe

Line pipes are manufactured to meet strict standards and are available in various grades, dimensions, and materials to suit the needs of specific transmission systems. Here are some critical features that make line pipe an essential component for fluid transport:

1. Material Strength and Durability

Line pipe is primarily made from carbon steel, but other alloys such as stainless steel and high-strength, low-alloy steel may be used depending on the application. These materials offer excellent tensile strength, allowing the pipe to withstand high internal pressures and the mechanical stresses of installation and operation.

2. ความต้านทานการกัดกร่อน

Corrosion is a significant concern in pipelines, especially those transporting oil, gas, or water over long distances. Line pipes often undergo various coating and treatment processes, such as galvanization, epoxy coatings, or cathodic protection systems, to resist corrosion and extend their operational lifespan.

3. High Pressure and Temperature Tolerance

Line pipes are designed to operate under high-pressure conditions. Depending on the fluid being transported and the environmental conditions, the pipe must tolerate significant fluctuations in temperature. Pipeline grades, such as API 5L, specify performance standards for different pressures and temperatures.

4. ความสามารถในการเชื่อม

Since pipelines are typically constructed in sections and welded together, line pipe must possess good weldability characteristics. Weldability ensures a secure, leak-proof connection between sections of pipe, contributing to the overall integrity of the pipeline.

Types of Line Pipe

Line pipes come in several types, each suited to specific needs. Here are the two primary types used in oil, gas, and water transmission:

1. Seamless Line Pipe

Seamless line pipe is manufactured without a seam, making it ideal for high-pressure applications. It is produced by rolling solid steel into a tube form and then extruding it to the desired thickness and diameter. Seamless line pipe offers higher strength and better resistance to corrosion and stress cracking.

2. Welded Line Pipe

Welded line pipe is made by forming flat steel into a cylindrical shape and welding the edges together. Welded pipe can be produced in large diameters, making it more cost-effective for low- to medium-pressure applications. However, welded pipe is more susceptible to stress at the seam, so it is often used where operating pressures are lower.

Common Applications of Line Pipe

Line pipe is used in a wide range of industries, including:

1. Oil Transmission

In the oil industry, line pipe is used to transport crude oil from extraction sites to refineries. The pipe must withstand high pressure, corrosive materials, and abrasive conditions, ensuring safe and continuous transportation over long distances.

2. Natural Gas Transmission

Natural gas pipelines require line pipe that can handle high pressures and remain leak-proof under fluctuating environmental conditions. Line pipes in natural gas applications also undergo additional testing for toughness and resistance to brittle fracture, especially in colder climates.

3. Water Distribution

Line pipes are extensively used for the distribution of potable water, wastewater, and industrial water. In water transmission, corrosion resistance is a major concern, and coatings or linings, such as cement mortar or polyethylene, are often applied to protect the steel and extend the pipe’s lifespan.

4. Chemical Transmission

Pipelines in the chemical industry transport a variety of liquids and gases, some of which may be corrosive or hazardous. Line pipe used in these applications must meet stringent safety standards to ensure there are no leaks or failures that could lead to environmental damage or safety hazards.

Key Standards for Line Pipe

Line pipes used in the oil, gas, and water transmission industries are subject to various international standards, which ensure that the pipes meet the necessary safety, performance, and quality requirements. Some of the most widely recognized standards include:

  • API 5L (American Petroleum Institute): This is the most commonly referenced standard for line pipes used in oil and gas transmission. API 5L defines requirements for pipe material, mechanical properties, and testing methods.
  • ISO 3183 (International Organization for Standardization): This standard covers the specifications for steel line pipes for pipeline transportation systems in the petroleum and natural gas industries. ISO 3183 ensures that line pipes are manufactured according to global best practices.
  • ASME B31.8 (American Society of Mechanical Engineers): This standard focuses on gas transmission and distribution piping systems. It provides guidelines on the design, materials, construction, testing, and operation of pipelines.
  • EN 10208-2 (European Standard): This standard applies to steel pipes used in the transmission of flammable liquids or gases in European countries. It sets performance benchmarks for materials, dimensions, and testing.

มาตรฐานทั่วไปและเกรดเหล็ก

API 5L PSL1 

คุณสมบัติทางกลของท่อเส้น PSL1
ระดับ ความแข็งแรงของผลผลิต Rt0,5 Mpa (psi) ความต้านแรงดึง Rm Mpa (psi) การยืดตัว 50 มม. หรือ 2 นิ้ว
A25/A25P ≥175(25400) ≥310(45000) แอฟ
≥210(30500) ≥335(48600) แอฟ
บี ≥245(35500) ≥415(60200) แอฟ
X42 ≥290(42100) ≥415(60200) แอฟ
X46 ≥320(46400) ≥435(63100) แอฟ
X52 ≥360(52200) ≥460(66700) แอฟ
X56 ≥390(56600) ≥490(71100) แอฟ
X60 ≥415(60200) ≥520(75400) แอฟ
X65 ≥450(65300) ≥535(77600) แอฟ
X70 ≥485(70300) ≥570(82700) แอฟ

API 5L PSL2

คุณสมบัติทางกลของท่อเส้น PSL2
ระดับ ความแข็งแรงของผลผลิต Rt0,5 Mpa (psi) ความต้านแรงดึง Rm Mpa (psi) Rt0.5/ริงกิต การยืดตัว 50 มม. หรือ 2 นิ้ว
BR/BN/BQ 245(35500)-450(65300) 415(60200)-655(95000) ≤0.93 แอฟ
X42R/X42N/X42Q 290(42100)-495(71800) ≥415(60200) ≤0.93 แอฟ
X46N/X46Q 320(46400)-525(76100) 435(63100)-655(95000) ≤0.93 แอฟ
X52N/X52Q 360(52200)-530(76900) 460(66700)-760(110200) ≤0.93 แอฟ
X56N/X56Q 390(56600)-545(79000) 490(71100)-760(110200) ≤0.93 แอฟ
X60N/X60Q 415(60200)-565(81900) 520(75400)-760(110200) ≤0.93 แอฟ
X65Q 450(65300)-600(87000) 535(77600)-760(110200) ≤0.93 แอฟ
X70Q 485(70300)-635(92100) 570(82700)-760(110200) ≤0.93 แอฟ

Practical Considerations for Line Pipe Selection

When selecting line pipe for oil, gas, or water transmission, it is essential to consider several factors to ensure optimal performance and safety. Here are some key considerations:

1. Operating Pressure and Temperature

The pipe material and wall thickness must be chosen to handle the expected operating pressure and temperature of the fluid. Over-pressurization can lead to pipeline failure, while insufficient tolerance for high temperatures may result in weakening or deformation.

2. Corrosiveness of the Fluid

Corrosive fluids such as crude oil or certain chemicals may require specialized coatings or materials. Selecting a pipe with the appropriate corrosion resistance can significantly extend the pipeline’s service life.

3. Distance and Terrain

The length and location of the pipeline will impact the type of line pipe needed. For example, pipelines crossing mountainous regions or areas with extreme temperatures may need more durable, thicker pipes to handle the stress and environmental conditions.

4. Regulatory and Safety Compliance

Compliance with local, national, and international regulations is critical. Ensure that the line pipe meets the required standards for the region and industry in which it will be used. This is especially important in hazardous industries like oil and gas, where pipeline failures can have severe environmental and safety consequences.

บทสรุป

Line pipe is a critical component in the oil, gas, and water transmission industries. Its strength, durability, and ability to withstand extreme conditions make it indispensable for transporting fluids over long distances. By understanding the different types of line pipe, their applications, and key considerations for selection, professionals in these fields can ensure the safe and efficient operation of pipelines.

Whether you are working in oil extraction, natural gas distribution, or water infrastructure, selecting the right line pipe is essential for maintaining the integrity of your transmission systems. Always prioritize quality, safety, and compliance with industry standards to optimize pipeline performance and prevent costly failures.

การเคลือบอีพ็อกซี่บอนด์ฟิวชั่น /FBE สำหรับท่อเหล็กคืออะไร?

ท่อเคลือบอีพ๊อกซี่ฟิวชั่น (FBE)

ท่อเหล็กป้องกันการกัดกร่อนหมายถึงท่อเหล็กที่ประมวลผลด้วยเทคโนโลยีป้องกันการกัดกร่อนและสามารถป้องกันหรือชะลอปรากฏการณ์การกัดกร่อนที่เกิดจากปฏิกิริยาทางเคมีหรือไฟฟ้าเคมีในกระบวนการขนส่งและการใช้งานได้อย่างมีประสิทธิภาพ
ท่อเหล็กป้องกันการกัดกร่อนส่วนใหญ่ใช้ในปิโตรเลียมในประเทศ เคมี ก๊าซธรรมชาติ ความร้อน การบำบัดน้ำเสีย แหล่งน้ำ สะพาน โครงสร้างเหล็ก และสาขาวิศวกรรมท่ออื่น ๆ การเคลือบป้องกันการกัดกร่อนที่ใช้กันทั่วไป ได้แก่ การเคลือบ 3PE, การเคลือบ 3PP, การเคลือบ FBE, การเคลือบฉนวนโฟมโพลียูรีเทน, การเคลือบอีพ็อกซี่เหลว, การเคลือบน้ำมันดินอีพ็อกซี่ถ่านหิน ฯลฯ

คืออะไร อีพ็อกซี่เคลือบฟิวชั่นบอนด์ (FBE) เคลือบสารป้องกันการกัดกร่อน?

ผงอีพ็อกซี่พันธะฟิวชั่น (FBE) เป็นวัสดุแข็งชนิดหนึ่งที่ขนส่งและกระจายตัวทางอากาศเป็นตัวพาและทาบนพื้นผิวของผลิตภัณฑ์เหล็กที่อุ่นแล้ว การหลอม การปรับระดับ และการบ่มทำให้เกิดการเคลือบป้องกันการกัดกร่อนที่สม่ำเสมอ ซึ่งเกิดขึ้นภายใต้อุณหภูมิสูง การเคลือบมีข้อดีคือใช้งานง่าย ไม่มีมลภาวะ ทนแรงกระแทกได้ดี ทนต่อการดัดงอ และทนต่ออุณหภูมิสูง ผงอีพ็อกซี่เป็นสารเคลือบแบบเทอร์โมเซตติงที่ไม่เป็นพิษ ซึ่งก่อให้เกิดการเคลือบโครงสร้างเชื่อมโยงข้ามที่มีน้ำหนักโมเลกุลสูงหลังจากการบ่มตัว มีคุณสมบัติป้องกันการกัดกร่อนทางเคมีที่ดีเยี่ยมและคุณสมบัติทางกลสูง โดยเฉพาะอย่างยิ่งความต้านทานการสึกหรอและการยึดเกาะที่ดีที่สุด เป็นสีเคลือบป้องกันการกัดกร่อนคุณภาพสูงสำหรับท่อเหล็กใต้ดิน

การจำแนกประเภทของการเคลือบผงอีพ็อกซี่ผสม:

1) ตามวิธีการใช้งานสามารถแบ่งออกเป็น: การเคลือบ FBE ภายในท่อ, การเคลือบ FBE ด้านนอกท่อ และการเคลือบ FBE ภายในและภายนอกท่อ การเคลือบ FBE ด้านนอกแบ่งออกเป็นการเคลือบ FBE ชั้นเดียวและการเคลือบ FBE สองชั้น (การเคลือบ DPS)
2) ตามการใช้งานสามารถแบ่งออกเป็น: การเคลือบ FBE สำหรับท่อน้ำมันและก๊าซธรรมชาติ, การเคลือบ FBE สำหรับท่อน้ำดื่ม, การเคลือบ FBE สำหรับท่อดับเพลิง, การเคลือบสำหรับท่อระบายอากาศป้องกันไฟฟ้าสถิตย์ในเหมืองถ่านหิน, การเคลือบ FBE สำหรับ ท่อเคมี, การเคลือบ FBE สำหรับท่อเจาะน้ำมัน, การเคลือบ FBE สำหรับอุปกรณ์ท่อ ฯลฯ
3) ตามสภาวะการบ่ม แบ่งได้เป็น 2 ประเภท คือ การบ่มแบบเร็วและการบ่มแบบธรรมดา สภาวะการบ่มของผงบ่มเร็วโดยทั่วไปคือ 230°C/0.5~2 นาที ซึ่งส่วนใหญ่ใช้สำหรับการพ่นภายนอกหรือโครงสร้างป้องกันการกัดกร่อนสามชั้น เนื่องจากใช้เวลาบ่มสั้นและมีประสิทธิภาพการผลิตสูง จึงเหมาะสำหรับการปฏิบัติงานในสายการประกอบ สภาวะการบ่มของผงบ่มธรรมดาโดยทั่วไปจะมากกว่า 230°C/5 นาที เนื่องจากใช้เวลาบ่มนานและการปรับระดับชั้นเคลือบได้ดี จึงเหมาะสำหรับการพ่นในท่อ

ความหนาของการเคลือบ FBE

300-500um

ความหนาของการเคลือบ DPS (double layer FBE)

450-1,000um

มาตรฐานการเคลือบ

SY/T0315,สามารถ/CSA Z245.20,

AWWA C213, Q/CNPC38 ฯลฯ

ใช้

ป้องกันการกัดกร่อนของท่อบนบกและใต้น้ำ

ข้อดี

มีความแข็งแรงในการยึดเกาะดีเยี่ยม

ความต้านทานของฉนวนสูง

ต่อต้านริ้วรอย

การปอกแบบป้องกันแคโทด

ป้องกันอุณหภูมิสูง

ความต้านทานต่อแบคทีเรีย

กระแสป้องกันแคโทดขนาดเล็ก (เพียง 1-5uA/m2)

 

รูปร่าง

ดัชนีประสิทธิภาพ วิธีการทดสอบ
ลักษณะทางความร้อน พื้นผิวเรียบ สีสม่ำเสมอ ไม่มีฟอง รอยแตกและวันหยุด                                                       การตรวจสายตา

การสลายตัวของแคโทด 24 ชั่วโมงหรือ 48 ชั่วโมง (มม.)

≤6.5

เอสวาย/T0315-2005

ลักษณะทางความร้อน (คะแนนของ)

1-4

ความพรุนหน้าตัด (เรตติ้งของ)

1-4
ความยืดหยุ่น 3 องศาเซนติเกรด (สั่งซื้อระบุอุณหภูมิขั้นต่ำ + 3 องศาเซนติเกรด

ไม่มีการติดตาม

ทนต่อแรงกระแทก 1.5J (-30 องศาเซนติเกรด)

ไม่มีวันหยุด
การยึดเกาะ 24 ชม. (ระดับ)

1-3

แรงดันพังทลาย (MV / m)

≥30
ความต้านทานต่อมวล (Ωm)

≥1*1013

วิธีการป้องกันการกัดกร่อนของผงอีพ็อกซี่ชนิดพันธะฟิวชั่น:

วิธีการหลักคือการพ่นด้วยไฟฟ้าสถิต การพ่นด้วยความร้อน การดูด ฟลูอิไดซ์เบด การเคลือบแบบกลิ้ง ฯลฯ โดยทั่วไปวิธีการพ่นด้วยไฟฟ้าสถิตแบบเสียดสี วิธีการดูด หรือวิธีการพ่นด้วยความร้อนใช้สำหรับการเคลือบในท่อ วิธีการเคลือบหลายวิธีเหล่านี้มีลักษณะทั่วไปคือจำเป็นก่อนที่จะพ่นชิ้นงานที่อุ่นถึงอุณหภูมิที่กำหนด ผงละลาย หน้าสัมผัสคือ ความร้อนน่าจะทำให้ฟิล์มไหลต่อไปได้ และไหลต่อไปแบบเรียบครอบคลุมพื้นผิวเหล็กทั้งหมด ท่อโดยเฉพาะในช่องบนพื้นผิวของท่อเหล็กและเชื่อมเคลือบหลอมเหลวทั้งสองด้านเข้ากับสะพานรวมกันอย่างใกล้ชิดกับสารเคลือบและท่อเหล็กทำให้รูขุมขนเล็กลงและแข็งตัวภายในเวลาที่กำหนดระบายความร้อนด้วยน้ำครั้งสุดท้าย การสิ้นสุดกระบวนการแข็งตัว

บทนำของท่อเคลือบ 3LPE

แนะนำสั้น ๆ:

วัสดุฐานของ ท่อเหล็กเคลือบป้องกันการกัดกร่อน 3PE ประกอบด้วยท่อเหล็กไร้ตะเข็บ ท่อเหล็กเชื่อมเกลียว และท่อเหล็กเชื่อมตะเข็บตรง สารเคลือบป้องกันการกัดกร่อนโพลีเอทิลีนสามชั้น (3PE) ถูกนำมาใช้กันอย่างแพร่หลายในอุตสาหกรรมท่อส่งน้ำมันเนื่องจากมีความต้านทานการกัดกร่อนที่ดี ความต้านทานการซึมผ่านของไอน้ำ และคุณสมบัติทางกล การเคลือบป้องกันการกัดกร่อนของ 3PE มีความสำคัญมากต่ออายุการใช้งานของท่อฝัง ท่อบางท่อที่ทำจากวัสดุชนิดเดียวกันถูกฝังอยู่ในดินเป็นเวลาหลายสิบปีโดยไม่มีการกัดกร่อน และบางท่อก็รั่วไหลภายในเวลาไม่กี่ปี เหตุผลก็คือใช้สารเคลือบต่างกัน

โครงสร้างป้องกันการกัดกร่อน:

โดยทั่วไปการเคลือบป้องกันการกัดกร่อน 3PE ประกอบด้วยโครงสร้างสามชั้น: ชั้นแรกคือผงอีพ็อกซี่ (FBE) > 100um ชั้นที่สองคือกาว (AD) 170 ~ 250um ชั้นที่สามคือโพลีเอทิลีน (PE) 1.8-3.7 มม. . ในการใช้งานจริง วัสดุทั้ง 3 ชนิดจะถูกผสมและบูรณาการซึ่งผ่านกระบวนการนำมารวมกับท่อเหล็กอย่างแน่นหนาเพื่อสร้างสารเคลือบป้องกันการกัดกร่อนได้ดีเยี่ยม โดยทั่วไปวิธีการประมวลผลจะแบ่งออกเป็นสองประเภท: ประเภทการม้วนและประเภทการคลุมแม่พิมพ์แบบวงกลม

การเคลือบท่อเหล็กป้องกันการกัดกร่อน 3PE (เคลือบโพลีเอทิลีนป้องกันการกัดกร่อนสามชั้น) เป็นการเคลือบท่อเหล็กป้องกันการกัดกร่อนแบบใหม่ที่ผลิตโดยการผสมผสานอันชาญฉลาดของการเคลือบป้องกันการกัดกร่อน 2PE ในยุโรปและการเคลือบ FBE ที่ใช้กันอย่างแพร่หลายในอเมริกาเหนือ ได้รับการยอมรับและใช้มานานกว่าสิบปีในโลก

ชั้นแรกของท่อเหล็กป้องกันการกัดกร่อน 3PE คือการเคลือบป้องกันการกัดกร่อนของผงอีพ็อกซี่ และชั้นกลางเป็นกาวโคพอลิเมอร์ที่มีกลุ่มฟังก์ชันโครงสร้างสาขา ชั้นผิวเป็นสารเคลือบป้องกันการกัดกร่อนโพลีเอทิลีนความหนาแน่นสูง

การเคลือบป้องกันการกัดกร่อน 3LPE ผสมผสานความสามารถในการซึมผ่านสูงและคุณสมบัติทางกลของอีพอกซีเรซินและโพลีเอทิลีน จนถึงขณะนี้ ได้รับการยอมรับว่าเป็นสารเคลือบป้องกันการกัดกร่อนที่ดีที่สุดโดยมีผลและประสิทธิภาพดีที่สุดในโลก ซึ่งได้นำไปใช้ในหลายโครงการ

ข้อดี:

ท่อเหล็กทั่วไปจะถูกสึกกร่อนอย่างรุนแรงในสภาพแวดล้อมการใช้งานที่ไม่ดี ซึ่งจะลดอายุการใช้งานของท่อเหล็ก อายุการใช้งานของท่อเหล็กป้องกันการกัดกร่อนและรักษาความร้อนก็ค่อนข้างยาวเช่นกัน โดยทั่วไปสามารถใช้งานได้ประมาณ 30-50 ปี และการติดตั้งและการใช้งานที่ถูกต้องยังสามารถลดต้นทุนการบำรุงรักษาโครงข่ายท่อได้อีกด้วย ท่อเหล็กป้องกันการกัดกร่อนและเก็บรักษาความร้อนยังสามารถติดตั้งระบบเตือนภัย การตรวจจับข้อผิดพลาดการรั่วไหลของเครือข่ายท่ออัตโนมัติ ความรู้ที่แม่นยำเกี่ยวกับตำแหน่งข้อบกพร่อง และการเตือนอัตโนมัติ

ท่อเหล็กป้องกันการกัดกร่อนและเก็บรักษาความร้อน 3PE มีประสิทธิภาพการเก็บรักษาความร้อนที่ดีและการสูญเสียความร้อนเพียง 25% ของท่อแบบเดิม การดำเนินงานระยะยาวสามารถประหยัดทรัพยากรได้มาก ลดต้นทุนด้านพลังงานได้อย่างมาก และยังคงมีความสามารถในการกันน้ำและการกัดกร่อนที่แข็งแกร่ง นอกจากนี้ยังสามารถฝังใต้ดินหรือในน้ำได้โดยตรงโดยไม่ต้องมีท่อเพิ่มเติม ซึ่งง่าย รวดเร็ว และครอบคลุมในการก่อสร้าง ต้นทุนยังค่อนข้างต่ำ และมีความต้านทานการกัดกร่อนและทนต่อแรงกระแทกได้ดีภายใต้สภาวะอุณหภูมิต่ำ และยังสามารถฝังโดยตรงในดินแช่แข็ง

แอปพลิเคชัน:

สำหรับท่อเหล็กป้องกันการกัดกร่อน 3PE หลายคนรู้แค่เรื่องเดียวแต่ไม่รู้อีกเรื่อง ฟังก์ชั่นของมันครอบคลุมได้กว้างมาก เหมาะสำหรับการจ่ายน้ำและการระบายน้ำใต้ดิน การฉีดคอนกรีตแบบช็อตใต้ดิน การระบายอากาศด้วยแรงดันบวกและลบ การระบายน้ำแก๊ส สปริงเกอร์ดับเพลิง และเครือข่ายท่ออื่นๆ ของเสียตกค้างและท่อส่งน้ำส่งคืนสำหรับน้ำใช้ในกระบวนการผลิตของโรงไฟฟ้าพลังความร้อน มีการนำไปประยุกต์ใช้กับท่อจ่ายน้ำของระบบป้องกันสเปรย์และสปริงเกอร์ได้อย่างดีเยี่ยม ไฟฟ้า การสื่อสาร ทางหลวง และปลอกป้องกันสายเคเบิลอื่นๆ เหมาะสำหรับการจัดหาน้ำในอาคารสูง เครือข่ายการจ่ายความร้อน การประปา การส่งก๊าซ การส่งน้ำแบบฝัง และท่ออื่น ๆ ท่อปิโตรเลียม อุตสาหกรรมเคมีและยา อุตสาหกรรมการพิมพ์และการย้อมสี ฯลฯ ท่อบำบัดน้ำเสีย ท่อบำบัดน้ำเสีย และวิศวกรรมป้องกันการกัดกร่อนในสระน้ำชีวภาพ อาจกล่าวได้ว่าท่อเหล็กป้องกันการกัดกร่อน 3PE เป็นสิ่งที่ขาดไม่ได้ในการก่อสร้างท่อชลประทานทางการเกษตร ท่อบ่อลึก ท่อระบายน้ำ และการใช้งานเครือข่ายอื่น ๆ ในปัจจุบัน และเชื่อว่าจะยังคงมีการขยายตัวของวิทยาศาสตร์และเทคโนโลยี ความสำเร็จที่ยอดเยี่ยมยิ่งขึ้นในอนาคต

หากคุณต้องการท่อเหล็กเคลือบป้องกันการกัดกร่อนทุกชนิด เช่น ท่อเหล็กเคลือบ 3PE, ท่อเหล็กเคลือบ FBE และท่อเหล็กเคลือบ 3PP เป็นต้น โปรดติดต่อเรา!