NACE MR0175 เทียบกับ NACE MR0103

ความแตกต่างระหว่าง NACE MR0175 และ NACE MR0103 คืออะไร?

ในอุตสาหกรรมเช่นน้ำมันและก๊าซ ซึ่งอุปกรณ์และโครงสร้างพื้นฐานมักเผชิญกับสภาพแวดล้อมที่รุนแรง การเลือกวัสดุที่สามารถทนต่อสภาวะกัดกร่อนจึงมีความสำคัญมาก มาตรฐานสำคัญสองประการที่ใช้เป็นแนวทางในการเลือกวัสดุสำหรับสภาพแวดล้อมที่มีไฮโดรเจนซัลไฟด์ (H₂S) ได้แก่ เนซ MR0175 และ เอ็นเอซี MR0103แม้ว่ามาตรฐานทั้งสองจะมีจุดมุ่งหมายเพื่อป้องกันการแตกร้าวจากซัลไฟด์ (SSC) และความเสียหายที่เกิดจากไฮโดรเจนในรูปแบบอื่นๆ แต่มาตรฐานทั้งสองได้รับการออกแบบมาเพื่อการใช้งานและสภาพแวดล้อมที่แตกต่างกัน บล็อกนี้จะให้ภาพรวมที่ครอบคลุมเกี่ยวกับความแตกต่างระหว่างมาตรฐานที่สำคัญทั้งสองนี้

บทนำสู่มาตรฐาน NACE

NACE International ซึ่งปัจจุบันเป็นส่วนหนึ่งของ Association for Materials Protection and Performance (AMPP) ได้พัฒนา NACE MR0175 และ NACE MR0103 เพื่อรับมือกับความท้าทายที่เกิดจากสภาพแวดล้อมการใช้งานที่มีกรด-ด่างสูง ซึ่งประกอบไปด้วย H₂S สภาพแวดล้อมเหล่านี้อาจทำให้เกิดการกัดกร่อนและการแตกร้าวในรูปแบบต่างๆ ซึ่งอาจส่งผลต่อความสมบูรณ์ของวัสดุและอาจนำไปสู่ความล้มเหลวที่ร้ายแรงได้ วัตถุประสงค์หลักของมาตรฐานเหล่านี้คือเพื่อจัดทำแนวทางในการเลือกวัสดุที่สามารถต้านทานผลกระทบที่เป็นอันตรายเหล่านี้ได้

ขอบเขตและการประยุกต์ใช้

เนซ MR0175

  • จุดเน้นหลัก: NACE MR0175 หรือที่รู้จักกันในชื่อ ISO 15156 มีวัตถุประสงค์หลักสำหรับอุตสาหกรรมน้ำมันและก๊าซต้นน้ำ ซึ่งรวมถึงการสำรวจ การขุดเจาะ การผลิต และการขนส่งไฮโดรคาร์บอน
  • สิ่งแวดล้อม: มาตรฐานดังกล่าวครอบคลุมถึงวัสดุที่ใช้ในสภาพแวดล้อมที่มีกรดกัดกร่อนซึ่งพบในการผลิตน้ำมันและก๊าซ ซึ่งรวมถึงอุปกรณ์ใต้หลุม ส่วนประกอบของหัวบ่อ ท่อส่ง และโรงกลั่น
  • การใช้งานทั่วโลก: NACE MR0175 เป็นมาตรฐานที่ได้รับการยอมรับทั่วโลกและใช้กันอย่างแพร่หลายในการดำเนินการด้านน้ำมันและก๊าซต้นน้ำเพื่อให้แน่ใจถึงความปลอดภัยและความน่าเชื่อถือของวัสดุในสภาพแวดล้อมที่มีรสเปรี้ยว

เอ็นเอซี MR0103

  • จุดเน้นหลัก: NACE MR0103 ได้รับการออกแบบมาโดยเฉพาะสำหรับอุตสาหกรรมการกลั่นและปิโตรเคมีโดยเน้นที่การดำเนินการปลายน้ำ
  • สิ่งแวดล้อม: มาตรฐานนี้ใช้กับโรงงานแปรรูปที่มีไฮโดรเจนซัลไฟด์อยู่ โดยเฉพาะอย่างยิ่งในสภาพแวดล้อม H₂S ที่เปียก มาตรฐานนี้ได้รับการปรับแต่งให้เหมาะกับสภาพแวดล้อมที่พบในหน่วยการกลั่น เช่น หน่วยไฮโดรโปรเซสซิ่ง ซึ่งมีความเสี่ยงสูงที่ซัลไฟด์จะแตกร้าวเนื่องจากความเค้น
  • เฉพาะอุตสาหกรรม: NACE MR0103 นั้นแตกต่างจาก NACE MR0175 ซึ่งใช้ในแอปพลิเคชันที่หลากหลายกว่า โดยจะมุ่งเน้นไปที่ภาคการกลั่นอย่างเฉพาะเจาะจงมากกว่า

ข้อกำหนดด้านวัสดุ

เนซ MR0175

  • ตัวเลือกวัสดุ: NACE MR0175 นำเสนอวัสดุให้เลือกหลากหลาย เช่น เหล็กกล้าคาร์บอน เหล็กกล้าโลหะผสมต่ำ เหล็กกล้าไร้สนิม โลหะผสมนิกเกิล และอื่นๆ อีกมากมาย วัสดุแต่ละชนิดได้รับการจัดประเภทตามความเหมาะสมสำหรับสภาพแวดล้อมที่มีกรดกัดกร่อนเฉพาะ
  • คุณสมบัติ: วัสดุต้องเป็นไปตามเกณฑ์ที่เข้มงวดเพื่อให้มีคุณสมบัติใช้งานได้ รวมถึงความต้านทานต่อ SSC การแตกร้าวที่เกิดจากไฮโดรเจน (HIC) และการแตกร้าวจากการกัดกร่อนจากความเค้นซัลไฟด์ (SSCC)
  • ข้อจำกัดด้านสิ่งแวดล้อม: มาตรฐานดังกล่าวกำหนดขีดจำกัดของความดันบางส่วนของ H₂S อุณหภูมิ ค่า pH และปัจจัยด้านสิ่งแวดล้อมอื่นๆ ที่กำหนดความเหมาะสมของวัสดุสำหรับการใช้งานที่มีรสเปรี้ยว

เอ็นเอซี MR0103

  • ความต้องการวัสดุ: NACE MR0103 มุ่งเน้นไปที่วัสดุที่สามารถต้านทาน SSC ในสภาพแวดล้อมการกลั่น โดยกำหนดเกณฑ์เฉพาะสำหรับวัสดุ เช่น เหล็กกล้าคาร์บอน เหล็กกล้าโลหะผสมต่ำ และเหล็กกล้าไร้สนิมบางชนิด
  • แนวทางแบบง่าย: เมื่อเปรียบเทียบกับ MR0175 แนวทางการเลือกวัสดุใน MR0103 จะตรงไปตรงมามากกว่า สะท้อนถึงเงื่อนไขที่ควบคุมได้และสอดคล้องกันมากกว่าซึ่งมักพบในการดำเนินการกลั่น
  • กระบวนการผลิต: มาตรฐานดังกล่าวยังระบุข้อกำหนดสำหรับการเชื่อม การอบด้วยความร้อน และการผลิต เพื่อให้แน่ใจว่าวัสดุจะรักษาความต้านทานต่อการแตกร้าวได้

การรับรองและการปฏิบัติตาม

เนซ MR0175

  • ใบรับรอง: หน่วยงานกำกับดูแลมักกำหนดให้ต้องปฏิบัติตามมาตรฐาน NACE MR0175 และถือเป็นสิ่งสำคัญในการรับรองความปลอดภัยและความน่าเชื่อถือของอุปกรณ์ในการดำเนินการเกี่ยวกับน้ำมันและก๊าซธรรมชาติที่มีกลิ่นเหม็น มาตรฐานดังกล่าวมีการอ้างอิงในข้อบังคับและสัญญาระหว่างประเทศหลายฉบับ
  • เอกสารประกอบ: โดยทั่วไปแล้ว ต้องมีเอกสารรายละเอียดเพื่อแสดงให้เห็นว่าวัสดุเป็นไปตามเกณฑ์เฉพาะที่ระบุไว้ใน MR0175 ซึ่งรวมถึงองค์ประกอบทางเคมี คุณสมบัติทางกล และการทดสอบความทนทานต่อสภาวะการใช้งานที่มีกรด

เอ็นเอซี MR0103

  • ใบรับรอง: โดยทั่วไปแล้ว สัญญาสำหรับอุปกรณ์และวัสดุที่ใช้ในโรงกลั่นและโรงงานปิโตรเคมีจะต้องปฏิบัติตาม NACE MR0103 ซึ่งจะช่วยให้มั่นใจได้ว่าวัสดุที่เลือกสามารถทนต่อความท้าทายเฉพาะที่เกิดจากสภาพแวดล้อมของโรงกลั่นได้
  • ข้อกำหนดแบบง่าย: แม้ว่าจะยังคงเข้มงวด แต่ข้อกำหนดด้านเอกสารและการทดสอบเพื่อให้เป็นไปตาม MR0103 มักจะซับซ้อนน้อยกว่าข้อกำหนดของ MR0175 ซึ่งสะท้อนให้เห็นถึงเงื่อนไขด้านสิ่งแวดล้อมและความเสี่ยงที่แตกต่างกันในการกลั่นเมื่อเทียบกับการดำเนินการต้นน้ำ

การทดสอบและการรับรองคุณสมบัติ

เนซ MR0175

  • การทดสอบอย่างเข้มงวด: วัสดุจะต้องผ่านการทดสอบอย่างละเอียด รวมถึงการทดสอบในห้องปฏิบัติการสำหรับ SSC, HIC และ SSCC เพื่อให้มีคุณสมบัติสำหรับใช้งานในสภาพแวดล้อมที่มีรสเปรี้ยว
  • มาตรฐานระดับโลก: มาตรฐานดังกล่าวสอดคล้องกับขั้นตอนการทดสอบระดับสากล และมักกำหนดให้วัสดุต้องเป็นไปตามเกณฑ์ประสิทธิภาพที่เข้มงวดในสภาวะที่รุนแรงที่สุดในการปฏิบัติการน้ำมันและก๊าซ

เอ็นเอซี MR0103

  • การทดสอบแบบกำหนดเป้าหมาย: ข้อกำหนดในการทดสอบมุ่งเน้นไปที่เงื่อนไขเฉพาะของสภาพแวดล้อมของโรงกลั่น ซึ่งรวมถึงการทดสอบความต้านทานต่อ H₂S เปียก SSC และรูปแบบการแตกร้าวอื่นๆ ที่เกี่ยวข้อง
  • เฉพาะการใช้งาน: โปรโตคอลการทดสอบได้รับการปรับแต่งให้เหมาะกับความต้องการของกระบวนการกลั่น ซึ่งโดยทั่วไปเกี่ยวข้องกับเงื่อนไขที่ไม่รุนแรงเท่ากับที่พบในการดำเนินการต้นน้ำ

บทสรุป

แม้ว่า NACE MR0175 และ NACE MR0103 ทั้งคู่จะทำหน้าที่สำคัญในการป้องกันการแตกร้าวจากความเค้นซัลไฟด์และการแตกร้าวจากสภาพแวดล้อมอื่นๆ ในสภาพแวดล้อมการบริการที่มีรสเปรี้ยว แต่ทั้งสองมาตรฐานก็ได้รับการออกแบบมาเพื่อการใช้งานที่แตกต่างกัน

  • เนซ MR0175 เป็นมาตรฐานสำหรับการดำเนินการด้านน้ำมันและก๊าซต้นน้ำ ครอบคลุมวัสดุและสภาวะแวดล้อมที่หลากหลาย โดยมีกระบวนการทดสอบและคุณสมบัติที่เข้มงวด
  • เอ็นเอซี MR0103 ได้รับการออกแบบมาโดยเฉพาะสำหรับอุตสาหกรรมการกลั่น โดยเน้นการดำเนินการขั้นปลายน้ำโดยมีเกณฑ์การเลือกใช้วัสดุที่เรียบง่ายและตรงเป้าหมายยิ่งขึ้น

การทำความเข้าใจถึงความแตกต่างระหว่างมาตรฐานเหล่านี้ถือเป็นสิ่งสำคัญในการเลือกวัสดุที่เหมาะสมสำหรับการใช้งานเฉพาะของคุณ และเพื่อรับประกันความปลอดภัย ความน่าเชื่อถือ และอายุการใช้งานยาวนานของโครงสร้างพื้นฐานของคุณในสภาพแวดล้อมที่มีไฮโดรเจนซัลไฟด์อยู่

การแตกร้าวที่เกิดจากไฮโดรเจน HIC

การแตกร้าวในสิ่งแวดล้อม: HB, HIC, SWC, SOHIC, SSC, SZC, HSC, HE, SCC

ในอุตสาหกรรมที่วัสดุต่างๆ ต้องสัมผัสกับสภาพแวดล้อมที่รุนแรง เช่น น้ำมันและก๊าซ การแปรรูปทางเคมี และการผลิตไฟฟ้า การทำความเข้าใจและป้องกันการแตกร้าวจากสิ่งแวดล้อมถือเป็นสิ่งสำคัญ การแตกร้าวประเภทนี้อาจนำไปสู่ความล้มเหลวที่ร้ายแรง การซ่อมแซมที่มีค่าใช้จ่ายสูง และความเสี่ยงด้านความปลอดภัยที่สำคัญ โพสต์บล็อกนี้จะให้ภาพรวมโดยละเอียดและเป็นมืออาชีพเกี่ยวกับรูปแบบต่างๆ ของการแตกร้าวจากสิ่งแวดล้อม รวมถึงการรับรู้ กลไกพื้นฐาน และกลยุทธ์ในการป้องกัน

1. ภาวะพุพองจากไฮโดรเจน (HB)

การยอมรับ:
การเกิดตุ่มพองจากไฮโดรเจนมีลักษณะเฉพาะคือมีตุ่มพองหรือตุ่มนูนขึ้นบนพื้นผิวของวัสดุ ตุ่มพองเหล่านี้เกิดจากอะตอมไฮโดรเจนที่แทรกซึมเข้าไปในวัสดุและสะสมที่จุดบกพร่องหรือสิ่งที่รวมตัวอยู่ภายใน ทำให้เกิดโมเลกุลไฮโดรเจนที่สร้างแรงดันสูงในบริเวณนั้น

กลไก:
อะตอมไฮโดรเจนแพร่กระจายเข้าไปในวัสดุ โดยทั่วไปคือเหล็กกล้าคาร์บอน และรวมตัวกันใหม่เป็นไฮโดรเจนโมเลกุลในบริเวณที่มีสิ่งเจือปนหรือช่องว่าง แรงกดดันจากโมเลกุลไฮโดรเจนเหล่านี้ทำให้เกิดตุ่มพอง ซึ่งอาจทำให้วัสดุอ่อนแอลงและนำไปสู่การเสื่อมสภาพเพิ่มเติม

การป้องกัน:

  • การเลือกใช้วัสดุ: การใช้วัสดุที่มีสิ่งเจือปนต่ำ โดยเฉพาะเหล็กที่มีปริมาณกำมะถันต่ำ
  • สารเคลือบป้องกัน: การประยุกต์ใช้การเคลือบเพื่อป้องกันการเข้าของไฮโดรเจน
  • การป้องกันแคโทด: การนำระบบป้องกันแคโทดิกมาใช้เพื่อลดการดูดซับไฮโดรเจน

2. การแตกร้าวที่เกิดจากไฮโดรเจน (HIC)

การยอมรับ:
รอยแตกร้าวที่เกิดจากไฮโดรเจน (HIC) ระบุได้จากรอยแตกร้าวภายในที่มักจะขนานไปกับทิศทางการกลิ้งของวัสดุ รอยแตกร้าวเหล่านี้มักเกิดขึ้นตามขอบเกรนและไม่ขยายไปถึงพื้นผิวของวัสดุ ทำให้ยากต่อการตรวจจับจนกว่าจะเกิดความเสียหายอย่างมีนัยสำคัญ

กลไก:
คล้ายกับการเกิดฟองไฮโดรเจน อะตอมไฮโดรเจนจะเข้าไปในวัสดุและรวมตัวกันใหม่เพื่อสร้างไฮโดรเจนโมเลกุลภายในโพรงหรือสิ่งที่รวมเข้าด้วยกัน แรงดันที่เกิดจากโมเลกุลเหล่านี้ทำให้เกิดรอยแตกร้าวภายใน ส่งผลให้ความสมบูรณ์ของโครงสร้างของวัสดุลดลง

การป้องกัน:

  • การเลือกใช้วัสดุ: เลือกใช้เหล็กที่มีปริมาณกำมะถันต่ำและมีสิ่งเจือปนในระดับต่ำ
  • การรักษาความร้อน: ใช้กระบวนการอบด้วยความร้อนที่เหมาะสมเพื่อปรับปรุงโครงสร้างจุลภาคของวัสดุ
  • มาตรการป้องกัน: ใช้สารเคลือบและการป้องกันแคโทดิกเพื่อยับยั้งการดูดซับไฮโดรเจน

3. การแตกร้าวที่เกิดจากไฮโดรเจนเนื่องมาจากความเครียด (SOHIC)

การยอมรับ:
SOHIC คือรูปแบบหนึ่งของการแตกร้าวที่เกิดจากไฮโดรเจน ซึ่งเกิดขึ้นเมื่อมีแรงดึงจากภายนอก โดยสามารถรับรู้ได้จากรูปแบบการแตกร้าวแบบขั้นบันไดหรือแบบขั้นบันไดที่มักพบใกล้กับรอยเชื่อมหรือบริเวณที่มีแรงดึงสูงอื่นๆ

กลไก:
การรวมกันของการแตกร้าวที่เกิดจากไฮโดรเจนและแรงดึงทำให้เกิดรูปแบบการแตกร้าวที่รุนแรงและชัดเจนยิ่งขึ้น การมีอยู่ของแรงดึงทำให้ผลกระทบของการเปราะบางจากไฮโดรเจนรุนแรงขึ้น ส่งผลให้รอยแตกร้าวแพร่กระจายในลักษณะเป็นขั้นเป็นตอน

การป้องกัน:

  • การจัดการความเครียด: ใช้วิธีการบำบัดเพื่อคลายความเครียดเพื่อลดความเครียดที่ตกค้าง
  • การเลือกใช้วัสดุ: ใช้วัสดุที่มีความต้านทานการเปราะเนื่องจากไฮโดรเจนสูง
  • มาตรการป้องกัน: ใช้สารเคลือบป้องกันและป้องกันแคโทดิก

4. การแตกร้าวจากความเครียดของซัลไฟด์ (SSC)

การยอมรับ:
การแตกร้าวจากความเค้นซัลไฟด์ (SSC) มีลักษณะเป็นรอยแตกร้าวเปราะในเหล็กที่มีความแข็งแรงสูงซึ่งสัมผัสกับสภาพแวดล้อมที่มีไฮโดรเจนซัลไฟด์ (H₂S) รอยแตกร้าวเหล่านี้มักเกิดขึ้นระหว่างเม็ดเกรนและสามารถแพร่กระจายอย่างรวดเร็วภายใต้แรงดึง ทำให้เกิดความล้มเหลวอย่างกะทันหันและร้ายแรง

กลไก:
ในกรณีที่มีไฮโดรเจนซัลไฟด์ อะตอมไฮโดรเจนจะถูกดูดซับโดยวัสดุ ทำให้เกิดการเปราะบาง การเปราะบางนี้ทำให้ความสามารถของวัสดุในการทนต่อแรงดึงลดลง ส่งผลให้เกิดการแตกแบบเปราะ

การป้องกัน:

  • การเลือกใช้วัสดุ: การใช้วัสดุที่ทนทานต่อกรดกัดกร่อนพร้อมระดับความแข็งที่ควบคุมได้
  • การควบคุมสิ่งแวดล้อม: การลดการสัมผัสกับไฮโดรเจนซัลไฟด์หรือใช้สารยับยั้งเพื่อลดผลกระทบให้น้อยที่สุด
  • สารเคลือบป้องกัน: การประยุกต์ใช้การเคลือบเพื่อทำหน้าที่เป็นสิ่งกีดขวางต่อไฮโดรเจนซัลไฟด์

5. การแตกร้าวแบบขั้นตอน (SWC)

การยอมรับ:
การแตกร้าวแบบเป็นขั้นตอน หรือที่เรียกว่าการแตกร้าวจากไฮโดรเจนแบบเป็นขั้นตอน เกิดขึ้นกับเหล็กที่มีความแข็งแรงสูง โดยเฉพาะในโครงสร้างที่เชื่อม โดยจะสังเกตได้จากรูปแบบรอยแตกร้าวแบบซิกแซกหรือแบบขั้นบันได ซึ่งมักพบใกล้กับรอยเชื่อม

กลไก:
รอยแตกร้าวแบบเป็นขั้นตอนเกิดขึ้นจากผลรวมของความเปราะบางที่เกิดจากไฮโดรเจนและความเค้นตกค้างจากการเชื่อม รอยแตกร้าวจะแพร่กระจายแบบเป็นขั้นตอนโดยเคลื่อนไปตามเส้นทางที่อ่อนแอที่สุดผ่านวัสดุ

การป้องกัน:

  • การรักษาความร้อน: ใช้การอบด้วยความร้อนก่อนและหลังการเชื่อมเพื่อลดความเค้นตกค้าง
  • การเลือกใช้วัสดุ: เลือกใช้วัสดุที่มีความต้านทานการเปราะเนื่องจากไฮโดรเจนได้ดีกว่า
  • การอบไฮโดรเจน: ดำเนินการตามขั้นตอนการอบไฮโดรเจนหลังการเชื่อมเพื่อกำจัดไฮโดรเจนที่ดูดซับไว้

6. การแตกร้าวของสังกะสีจากความเครียด (SZC)

การยอมรับ:
การแตกร้าวจากสังกะสีที่เกิดจากความเค้น (SZC) เกิดขึ้นในเหล็กเคลือบสังกะสี (สังกะสีเคลือบสังกะสี) โดยสามารถระบุการแตกร้าวตามขอบเกรนได้ ซึ่งอาจนำไปสู่การแยกชั้นของสังกะสีเคลือบและความล้มเหลวทางโครงสร้างของเหล็กที่อยู่ข้างใต้ตามมา

กลไก:
SZC เกิดจากแรงดึงที่เกิดขึ้นภายในชั้นเคลือบสังกะสีและการสัมผัสกับสภาพแวดล้อมที่กัดกร่อน แรงดึงที่เกิดขึ้นภายในชั้นเคลือบร่วมกับปัจจัยด้านสิ่งแวดล้อมทำให้เกิดการแตกร้าวตามเกรนและความล้มเหลว

การป้องกัน:

  • การควบคุมการเคลือบ: ให้แน่ใจว่าความหนาของการเคลือบสังกะสีเหมาะสมเพื่อหลีกเลี่ยงความเครียดที่มากเกินไป
  • ข้อควรพิจารณาในการออกแบบ: หลีกเลี่ยงทางโค้งและมุมแหลมที่จะทำให้เกิดความเครียด
  • การควบคุมสิ่งแวดล้อม: ลดการสัมผัสกับสภาพแวดล้อมที่กัดกร่อนซึ่งอาจทำให้เกิดการแตกร้าวมากขึ้น

7. การแตกร้าวจากความเครียดของไฮโดรเจน (HSC)

การยอมรับ:
การแตกร้าวจากความเค้นของไฮโดรเจน (HSC) เป็นรูปแบบหนึ่งของการเปราะของไฮโดรเจนที่เกิดขึ้นในเหล็กที่มีความแข็งแรงสูงที่สัมผัสกับไฮโดรเจน ลักษณะเฉพาะคือเกิดการแตกร้าวแบบเปราะทันทีภายใต้แรงดึง

กลไก:
อะตอมไฮโดรเจนแพร่กระจายเข้าไปในเหล็ก ทำให้เกิดการเปราะบาง ความเปราะบางนี้ลดความเหนียวของวัสดุลงอย่างมาก ทำให้มีแนวโน้มที่จะแตกร้าวและเสียหายทันทีภายใต้แรงกด

การป้องกัน:

  • การเลือกใช้วัสดุ: เลือกวัสดุที่มีความเปราะบางจากไฮโดรเจนต่ำ
  • การควบคุมสิ่งแวดล้อม: ลดการสัมผัสกับไฮโดรเจนให้น้อยที่สุดระหว่างการแปรรูปและการบริการ
  • มาตรการป้องกัน: ทาสารเคลือบป้องกันและใช้การป้องกันแคโทดิกเพื่อป้องกันไฮโดรเจนเข้ามา

8. ไฮโดรเจนเปราะบาง (HE)

การยอมรับ:
ความเปราะบางของไฮโดรเจน (HE) เป็นคำทั่วไปสำหรับการสูญเสียความเหนียวและการแตกร้าวหรือแตกหักของวัสดุที่ตามมาอันเนื่องมาจากการดูดซับไฮโดรเจน มักจะรับรู้ได้จากลักษณะการแตกหักที่เปราะบางและเกิดขึ้นทันที

กลไก:
อะตอมไฮโดรเจนจะเข้าสู่โครงสร้างตาข่ายของโลหะ ทำให้ความเหนียวและความเหนียวลดลงอย่างมาก เมื่ออยู่ภายใต้แรงกด วัสดุที่เปราะบางจะมีแนวโน้มที่จะแตกร้าวและเสียหาย

การป้องกัน:

  • การเลือกใช้วัสดุ: ใช้วัสดุที่มีความทนทานต่อการเปราะบางจากไฮโดรเจน
  • การควบคุมไฮโดรเจน: จัดการการสัมผัสไฮโดรเจนในระหว่างการผลิตและการบริการเพื่อป้องกันการดูดซึม
  • สารเคลือบป้องกัน: ทาสารเคลือบเพื่อป้องกันไม่ให้ไฮโดรเจนเข้าไปในวัสดุ

9. การแตกร้าวจากการกัดกร่อนจากความเค้น (SCC)

การยอมรับ:
การแตกร้าวจากการกัดกร่อนจากความเค้น (SCC) มีลักษณะเฉพาะคือมีรอยแตกร้าวเล็กๆ เกิดขึ้นที่พื้นผิวของวัสดุและแพร่กระจายผ่านความหนาของวัสดุ SCC เกิดขึ้นเมื่อวัสดุสัมผัสกับสภาพแวดล้อมที่กัดกร่อนเฉพาะขณะที่อยู่ภายใต้แรงดึง

กลไก:
SCC เกิดจากผลรวมของแรงดึงและสภาพแวดล้อมที่กัดกร่อน ตัวอย่างเช่น SCC ที่เกิดจากคลอไรด์เป็นปัญหาทั่วไปในสเตนเลสสตีล โดยไอออนคลอไรด์ช่วยให้รอยแตกร้าวเริ่มต้นและแพร่กระจายภายใต้แรงดึง

การป้องกัน:

  • การเลือกใช้วัสดุ: เลือกวัสดุที่มีความทนทานต่อประเภท SCC เฉพาะที่เกี่ยวข้องกับสภาพแวดล้อม
  • การควบคุมสิ่งแวดล้อม: ลดความเข้มข้นของสารกัดกร่อน เช่น คลอไรด์ ในสภาพแวดล้อมการทำงาน
  • การจัดการความเครียด: ใช้การอบเพื่อคลายความเครียดและการออกแบบอย่างระมัดระวังเพื่อลดความเครียดตกค้างที่อาจส่งผลต่อ SCC

บทสรุป

การแตกร้าวจากสิ่งแวดล้อมเป็นความท้าทายที่ซับซ้อนและหลากหลายสำหรับอุตสาหกรรมที่ความสมบูรณ์ของวัสดุเป็นสิ่งสำคัญ การทำความเข้าใจกลไกเฉพาะเบื้องหลังการแตกร้าวแต่ละประเภท เช่น HB, HIC, SWC, SOHIC, SSC, SZC, HSC, HE และ SCC ถือเป็นสิ่งสำคัญสำหรับการป้องกันที่มีประสิทธิภาพ โดยการนำกลยุทธ์ต่างๆ เช่น การเลือกวัสดุ การจัดการความเครียด การควบคุมสิ่งแวดล้อม และการเคลือบป้องกันมาใช้ อุตสาหกรรมต่างๆ สามารถลดความเสี่ยงที่เกี่ยวข้องกับการแตกร้าวในรูปแบบเหล่านี้ได้อย่างมาก ทำให้มั่นใจได้ว่าโครงสร้างพื้นฐานของตนจะปลอดภัย เชื่อถือได้ และมีอายุการใช้งานยาวนาน

ในขณะที่ความก้าวหน้าทางเทคโนโลยียังคงพัฒนาอย่างต่อเนื่อง วิธีการในการต่อสู้กับการแตกร้าวในสิ่งแวดล้อมก็จะพัฒนาตามไปด้วย ทำให้การวิจัยและพัฒนาอย่างต่อเนื่องมีความสำคัญต่อการรักษาความสมบูรณ์ของวัสดุในสภาพแวดล้อมที่มีความต้องการสูง

การสร้างถังเก็บน้ำมัน: การคำนวณความต้องการแผ่นเหล็ก

วิธีการคำนวณจำนวนแผ่นเหล็กสำหรับถังเก็บน้ำมัน

การสร้างถังเก็บน้ำมันต้องมีการวางแผนอย่างแม่นยำและการคำนวณที่แม่นยำเพื่อให้มั่นใจถึงความสมบูรณ์ของโครงสร้าง ความปลอดภัย และความคุ้มทุน สำหรับถังที่สร้างขึ้นโดยใช้ แผ่นเหล็กกล้าคาร์บอนการกำหนดปริมาณและการจัดเรียงแผ่นเหล็กเหล่านี้ถือเป็นสิ่งสำคัญ ในบล็อกนี้ เราจะสำรวจกระบวนการคำนวณจำนวนแผ่นเหล็กที่จำเป็นสำหรับการสร้างถังเก็บน้ำมันทรงกระบอกสามถัง โดยใช้ตัวอย่างเฉพาะเพื่ออธิบายขั้นตอนที่เกี่ยวข้อง

รายละเอียดโครงการ

ความต้องการของลูกค้า:

  • ตัวเลือกความหนาของแผ่น: แผ่นเหล็กกล้าคาร์บอนขนาด 6 มม. 8 มม. และ 10 มม.
  • ขนาดแผ่น: ความกว้าง: 2200มม. ความยาว: 6000มม.

ข้อมูลจำเพาะของถัง:

  • จำนวนถัง: 3
  • ปริมาตรถังแต่ละถัง: 3,000 ลูกบาศก์เมตร
  • ความสูง: 12 เมตร
  • เส้นผ่านศูนย์กลาง : 15.286 เมตร

ขั้นตอนการคำนวณปริมาณแผ่นเหล็กสำหรับถังเก็บน้ำมันทรงกระบอกสามถัง

ขั้นตอนที่ 1: คำนวณพื้นที่ผิวของถังเดียว

พื้นที่ผิวของถังแต่ละถังคือผลรวมของพื้นที่ผิวของเปลือกทรงกระบอก ด้านล่าง และหลังคา

1. คำนวณเส้นรอบวงและพื้นที่เปลือก

2. คำนวณพื้นที่ด้านล่างและหลังคา

 

ขั้นตอนที่ 2: คำนวณพื้นที่ผิวรวมสำหรับถังทั้งหมด

ขั้นตอนที่ 3: กำหนดจำนวนแผ่นเหล็กที่ต้องการ

ขั้นตอนที่ 4: จัดสรรความหนาของแผ่น

เพื่อเพิ่มประสิทธิภาพความสมบูรณ์ของโครงสร้างถังและต้นทุน ให้จัดสรรความหนาของแผ่นที่แตกต่างกันสำหรับส่วนต่างๆ ของแต่ละถัง:

  • แผ่นเหล็กขนาด 6 มม.:ใช้สำหรับหลังคาที่มีความเครียดโครงสร้างต่ำ
  • แผ่นเหล็กขนาด 8 มม.:ใช้ทาบริเวณส่วนบนของเปลือกถัง ที่มีแรงกดปานกลาง
  • แผ่นเหล็กขนาด 10 มม.:ใช้สำหรับส่วนก้นและส่วนล่างของเปลือกหอย ซึ่งเป็นส่วนที่มีความเครียดสูงที่สุดเนื่องจากน้ำหนักของน้ำมันที่เก็บไว้

ขั้นตอนที่ 5: ตัวอย่างการจัดสรรแผ่นสำหรับแต่ละถัง

แผ่นด้านล่าง:

  • พื้นที่ที่ต้องการต่อถัง: 183.7 ตารางเมตร
  • ความหนาของแผ่น: 10มม.
  • จำนวนแผ่นต่อถัง: [183.7/13.2] จาน
  • รวมทั้งหมด 3 ถัง: 14 × 3 จาน

แผ่นเปลือกหอย:

  • พื้นที่ที่ต้องการต่อถัง: 576 ตารางเมตร
  • ความหนาของแผ่น: 10มม. (ส่วนล่าง), 8มม. (ส่วนบน)
  • จำนวนแผ่นต่อถัง: [576/13.2] จาน
    • ส่วนล่าง (10มม.):ประมาณ 22 แผ่นต่อถัง
    • ส่วนบน (8มม.):ประมาณ 22 แผ่นต่อถัง
  • รวมทั้งหมด 3 ถัง: 44 × 3 จาน

แผ่นหลังคา:

  • พื้นที่ที่ต้องการต่อถัง: 183.7 ตารางเมตร
  • ความหนาของแผ่น: 6มม.
  • จำนวนแผ่นต่อถัง: [183.7/13.2] จาน
  • รวมทั้งหมด 3 ถัง: 14 × 3 = จาน

ข้อควรพิจารณาสำหรับการคำนวณที่แม่นยำ

  • ค่าเผื่อการกัดกร่อน: รวมความหนาเพิ่มเติมเพื่อรองรับการกัดกร่อนในอนาคต
  • ของเสีย:พิจารณาถึงการสูญเสียวัสดุที่เกิดจากการตัดและการประกอบ ซึ่งโดยทั่วไปจะเพิ่มวัสดุพิเศษ 5-10%
  • รหัสการออกแบบ:รับรองความสอดคล้องกับรหัสและมาตรฐานการออกแบบที่เกี่ยวข้อง เช่น API 650 เมื่อกำหนดความหนาของแผ่นและการออกแบบถัง

บทสรุป

การสร้างถังเก็บน้ำมันด้วยแผ่นเหล็กกล้าคาร์บอนเกี่ยวข้องกับการคำนวณที่แม่นยำเพื่อให้แน่ใจว่าวัสดุมีประสิทธิภาพและโครงสร้างมีความสมบูรณ์ เมื่อกำหนดพื้นที่ผิวและพิจารณาความหนาของแผ่นที่เหมาะสมอย่างแม่นยำ คุณสามารถประมาณจำนวนแผ่นที่จำเป็นในการสร้างถังที่ตรงตามมาตรฐานอุตสาหกรรมและข้อกำหนดของลูกค้า การคำนวณเหล่านี้สร้างรากฐานสำหรับการสร้างถังที่ประสบความสำเร็จ ช่วยให้จัดหาวัสดุและวางแผนโครงการได้อย่างมีประสิทธิภาพ ไม่ว่าจะเป็นโครงการใหม่หรือการปรับปรุงถังที่มีอยู่ แนวทางนี้ช่วยให้มั่นใจได้ว่าจะมีโซลูชันการจัดเก็บน้ำมันที่แข็งแกร่งและเชื่อถือได้ซึ่งสอดคล้องกับแนวทางปฏิบัติที่ดีที่สุดทางวิศวกรรม หากคุณมีโครงการถังเก็บ LNG เชื้อเพลิงการบิน หรือน้ำมันดิบใหม่ โปรดติดต่อ [email protected] เพื่อใบเสนอราคาแผ่นเหล็กที่เหมาะสมที่สุด

การเคลือบ 3LPE เทียบกับการเคลือบ 3LPP

3LPE เทียบกับ 3LPP: การเปรียบเทียบการเคลือบท่ออย่างครอบคลุม

การเคลือบท่อเป็นสิ่งสำคัญในการปกป้องท่อเหล็กจากการกัดกร่อนและปัจจัยด้านสิ่งแวดล้อมอื่นๆ การเคลือบที่ใช้กันทั่วไปมากที่สุด ได้แก่ โพลีเอทิลีน 3 ชั้น (3LPE) และ โพลิโพรพิลีน 3 ชั้น (3LPP) สารเคลือบ สารเคลือบทั้งสองชนิดให้การปกป้องที่แข็งแรง แต่แตกต่างกันในแง่ของการใช้งาน องค์ประกอบ และประสิทธิภาพ บล็อกนี้จะให้การเปรียบเทียบโดยละเอียดระหว่างสารเคลือบ 3LPE และ 3LPP โดยเน้นที่ 5 ประเด็นสำคัญ ได้แก่ การเลือกสารเคลือบ องค์ประกอบของสารเคลือบ ประสิทธิภาพของสารเคลือบ ข้อกำหนดในการก่อสร้าง และกระบวนการก่อสร้าง

1. การเลือกเคลือบผิว

การเคลือบ 3LPE:

  • การใช้งาน:3LPE ใช้กันอย่างแพร่หลายในอุตสาหกรรมน้ำมันและก๊าซสำหรับท่อส่งบนบกและนอกชายฝั่ง เหมาะเป็นพิเศษสำหรับสภาพแวดล้อมที่ต้องการความต้านทานอุณหภูมิปานกลางและการป้องกันเชิงกลที่ยอดเยี่ยม
  • ช่วงอุณหภูมิ:โดยทั่วไปแล้วการเคลือบ 3LPE จะใช้กับท่อที่ทำงานในอุณหภูมิตั้งแต่ -40°C ถึง 80°C
  • การพิจารณาต้นทุน:โดยทั่วไปแล้ว 3LPE จะมีต้นทุนคุ้มค่ามากกว่า 3LPP ซึ่งทำให้เป็นตัวเลือกยอดนิยมสำหรับโครงการที่มีข้อจำกัดด้านงบประมาณซึ่งความต้องการอุณหภูมิอยู่ภายในช่วงที่รองรับ

การเคลือบ 3LPP:

  • การใช้งาน:3LPP เป็นที่นิยมใช้ในสภาพแวดล้อมที่มีอุณหภูมิสูง เช่น ท่อส่งนอกชายฝั่งน้ำลึกและท่อส่งของเหลวร้อน นอกจากนี้ยังใช้ในพื้นที่ที่ต้องการการป้องกันเชิงกลขั้นสูงอีกด้วย
  • ช่วงอุณหภูมิ:สารเคลือบ 3LPP สามารถทนต่ออุณหภูมิที่สูงกว่า โดยทั่วไปอยู่ระหว่าง -20°C ถึง 140°C จึงทำให้เหมาะกับการใช้งานที่ต้องการความแม่นยำสูงมากขึ้น
  • การพิจารณาต้นทุน:สารเคลือบ 3LPP มีราคาแพงกว่าเนื่องจากทนทานต่ออุณหภูมิและมีคุณสมบัติเชิงกลที่เหนือกว่า แต่จำเป็นสำหรับท่อที่ต้องทำงานในสภาวะที่รุนแรง

สรุปผลการคัดเลือกการเลือกใช้ระหว่าง 3LPE และ 3LPP ขึ้นอยู่กับอุณหภูมิการทำงานของท่อ สภาพแวดล้อม และงบประมาณเป็นหลัก โดย 3LPE เหมาะอย่างยิ่งสำหรับอุณหภูมิปานกลางและโครงการที่คำนึงถึงต้นทุน ในขณะที่ 3LPP เป็นที่นิยมสำหรับสภาพแวดล้อมอุณหภูมิสูงและที่ซึ่งจำเป็นต้องมีการป้องกันเชิงกลที่ดีขึ้น

2. องค์ประกอบของสารเคลือบ

ส่วนผสมของสารเคลือบ 3LPE:

  • ชั้นที่ 1: ฟิวชั่นบอนด์อีพอกซี (FBE):ชั้นในสุดให้การยึดเกาะที่ดีเยี่ยมกับพื้นผิวเหล็กและทำหน้าที่เป็นชั้นป้องกันการกัดกร่อนหลัก
  • ชั้นที่ 2: กาวโคพอลิเมอร์:ชั้นนี้จะยึดชั้น FBE เข้ากับชั้นเคลือบผิวโพลีเอทิลีน ช่วยให้ยึดเกาะได้แข็งแรงและป้องกันการกัดกร่อนเพิ่มเติม
  • ชั้นที่ 3 : โพลีเอทิลีน (PE):ชั้นนอกของโพลีเอทิลีนช่วยปกป้องเชิงกลต่อความเสียหายทางกายภาพระหว่างการจัดการ ขนส่ง และการติดตั้ง

ส่วนผสมของสารเคลือบ 3LPP:

  • ชั้นที่ 1: ฟิวชั่นบอนด์อีพอกซี (FBE):คล้ายกับ 3LPE ชั้น FBE ใน 3LPP ทำหน้าที่เป็นชั้นป้องกันการกัดกร่อนหลักและชั้นการยึดเกาะ
  • ชั้นที่ 2: กาวโคพอลิเมอร์:ชั้นกาวนี้จะยึด FBE เข้ากับชั้นเคลือบผิวโพลีโพรพีลีน ช่วยให้ยึดติดได้แน่น
  • ชั้นที่ 3 : โพลีโพรพีลีน (PP):ชั้นนอกของโพลีโพรพีลีนให้การปกป้องทางกลที่เหนือกว่าและทนต่ออุณหภูมิสูงกว่าเมื่อเทียบกับโพลีเอทิลีน

สรุปเนื้อหาการแต่งเรื่อง:สารเคลือบทั้งสองชนิดมีโครงสร้างที่คล้ายกัน โดยมีชั้น FBE กาวโคพอลิเมอร์ และชั้นป้องกันด้านนอก อย่างไรก็ตาม วัสดุของชั้นนอกนั้นแตกต่างกัน คือ โพลีเอทิลีนใน 3LPE และโพลีโพรพีลีนใน 3LPP ซึ่งทำให้คุณลักษณะด้านประสิทธิภาพแตกต่างกัน

3. ประสิทธิภาพการเคลือบ

ประสิทธิภาพการเคลือบ 3LPE:

  • ความทนทานต่ออุณหภูมิ:3LPE ทำงานได้ดีในสภาพแวดล้อมที่มีอุณหภูมิปานกลาง แต่อาจไม่เหมาะกับอุณหภูมิที่เกิน 80°C
  • การป้องกันทางกล:ชั้นนอกโพลีเอทิลีนมีความทนทานต่อความเสียหายทางกายภาพได้ดีเยี่ยม จึงเหมาะสำหรับท่อส่งบนชายฝั่งและนอกชายฝั่ง
  • ความต้านทานการกัดกร่อน:การผสมผสานชั้น FBE และ PE ช่วยเพิ่มการปกป้องที่แข็งแกร่งต่อการกัดกร่อน โดยเฉพาะในสภาพแวดล้อมที่มีความชื้นหรือเปียก
  • ทนต่อสารเคมี:3LPE มีความทนทานต่อสารเคมีได้ดีแต่มีประสิทธิภาพน้อยกว่าในสภาพแวดล้อมที่มีการสัมผัสสารเคมีรุนแรงเมื่อเทียบกับ 3LPP

ประสิทธิภาพการเคลือบ 3LPP:

  • ความทนทานต่ออุณหภูมิ:3LPP ได้รับการออกแบบมาให้ทนต่ออุณหภูมิที่สูงถึง 140°C จึงเหมาะอย่างยิ่งสำหรับท่อขนส่งของเหลวร้อนหรือตั้งอยู่ในสภาพแวดล้อมที่มีอุณหภูมิสูง
  • การป้องกันทางกล:ชั้นโพลีโพรพีลีนให้การปกป้องทางกลที่เหนือกว่า โดยเฉพาะอย่างยิ่งในท่อส่งน้ำมันนอกชายฝั่งน้ำลึกที่มีแรงดันภายนอกและความเครียดทางกายภาพสูงกว่า
  • ความต้านทานการกัดกร่อน:3LPP ให้การป้องกันการกัดกร่อนที่ยอดเยี่ยม เช่นเดียวกับ 3LPE แต่มีประสิทธิภาพที่ดีกว่าในสภาพแวดล้อมอุณหภูมิสูง
  • ทนต่อสารเคมี:3LPP มีความทนทานต่อสารเคมีได้ดีเยี่ยม จึงเหมาะกับสภาพแวดล้อมที่มีสารเคมีหรือไฮโดรคาร์บอนที่กัดกร่อน

สรุปผลการดำเนินงาน:3LPP มีประสิทธิภาพเหนือกว่า 3LPE ในสภาพแวดล้อมอุณหภูมิสูงและมีความทนทานต่อกลไกและสารเคมีได้ดีกว่า อย่างไรก็ตาม 3LPE ยังคงมีประสิทธิภาพสูงในอุณหภูมิปานกลางและสภาพแวดล้อมที่ไม่รุนแรงมากนัก

4. ข้อกำหนดในการก่อสร้าง

ข้อกำหนดการก่อสร้าง 3LPE:

  • การเตรียมพื้นผิว:การเตรียมพื้นผิวอย่างเหมาะสมถือเป็นสิ่งสำคัญต่อประสิทธิภาพของการเคลือบ 3LPE พื้นผิวเหล็กจะต้องได้รับการทำความสะอาดและทำให้หยาบเพื่อให้เกิดการยึดเกาะที่จำเป็นสำหรับชั้น FBE
  • เงื่อนไขการสมัคร:การเคลือบ 3LPE จะต้องดำเนินการในสภาพแวดล้อมที่ควบคุมเพื่อให้แน่ใจว่าแต่ละชั้นมีการยึดเกาะที่เหมาะสม
  • ข้อมูลจำเพาะความหนา:ความหนาของแต่ละชั้นมีความสำคัญ โดยความหนาโดยรวมโดยทั่วไปจะอยู่ระหว่าง 1.8 มม. ถึง 3.0 มม. ขึ้นอยู่กับการใช้งานท่อที่ตั้งใจไว้

ข้อกำหนดการก่อสร้าง 3LPP:

  • การเตรียมพื้นผิว:เช่นเดียวกับ 3LPE การเตรียมพื้นผิวเป็นสิ่งสำคัญ เหล็กจะต้องได้รับการทำความสะอาดเพื่อขจัดสิ่งปนเปื้อนใดๆ และต้องทำให้หยาบเพื่อให้แน่ใจว่าชั้น FBE ยึดเกาะได้อย่างเหมาะสม
  • เงื่อนไขการสมัคร:กระบวนการการใช้งาน 3LPP นั้นคล้ายกับ 3LPE แต่บ่อยครั้งที่ต้องควบคุมอย่างแม่นยำกว่าเนื่องจากสารเคลือบมีความต้านทานต่ออุณหภูมิที่สูงกว่า
  • ข้อมูลจำเพาะความหนา:โดยทั่วไปแล้วสารเคลือบ 3LPP จะหนากว่า 3LPE โดยความหนาโดยรวมจะอยู่ระหว่าง 2.0 มม. ถึง 4.0 มม. ขึ้นอยู่กับการใช้งานเฉพาะ

สรุปความต้องการการก่อสร้าง:ทั้ง 3LPE และ 3LPP ต้องมีการเตรียมพื้นผิวอย่างพิถีพิถันและสภาพแวดล้อมการใช้งานที่ควบคุม อย่างไรก็ตาม โดยทั่วไปแล้วการเคลือบ 3LPP ต้องใช้การเคลือบที่หนากว่าเพื่อให้ได้คุณสมบัติในการปกป้องที่ดีขึ้น

5. กระบวนการก่อสร้าง

กระบวนการก่อสร้าง 3LPE:

  1. การทำความสะอาดพื้นผิว:ท่อเหล็กได้รับการทำความสะอาดโดยใช้วิธีการ เช่น การพ่นทราย เพื่อขจัดสนิม ตะกรัน และสิ่งปนเปื้อนอื่นๆ
  2. แอปพลิเคชั่น FBE:ท่อที่ทำความสะอาดแล้วจะได้รับการอุ่นล่วงหน้า และชั้น FBE จะถูกนำไปใช้แบบไฟฟ้าสถิต ช่วยให้ยึดเกาะกับเหล็กได้อย่างแข็งแรง
  3. การประยุกต์ใช้ชั้นกาว:กาวโคพอลิเมอร์ถูกทาทับบนชั้น FBE เพื่อยึด FBE เข้ากับชั้นโพลีเอทิลีนด้านนอก
  4. การประยุกต์ใช้ชั้น PE:ชั้นโพลีเอทิลีนถูกอัดรีดลงบนท่อ ซึ่งให้การปกป้องทางกลและความต้านทานการกัดกร่อนเพิ่มเติม
  5. การทำความเย็นและการตรวจสอบ:ท่อเคลือบจะได้รับการทำความเย็น ตรวจสอบข้อบกพร่อง และเตรียมพร้อมสำหรับการขนส่ง

กระบวนการก่อสร้าง 3LPP:

  1. การทำความสะอาดพื้นผิว:คล้ายกับ 3LPE ท่อเหล็กได้รับการทำความสะอาดอย่างทั่วถึงเพื่อให้แน่ใจว่าชั้นเคลือบมีการยึดเกาะที่เหมาะสม
  2. แอปพลิเคชั่น FBE:ชั้น FBE ถูกนำไปใช้กับท่อที่อุ่นไว้ล่วงหน้า โดยทำหน้าที่เป็นชั้นป้องกันการกัดกร่อนหลัก
  3. การประยุกต์ใช้ชั้นกาว:กาวโคพอลิเมอร์ถูกนำมาทาทับบนชั้น FBE เพื่อให้ยึดติดแน่นกับชั้นเคลือบผิวโพลีโพรพีลีน
  4. แอปพลิเคชั่น PP Layer:ชั้นโพลีโพรพีลีนถูกนำมาใช้โดยการอัดขึ้นรูป ซึ่งทำให้มีความทนทานต่อแรงกลและอุณหภูมิได้ดีเยี่ยม
  5. การทำความเย็นและการตรวจสอบ:ท่อได้รับการระบายความร้อน ตรวจสอบข้อบกพร่อง และเตรียมพร้อมสำหรับการใช้งาน

สรุปกระบวนการก่อสร้าง:กระบวนการก่อสร้างของ 3LPE และ 3LPP มีความคล้ายคลึงกัน โดยมีความแตกต่างกันหลักๆ อยู่ที่วัสดุที่ใช้สำหรับชั้นป้องกันภายนอก ทั้งสองกระบวนการต้องควบคุมอุณหภูมิ ความสะอาด และความหนาของชั้นอย่างระมัดระวังเพื่อให้มั่นใจถึงประสิทธิภาพที่เหมาะสมที่สุด

บทสรุป

การเลือกใช้สารเคลือบ 3LPE และ 3LPP ขึ้นอยู่กับปัจจัยหลายประการ เช่น อุณหภูมิในการทำงาน สภาวะแวดล้อม ความเครียดทางกล และงบประมาณ

  • 3แอลพีอี เหมาะอย่างยิ่งสำหรับท่อที่ทำงานในอุณหภูมิปานกลางและมีค่าใช้จ่ายสูง ทนต่อการกัดกร่อนและป้องกันเชิงกลได้ดีเยี่ยมสำหรับการใช้งานบนบกและนอกชายฝั่งส่วนใหญ่
  • 3LPPในทางกลับกัน ถือเป็นทางเลือกที่ต้องการสำหรับสภาพแวดล้อมที่มีอุณหภูมิสูงและการใช้งานที่ต้องการการป้องกันเชิงกลที่เหนือกว่า ต้นทุนที่สูงกว่านั้นสมเหตุสมผลเนื่องจากประสิทธิภาพที่เพิ่มขึ้นในสภาวะที่ต้องการความแม่นยำสูง

การทำความเข้าใจข้อกำหนดเฉพาะของโครงการท่อของคุณถือเป็นสิ่งสำคัญในการเลือกวัสดุเคลือบที่เหมาะสม ทั้ง 3LPE และ 3LPP ต่างก็มีจุดแข็งและการใช้งานที่แตกต่างกัน และการเลือกที่ถูกต้องจะช่วยให้มั่นใจได้ถึงการปกป้องและความทนทานในระยะยาวสำหรับโครงสร้างพื้นฐานท่อของคุณ

การสำรวจบทบาทสำคัญของท่อเหล็กในการสำรวจน้ำมันและก๊าซ

I. ความรู้พื้นฐานเกี่ยวกับท่อสำหรับอุตสาหกรรมน้ำมันและก๊าซ

1. คำอธิบายคำศัพท์

เอพีไอ: อักษรย่อของ สถาบันปิโตรเลียมอเมริกัน.
ต.ค.: อักษรย่อของ สินค้าท่อประเทศน้ำมันได้แก่ ท่อปลอกน้ำมัน, ท่อน้ำมัน, ท่อเจาะ, ปลอกเจาะ, ดอกสว่าน, ก้านดูด, ข้อต่อ Pup เป็นต้น
ท่อน้ำมัน: ท่อใช้ในบ่อน้ำมันสำหรับการสกัดน้ำมัน การแยกก๊าซ การฉีดน้ำ และการแตกหักของกรด
ปลอก: ท่อที่หย่อนลงจากผิวดินลงในหลุมเจาะที่เจาะไว้เพื่อเป็นวัสดุบุรองเพื่อป้องกันผนังพังทลาย
ท่อเจาะ: ท่อที่ใช้สำหรับเจาะหลุมเจาะ
เส้นท่อ: ท่อที่ใช้ขนส่งน้ำมันหรือก๊าซ
ข้อต่อ: กระบอกสูบใช้เชื่อมต่อท่อเกลียวสองท่อกับเกลียวภายใน
วัสดุข้อต่อ: ท่อที่ใช้ในการผลิตข้อต่อ
เธรด API: เกลียวท่อที่กำหนดตามมาตรฐาน API 5B ได้แก่ เกลียวท่อกลมน้ำมัน เกลียวท่อกลมสั้นสำหรับตัวเรือน เกลียวท่อกลมยาวสำหรับตัวเรือน เกลียวท่อสี่เหลี่ยมคางหมูบางส่วนสำหรับตัวเรือน เกลียวท่อส่งน้ำมัน เป็นต้น
การเชื่อมต่อแบบพรีเมียม: เกลียวที่ไม่ใช่ API ที่มีคุณสมบัติการปิดผนึกพิเศษ คุณสมบัติการเชื่อมต่อ และคุณสมบัติอื่นๆ
ความล้มเหลว: การเสียรูป การแตกหัก ความเสียหายของพื้นผิว และการสูญเสียการทำงานเดิมภายใต้เงื่อนไขการบริการเฉพาะ
รูปแบบหลักของความล้มเหลว: การบด การลื่น การแตก การรั่วไหล การกัดกร่อน การยึดติด การสึกหรอ และอื่นๆ

2. มาตรฐานที่เกี่ยวข้องกับปิโตรเลียม

API Spec 5B ฉบับที่ 17 – ข้อกำหนดสำหรับการทำเกลียว การวัด และการตรวจสอบเกลียวของท่อ ท่อ และเกลียวท่อ
ข้อมูลจำเพาะ API 5L ฉบับที่ 46 – ข้อกำหนดสำหรับท่อเส้น
API Spec 5CT ฉบับที่ 11 – ข้อกำหนดสำหรับปลอกและท่อ
ข้อมูลจำเพาะ API 5DP ฉบับที่ 7 – ข้อกำหนดสำหรับท่อเจาะ
ข้อมูลจำเพาะ API 7-1 ฉบับที่ 2 – ข้อกำหนดสำหรับองค์ประกอบต้นกำเนิดสว่านโรตารี
ข้อมูลจำเพาะ API 7-2 ฉบับที่ 2 – ข้อกำหนดสำหรับการทำเกลียวและการวัดการเชื่อมต่อเกลียวแบบมีไหล่แบบหมุน
ข้อมูลจำเพาะ API 11B ฉบับที่ 24 – ข้อกำหนดสำหรับแท่งดูด, แท่งและไลเนอร์ขัดเงา, ข้อต่อ, บาร์จม, ที่หนีบแท่งขัดเงา, กล่องบรรจุและประเดิมปั๊ม
ISO 3183:2019 – อุตสาหกรรมปิโตรเลียมและก๊าซธรรมชาติ — ท่อเหล็กสำหรับระบบขนส่งทางท่อ
ใบรับรองมาตรฐาน ISO 11960:2020 – อุตสาหกรรมปิโตรเลียมและก๊าซธรรมชาติ – ท่อเหล็กสำหรับใช้เป็นท่อหรือท่อสำหรับบ่อ
NACE MR0175 / ISO 15156:2020 – อุตสาหกรรมปิโตรเลียมและก๊าซธรรมชาติ — วัสดุสำหรับใช้ในสภาพแวดล้อมที่มี H2S ในการผลิตน้ำมันและก๊าซ

ครั้งที่สอง ท่อน้ำมัน

1. การจำแนกประเภทของท่อน้ำมัน

ท่อน้ำมันแบ่งออกเป็นท่อน้ำมันที่ไม่ทำให้เสียสภาพ (NU), ท่อน้ำมันที่เสียสภาพภายนอก (EU) และท่อน้ำมันแบบ Integral Joint (IJ) ท่อน้ำมัน NU หมายความว่าปลายท่อมีความหนาปกติและหมุนเกลียวโดยตรงและนำข้อต่อมา ท่อคว่ำหมายความว่าปลายของท่อทั้งสองถูกทำให้เสียจากภายนอก จากนั้นจึงทำการร้อยเกลียวและต่อเข้าด้วยกัน Integral Joint tubing หมายความว่าปลายด้านหนึ่งของท่อถูกบิดเกลียวด้วยเกลียวภายนอก และปลายอีกด้านหนึ่งบิดเบี้ยวด้วยเกลียวภายใน และเชื่อมต่อโดยตรงโดยไม่มีข้อต่อ

2. ฟังก์ชั่นของท่อน้ำมัน

1 การสกัดน้ำมันและก๊าซ: หลังจากเจาะและประสานบ่อน้ำมันและก๊าซแล้ว ท่อจะถูกวางไว้ในท่อน้ำมันเพื่อแยกน้ำมันและก๊าซลงสู่พื้นดิน
2. การฉีดน้ำ: เมื่อแรงดันในหลุมเจาะไม่เพียงพอ ให้ฉีดน้ำเข้าไปในบ่อผ่านท่อ
3 การฉีดไอน้ำ: ในการนำน้ำมันร้อนกลับมาใช้ใหม่แบบหนา ไอน้ำจะถูกป้อนเข้าไปในบ่อโดยใช้ท่อน้ำมันที่หุ้มฉนวน
④ การทำให้เป็นกรดและการแตกหัก: ในช่วงปลายของการขุดเจาะบ่อน้ำหรือเพื่อปรับปรุงการผลิตบ่อน้ำมันและก๊าซ จำเป็นต้องป้อนความเป็นกรดและการแตกหักของสื่อหรือวัสดุบ่มลงในชั้นน้ำมันและก๊าซ และสื่อและวัสดุบ่มคือ ลำเลียงผ่านท่อน้ำมัน

3. ท่อเหล็กเกรดเหล็ก

เกรดเหล็กของท่อน้ำมันคือ H40, J55, N80, L80, C90, T95, P110
N80 แบ่งออกเป็น N80-1 และ N80Q ทั้งสองมีคุณสมบัติแรงดึงเหมือนกัน ความแตกต่างสองประการคือสถานะการจัดส่งและความแตกต่างของประสิทธิภาพการกระแทก การส่งมอบ N80-1 โดยสถานะปกติหรือเมื่ออุณหภูมิการหมุนสุดท้ายมากกว่า อุณหภูมิวิกฤต Ar3 และการลดแรงตึงหลังการระบายความร้อนด้วยอากาศ และสามารถใช้เพื่อค้นหาการรีดร้อนแทนการทดสอบแบบปกติ ไม่จำเป็นต้องทดสอบการกระแทกและไม่ทำลาย N80Q จะต้องได้รับการปรับอุณหภูมิ (ดับและปรับอารมณ์) การอบชุบด้วยความร้อน ฟังก์ชั่นการกระแทกควรสอดคล้องกับข้อกำหนดของ API 5CT และควรเป็นการทดสอบแบบไม่ทำลาย
L80 แบ่งออกเป็น L80-1, L80-9Cr และ L80-13Cr คุณสมบัติทางกลและสถานะการจัดส่งเหมือนกัน ความแตกต่างในการใช้งาน ความยากในการผลิต และราคา L80-1 สำหรับรุ่นทั่วไป L80- 9Cr และ L80-13Cr เป็นท่อที่มีความต้านทานการกัดกร่อนสูง ความยากในการผลิต มีราคาแพง และมักจะใช้ในหลุมกัดกร่อนหนัก
C90 และ T95 แบ่งออกเป็น 1 และ 2 ประเภท คือ C90-1, C90-2 และ T95-1, T95-2.

4. ท่อน้ำมันเกรดเหล็กที่ใช้กันทั่วไป ชื่อเหล็ก และสถานะการจัดส่ง

J55 (37Mn5) ท่อน้ำมัน NU: รีดร้อนแทนการทำให้เป็นมาตรฐาน
J55 (37Mn5) ท่อน้ำมันของ EU: ความยาวเต็มทำให้เป็นมาตรฐานหลังจากอารมณ์เสีย
ท่อน้ำมัน N80-1 (36Mn2V) NU: รีดร้อนแทนการทำให้เป็นมาตรฐาน
N80-1 (36Mn2V) ท่อน้ำมัน EU: ความยาวเต็มทำให้เป็นมาตรฐานหลังจากการปั่นป่วน
ท่อน้ำมัน N80-Q (30Mn5): 30Mn5, การแบ่งเบาบรรเทาแบบเต็มความยาว
L80-1 (30Mn5) ท่อน้ำมัน: 30Mn5, การแบ่งเบาบรรเทาแบบเต็มความยาว
P110 (25CrMnMo) ท่อน้ำมัน: 25CrMnMo, การแบ่งเบาบรรเทาเต็มความยาว
J55 (37Mn5) ข้อต่อ: เหล็กแผ่นรีดร้อนออนไลน์ทำให้เป็นมาตรฐาน
ข้อต่อ N80 (28MnTiB): การแบ่งเบาบรรเทาแบบเต็มความยาว
ข้อต่อ L80-1 (28MnTiB): นิรภัยเต็มความยาว
ข้อต่อ P110 (25CrMnMo): การแบ่งเบาบรรเทาแบบเต็มความยาว

สาม. ท่อปลอก

1. การจำแนกประเภทและบทบาทของปลอก

ตัวเรือนเป็นท่อเหล็กที่รองรับผนังบ่อน้ำมันและก๊าซ แต่ละหลุมใช้เคสหลายชั้นตามความลึกของการเจาะและสภาพทางธรณีวิทยาที่แตกต่างกัน ปูนซิเมนต์ใช้ในการประสานท่อหลังจากหย่อนลงไปในบ่อ และไม่เหมือนกับท่อน้ำมันและท่อเจาะตรงที่ไม่สามารถนำกลับมาใช้ใหม่ได้และเป็นของวัสดุสิ้นเปลืองแบบใช้แล้วทิ้ง ดังนั้นการใช้ท่อมีสัดส่วนมากกว่าร้อยละ 70 ของท่อบ่อน้ำมันทั้งหมด ปลอกสามารถแบ่งออกเป็นปลอกตัวนำ ปลอกกลาง ปลอกการผลิต และปลอกซับตามการใช้งาน และโครงสร้างในบ่อน้ำมันแสดงในรูปที่ 1

1. ปลอกตัวนำ: โดยทั่วไปแล้ว เมื่อใช้เกรด API K55, J55 หรือ H40 เคสตัวนำจะทำให้หลุมผลิตมีความเสถียร และแยกชั้นหินอุ้มน้ำตื้นๆ ที่มีเส้นผ่านศูนย์กลางโดยทั่วไปประมาณ 20 นิ้วหรือ 16 นิ้ว

②ปลอกระดับกลาง: เคสระดับกลางซึ่งมักทำจากเกรด API K55, N80, L80 หรือ P110 ใช้เพื่อแยกการก่อตัวที่ไม่เสถียรและโซนแรงดันที่แตกต่างกัน โดยมีเส้นผ่านศูนย์กลางทั่วไป 13 3/8 นิ้ว, 11 3/4 นิ้ว หรือ 9 5/8 นิ้ว .

3. ปลอกการผลิต: โครงสร้างผลิตจากเหล็กเกรดสูง เช่น เกรด API J55, N80, L80, P110 หรือ Q125 เคสการผลิตได้รับการออกแบบมาให้ทนต่อแรงกดดันในการผลิต โดยทั่วไปจะมีเส้นผ่านศูนย์กลาง 9 5/8 นิ้ว 7 นิ้ว หรือ 5 1/2 นิ้ว

④ปลอกไลเนอร์: ไลเนอร์ขยายหลุมเจาะเข้าไปในแหล่งกักเก็บ โดยใช้วัสดุ เช่น เกรด API L80, N80 หรือ P110 โดยมีเส้นผ่านศูนย์กลางทั่วไป 7 นิ้ว, 5 นิ้ว หรือ 4 1/2 นิ้ว

⑤ท่อ: ท่อขนส่งไฮโดรคาร์บอนสู่พื้นผิวโดยใช้เกรด API J55, L80 หรือ P110 และมีจำหน่ายในเส้นผ่านศูนย์กลาง 4 1/2 นิ้ว, 3 1/2 นิ้ว หรือ 2 7/8 นิ้ว

IV. ท่อเจาะ

1. การจำแนกประเภทและหน้าที่ของท่อสำหรับเครื่องมือเจาะ

ท่อเจาะสี่เหลี่ยม ท่อเจาะ ท่อเจาะถ่วงน้ำหนัก และปลอกเจาะในเครื่องมือขุดเจาะจะสร้างท่อเจาะ ท่อเจาะเป็นเครื่องมือเจาะแกนกลางที่ขับเคลื่อนดอกสว่านจากพื้นลงสู่ก้นบ่อ และยังเป็นช่องทางจากพื้นลงสู่ก้นบ่อด้วย มีสามบทบาทหลัก:

1 เพื่อส่งแรงบิดเพื่อขับเคลื่อนสว่านเพื่อเจาะ

② การอาศัยน้ำหนักของมันไปที่ดอกสว่านเพื่อทำลายแรงดันของหินที่ก้นบ่อน้ำ

3 เพื่อขนส่งน้ำยาล้าง นั่นคือ การเจาะโคลนผ่านพื้นดินผ่านปั๊มโคลนแรงดันสูง เจาะคอลัมน์เข้าไปในรูเจาะที่ไหลลงด้านล่างของบ่อเพื่อล้างเศษหินและทำให้สว่านเย็นลง และขนเศษหิน ผ่านพื้นผิวด้านนอกของคอลัมน์และผนังของบ่อน้ำระหว่างวงแหวนเพื่อกลับสู่พื้นเพื่อให้บรรลุวัตถุประสงค์ของการขุดเจาะบ่อน้ำ

ท่อเจาะในกระบวนการเจาะสามารถทนต่อโหลดสลับซับซ้อนต่างๆ เช่น แรงดึง แรงอัด แรงบิด การดัดงอ และความเครียดอื่นๆ พื้นผิวด้านในยังอยู่ภายใต้การขัดถูและการกัดกร่อนของโคลนแรงดันสูง
(1) ท่อเจาะสี่เหลี่ยม: ท่อเจาะสี่เหลี่ยมมีสองประเภทรูปสี่เหลี่ยมขนมเปียกปูนและชนิดหกเหลี่ยม ท่อเจาะปิโตรเลียมของจีนแต่ละชุดของคอลัมน์เจาะมักจะใช้ท่อเจาะชนิดรูปสี่เหลี่ยมขนมเปียกปูน ข้อมูลจำเพาะของมันคือ 63.5 มม. (2-1/2 นิ้ว), 88.9 มม. (3-1/2 นิ้ว), 107.95 มม. (4-1/4 นิ้ว), 133.35 มม. (5-1/4 นิ้ว), 152.4 มม. ( 6 นิ้ว) และอื่นๆ โดยปกติแล้ว ความยาวที่ใช้คือ 12~14.5ม.
(2) ท่อเจาะ: ท่อเจาะเป็นเครื่องมือหลักสำหรับการเจาะหลุม ซึ่งเชื่อมต่อกับปลายล่างของท่อเจาะสี่เหลี่ยม และในขณะที่หลุมเจาะยังคงลึกลงไป ท่อเจาะก็จะทำให้คอลัมน์เจาะยาวขึ้นเรื่อยๆ ข้อมูลจำเพาะของท่อเจาะคือ: 60.3 มม. (2-3/8 นิ้ว), 73.03 มม. (2-7/8 นิ้ว), 88.9 มม. (3-1/2 นิ้ว), 114.3 มม. (4-1/2 นิ้ว) , 127 มม. (5 นิ้ว), 139.7 มม. (5-1/2 นิ้ว) และอื่นๆ
(3) ท่อเจาะสำหรับงานหนัก: ท่อเจาะถ่วงน้ำหนักเป็นเครื่องมือเปลี่ยนผ่านที่เชื่อมต่อท่อเจาะและปลอกเจาะ ซึ่งสามารถปรับปรุงสภาพแรงของท่อเจาะ และเพิ่มแรงดันบนดอกสว่าน ข้อมูลจำเพาะหลักของท่อเจาะถ่วงน้ำหนักคือ 88.9 มม. (3-1/2 นิ้ว) และ 127 มม. (5 นิ้ว)
(4) ปลอกเจาะ: คอสว่านเชื่อมต่อกับส่วนล่างของท่อเจาะซึ่งเป็นท่อผนังหนาพิเศษที่มีความแข็งแกร่งสูง ออกแรงกดบนดอกสว่านให้พังหิน และมีบทบาทนำทางเมื่อเจาะบ่อตรง ข้อมูลจำเพาะทั่วไปของปลอกเจาะคือ 158.75 มม. (6-1/4 นิ้ว), 177.85 มม. (7 นิ้ว), 203.2 มม. (8 นิ้ว), 228.6 มม. (9 นิ้ว) เป็นต้น

ท่อวีไลน์

1. การจำแนกประเภทของท่อเส้น

ท่อเส้นใช้ในอุตสาหกรรมน้ำมันและก๊าซสำหรับการส่งน้ำมัน น้ำมันกลั่น ก๊าซธรรมชาติ และท่อส่งน้ำ โดยมีตัวย่อของท่อเหล็ก การลำเลียงน้ำมันและท่อส่งก๊าซส่วนใหญ่แบ่งออกเป็นท่อหลัก ท่อสาขา และท่อเครือข่ายท่อในเมือง ท่อส่งท่อหลักสามชนิดตามข้อกำหนดปกติสำหรับ ∅406 ~ 1219 มม. ความหนาของผนัง 10 ~ 25 มม. เกรดเหล็ก X42 ~ X80 ; ไปป์ไลน์สาขาและไปป์ไลน์เครือข่ายไปป์ไลน์ในเมืองมักจะเป็นข้อกำหนดสำหรับ ∅114 ~ 700 มม. ความหนาของผนัง 6 ~ 20 มม. เกรดเหล็กสำหรับ X42 ~ X80 เกรดเหล็กคือ X42 ~ X80 ท่อเส้นมีให้เลือกทั้งแบบเชื่อมและแบบไม่มีรอยต่อ Welded Line Pipe ใช้มากกว่า Seamless Line Pipe

2. มาตรฐานของไลน์ท่อ

API Spec 5L – ข้อกำหนดสำหรับ Line Pipe
ISO 3183 - อุตสาหกรรมปิโตรเลียมและก๊าซธรรมชาติ - ท่อเหล็กสำหรับระบบขนส่งทางท่อ

3. PSL1 และ PSL2

PSL เป็นตัวย่อของ ระดับข้อมูลจำเพาะของผลิตภัณฑ์- ระดับข้อกำหนดผลิตภัณฑ์ท่อเส้นแบ่งออกเป็น PSL 1 และ PSL 2 อาจกล่าวได้ว่าระดับคุณภาพแบ่งออกเป็น PSL 1 และ PSL 2 PSL 2 สูงกว่า PSL 1 ระดับข้อกำหนด 2 ระดับไม่เพียง แต่มีข้อกำหนดการทดสอบที่แตกต่างกันเท่านั้น แต่ข้อกำหนดองค์ประกอบทางเคมีและคุณสมบัติทางกลจะแตกต่างกัน ดังนั้นตามคำสั่ง API 5L เงื่อนไขของสัญญานอกเหนือจากการระบุข้อกำหนด เกรดเหล็ก และตัวชี้วัดทั่วไปอื่นๆ แต่ยังต้องระบุระดับ Specification ของผลิตภัณฑ์ด้วย นั่นคือ PSL 1 หรือ PSL 2 PSL 2 ในองค์ประกอบทางเคมี สมบัติแรงดึง กำลังกระแทก การทดสอบแบบไม่ทำลาย และตัวชี้วัดอื่นๆ มีความเข้มงวดมากกว่า PSL 1

4. เกรดเหล็กท่อเส้น องค์ประกอบทางเคมี และคุณสมบัติทางกล

เกรดเหล็กท่อเส้นจากต่ำไปสูงแบ่งออกเป็น: A25, A, B, X42, X46, X52, X60, X65, X70 และ X80 สำหรับรายละเอียดองค์ประกอบทางเคมีและคุณสมบัติทางกล โปรดดูที่ข้อกำหนด API 5L หนังสือฉบับที่ 46

5. ข้อกำหนดการทดสอบอุทกสถิตของท่อเส้นและข้อกำหนดการตรวจสอบแบบไม่ทำลาย

ท่อสายควรทำการทดสอบระบบไฮดรอลิกแบบแยกสาขา และมาตรฐานไม่อนุญาตให้สร้างแรงดันไฮดรอลิกแบบไม่ทำลายล้าง ซึ่งถือเป็นความแตกต่างอย่างมากระหว่างมาตรฐาน API และมาตรฐานของเรา PSL 1 ไม่ต้องการการทดสอบแบบไม่ทำลายล้าง ส่วน PSL 2 ควรทำการทดสอบแบบไม่ทำลายล้างแบบแยกสาขา

วี. การเชื่อมต่อระดับพรีเมียม

1. การแนะนำการเชื่อมต่อแบบพรีเมียม

การเชื่อมต่อแบบพรีเมียมคือเธรดไปป์ที่มีโครงสร้างพิเศษที่แตกต่างจากเธรด API แม้ว่าท่อน้ำมันแบบเกลียว API ที่มีอยู่นั้นถูกนำมาใช้กันอย่างแพร่หลายในการแสวงหาผลประโยชน์จากบ่อน้ำมัน แต่ข้อบกพร่องของมันจะแสดงอย่างชัดเจนในสภาพแวดล้อมพิเศษของแหล่งน้ำมันบางแห่ง: คอลัมน์ท่อเกลียวแบบกลม API แม้ว่าประสิทธิภาพการปิดผนึกจะดีกว่า แต่แรงดึงที่เกิดจากเกลียว ส่วนหนึ่งเทียบเท่ากับความแข็งแรงของตัวท่อ 60% ถึง 80% เท่านั้น ดังนั้นจึงไม่สามารถใช้ในการใช้ประโยชน์จากบ่อน้ำลึกได้ คอลัมน์ท่อเกลียวสี่เหลี่ยมคางหมูแบบ API เอนเอียง แม้ว่าประสิทธิภาพแรงดึงจะสูงกว่าการเชื่อมต่อเกลียวแบบกลม API มาก แต่ประสิทธิภาพการปิดผนึกนั้นไม่ดีนัก แม้ว่าประสิทธิภาพแรงดึงของคอลัมน์จะสูงกว่าการเชื่อมต่อเกลียวกลม API มาก แต่ประสิทธิภาพการปิดผนึกไม่ดีนัก ดังนั้นจึงไม่สามารถใช้ในการใช้ประโยชน์จากหลุมก๊าซแรงดันสูงได้ นอกจากนี้ จาระบีแบบเกลียวสามารถมีบทบาทในสภาพแวดล้อมที่มีอุณหภูมิต่ำกว่า 95 ℃เท่านั้น ดังนั้นจึงไม่สามารถใช้ในการใช้ประโยชน์จากบ่อที่มีอุณหภูมิสูงได้

เมื่อเปรียบเทียบกับการเชื่อมต่อเธรดแบบกลม API และเธรดสี่เหลี่ยมคางหมูบางส่วน การเชื่อมต่อแบบพรีเมียมมีความก้าวหน้าอย่างมากในด้านต่อไปนี้:

(1) การปิดผนึกที่ดี ด้วยความยืดหยุ่นและการออกแบบโครงสร้างการปิดผนึกด้วยโลหะ ทำให้การปิดผนึกก๊าซข้อต่อมีความทนทานต่อการเข้าถึงขีดจำกัดของตัวท่อภายในความดันผลผลิต

(2) ความแข็งแรงสูงของการเชื่อมต่อ โดยเชื่อมต่อด้วยการเชื่อมต่อหัวเข็มขัดพิเศษของท่อน้ำมัน ความแข็งแรงของการเชื่อมต่อถึงหรือเกินความแข็งแรงของตัวท่อ เพื่อแก้ปัญหาการลื่นไถลโดยพื้นฐาน

(3) โดยการเลือกวัสดุและการปรับปรุงกระบวนการรักษาพื้นผิว แก้ไขปัญหาของหัวเข็มขัดด้ายติดโดยทั่วไป

(4) ผ่านการเพิ่มประสิทธิภาพของโครงสร้างเพื่อให้การกระจายความเค้นร่วมมีความสมเหตุสมผลและเอื้อต่อความต้านทานต่อการกัดกร่อนของความเค้นมากขึ้น

(5) การออกแบบที่เหมาะสมผ่านโครงสร้างไหล่เพื่อให้การดำเนินงานของหัวเข็มขัดในการทำงานได้ง่ายขึ้น

ปัจจุบัน อุตสาหกรรมน้ำมันและก๊าซมีการเชื่อมต่อระดับพรีเมียมที่ได้รับการจดสิทธิบัตรมากกว่า 100 รายการ ซึ่งแสดงถึงความก้าวหน้าครั้งสำคัญในเทคโนโลยีท่อ การออกแบบเกลียวแบบพิเศษเหล่านี้มีความสามารถในการปิดผนึกที่เหนือกว่า เพิ่มความแข็งแรงในการเชื่อมต่อ และเพิ่มความต้านทานต่อความเครียดจากสิ่งแวดล้อม ด้วยการรับมือกับความท้าทายต่างๆ เช่น แรงกดดันสูง สภาพแวดล้อมที่มีการกัดกร่อน และอุณหภูมิสุดขั้ว นวัตกรรมเหล่านี้รับประกันความน่าเชื่อถือและประสิทธิภาพที่มากขึ้นในการปฏิบัติงานของบ่อน้ำมันทั่วโลก การวิจัยและพัฒนาอย่างต่อเนื่องในการเชื่อมต่อระดับพรีเมี่ยมเน้นย้ำถึงบทบาทสำคัญในการสนับสนุนการปฏิบัติงานขุดเจาะที่ปลอดภัยและมีประสิทธิผลมากขึ้น ซึ่งสะท้อนให้เห็นถึงความมุ่งมั่นอย่างต่อเนื่องเพื่อความเป็นเลิศทางเทคโนโลยีในภาคพลังงาน

การเชื่อมต่อVAM®: การเชื่อมต่อ VAM® เป็นที่รู้จักในด้านประสิทธิภาพที่แข็งแกร่งในสภาพแวดล้อมที่ท้าทาย มาพร้อมเทคโนโลยีการปิดผนึกระหว่างโลหะกับโลหะขั้นสูงและความสามารถด้านแรงบิดสูง ช่วยให้มั่นใจได้ถึงการทำงานที่เชื่อถือได้ในบ่อน้ำลึกและแหล่งกักเก็บแรงดันสูง

TenarisHydril Wedge Series: ซีรีส์นี้นำเสนอการเชื่อมต่อที่หลากหลาย เช่น Blue®, Dopeless® และ Wedge 521® ซึ่งขึ้นชื่อในเรื่องการปิดผนึกก๊าซอย่างดีเยี่ยมและความต้านทานต่อแรงอัดและแรงตึง ซึ่งช่วยเพิ่มความปลอดภัยและประสิทธิภาพในการปฏิบัติงาน

ทีเอสเอช® บลู: ออกแบบโดย Tenaris การเชื่อมต่อ TSH® Blue ใช้การออกแบบบ่าคู่ที่เป็นเอกสิทธิ์และโปรไฟล์เกลียวประสิทธิภาพสูง ให้ความทนทานต่อความล้าที่ดีเยี่ยมและง่ายต่อการประกอบในงานเจาะที่สำคัญ

ให้การเชื่อมต่อ Prideco™ XT®: ออกแบบโดย NOV การเชื่อมต่อ XT® รวมเอาการผนึกระหว่างโลหะกับโลหะที่เป็นเอกลักษณ์และรูปแบบเกลียวที่แข็งแกร่ง ช่วยให้มั่นใจถึงความสามารถในการบิดที่เหนือกว่าและความต้านทานต่อการครูด จึงช่วยยืดอายุการใช้งานของการเชื่อมต่อ

การเชื่อมต่อการล่าสัตว์ Seal-Lock®: การเชื่อมต่อ Seal-Lock® โดย Hunting โดดเด่นด้วยการซีลโลหะต่อโลหะและโปรไฟล์เกลียวที่เป็นเอกลักษณ์ มีชื่อเสียงในด้านความต้านทานแรงดันที่เหนือกว่าและความน่าเชื่อถือในการขุดเจาะทั้งบนบกและนอกชายฝั่ง

บทสรุป

โดยสรุป เครือข่ายท่อที่ซับซ้อนซึ่งมีความสำคัญต่ออุตสาหกรรมน้ำมันและก๊าซนั้นครอบคลุมอุปกรณ์พิเศษมากมายที่ออกแบบมาเพื่อทนต่อสภาพแวดล้อมที่เข้มงวดและความต้องการในการปฏิบัติงานที่ซับซ้อน ตั้งแต่ท่อปลอกพื้นฐานที่รองรับและปกป้องผนังบ่อไปจนถึงท่ออเนกประสงค์ที่ใช้ในกระบวนการสกัดและฉีด ท่อแต่ละประเภทมีจุดประสงค์ที่แตกต่างกันในการสำรวจ การผลิต และการขนส่งไฮโดรคาร์บอน มาตรฐาน เช่น ข้อกำหนด API ช่วยให้มั่นใจได้ถึงความสม่ำเสมอและคุณภาพทั่วทั้งไปป์เหล่านี้ ในขณะที่นวัตกรรม เช่น การเชื่อมต่อระดับพรีเมียมช่วยเพิ่มประสิทธิภาพในสภาวะที่ท้าทาย ขณะที่เทคโนโลยีพัฒนาไป ส่วนประกอบที่สำคัญเหล่านี้ยังคงก้าวหน้าต่อไป โดยขับเคลื่อนประสิทธิภาพและความน่าเชื่อถือในการดำเนินงานด้านพลังงานทั่วโลก การทำความเข้าใจท่อเหล่านี้และข้อกำหนดเฉพาะของท่อเหล่านี้เน้นย้ำถึงบทบาทที่ขาดไม่ได้ในโครงสร้างพื้นฐานของภาคพลังงานสมัยใหม่

Super 13Cr SMSS 13Cr ปลอกและท่อ

SMSS 13Cr และ DSS 22Cr ในสภาพแวดล้อม H₂S/CO₂-น้ำมัน-น้ำ

พฤติกรรมการกัดกร่อนของสเตนเลสซุปเปอร์มาร์เทนซิติก (SMSS) 13Cr และ Duplex Stainless Steel (DSS) 22Cr ในสภาพแวดล้อม H₂S/CO₂-น้ำมัน-น้ำ เป็นที่สนใจอย่างมาก โดยเฉพาะอย่างยิ่งในอุตสาหกรรมน้ำมันและก๊าซ ซึ่งวัสดุเหล่านี้มักจะต้องเผชิญกับสภาวะที่ไม่เอื้ออำนวยเช่นนี้ ภาพรวมของลักษณะการทำงานของวัสดุแต่ละรายการภายใต้เงื่อนไขเหล่านี้มีดังนี้:

1. เหล็กกล้าไร้สนิมซุปเปอร์มาร์เทนซิติก (SMSS) 13Cr:

  • องค์ประกอบ: SMSS 13Cr โดยทั่วไปจะมีโครเมียมประมาณ 12-14% พร้อมด้วยนิกเกิลและโมลิบดีนัมในปริมาณเล็กน้อย ปริมาณโครเมียมที่สูงทำให้มีความต้านทานการกัดกร่อนได้ดี ในขณะที่โครงสร้างแบบมาร์เทนไซต์ทำให้มีความแข็งแรงสูง
  • พฤติกรรมการกัดกร่อน:
    • การกัดกร่อนของคาร์บอนไดออกไซด์: SMSS 13Cr แสดงความต้านทานปานกลางต่อการกัดกร่อนของ CO₂ โดยมีสาเหตุหลักมาจากการก่อตัวของชั้นปกป้องโครเมียมออกไซด์ อย่างไรก็ตาม เมื่อมี CO₂ ก็มีความเสี่ยงต่อการกัดกร่อนเฉพาะจุด เช่น การกัดกร่อนแบบรูพรุนและการกัดกร่อนตามรอยแยก
    • การกัดกร่อนของ H₂S: การมีอยู่ของ H₂S จะเพิ่มความเสี่ยงของการเกิดรอยแตกร้าวจากความเครียดซัลไฟด์ (SSC) และการเปราะของไฮโดรเจน SMSS 13Cr ค่อนข้างทนทานแต่ไม่ต้านทานการกัดกร่อนในรูปแบบเหล่านี้ โดยเฉพาะที่อุณหภูมิและแรงกดดันที่สูงขึ้น
    • สภาพแวดล้อมน้ำมันและน้ำ: บางครั้งการมีอยู่ของน้ำมันสามารถเป็นเกราะป้องกัน ซึ่งช่วยลดการสัมผัสของพื้นผิวโลหะกับสารกัดกร่อน อย่างไรก็ตาม น้ำโดยเฉพาะอย่างยิ่งในรูปของน้ำเกลืออาจมีฤทธิ์กัดกร่อนสูง ความสมดุลของเฟสของน้ำมันและน้ำสามารถส่งผลต่ออัตราการกัดกร่อนโดยรวมได้อย่างมาก
  • ปัญหาทั่วไป:
    • การแคร็กความเครียดด้วยซัลไฟด์ (SSC): แม้ว่าโครงสร้างมาร์เทนซิติกจะแข็งแกร่ง แต่ก็ไวต่อ SSC เมื่อมี H₂S
    • การกัดกร่อนแบบหลุมและรอยแยก: สิ่งเหล่านี้ถือเป็นข้อกังวลที่สำคัญ โดยเฉพาะอย่างยิ่งในสภาพแวดล้อมที่มีคลอไรด์และCO₂

2. ดูเพล็กซ์สแตนเลส (DSS) 22Cr:

  • องค์ประกอบ: DSS 22Cr ประกอบด้วยโครเมียมประมาณ 22% โดยมีนิกเกิลประมาณ 5% โมลิบดีนัม 3% และโครงสร้างจุลภาคออสเทนไนต์-เฟอร์ไรต์ที่สมดุล ทำให้ DSS ต้านทานการกัดกร่อนได้ดีเยี่ยมและมีความแข็งแรงสูง
  • พฤติกรรมการกัดกร่อน:
    • การกัดกร่อนของคาร์บอนไดออกไซด์: DSS 22Cr มีความต้านทานต่อการกัดกร่อนของ CO₂ ได้ดีกว่าเมื่อเทียบกับ SMSS 13Cr ปริมาณโครเมียมที่สูงและการมีโมลิบดีนัมช่วยในการสร้างชั้นออกไซด์ที่เสถียรและป้องกันได้ซึ่งทนทานต่อการกัดกร่อน
    • การกัดกร่อนของ H₂S: DSS 22Cr มีความทนทานสูงต่อการกัดกร่อนที่เกิดจาก H₂S รวมถึง SSC และการเปราะของไฮโดรเจน โครงสร้างจุลภาคที่สมดุลและองค์ประกอบของโลหะผสมช่วยลดความเสี่ยงเหล่านี้
    • สภาพแวดล้อมน้ำมันและน้ำ: DSS 22Cr ทำงานได้ดีในสภาพแวดล้อมน้ำมันและน้ำผสม ต้านทานการกัดกร่อนทั้งทั่วไปและเฉพาะจุด การมีน้ำมันสามารถเพิ่มความต้านทานการกัดกร่อนได้โดยการสร้างฟิล์มป้องกัน แต่สิ่งนี้มีความสำคัญน้อยกว่าสำหรับ DSS 22Cr เนื่องจากมีความต้านทานการกัดกร่อนโดยธรรมชาติ
  • ปัญหาทั่วไป:
    • การแตกร้าวจากการกัดกร่อนจากความเค้น (SCC): แม้ว่าจะมีความทนทานมากกว่า SMSS 13Cr แต่ DSS 22Cr ยังคงไวต่อ SCC ภายใต้สภาวะบางประการ เช่น ความเข้มข้นของคลอไรด์สูงที่อุณหภูมิสูง
    • การกัดกร่อนเฉพาะจุด: โดยทั่วไปแล้ว DSS 22Cr จะมีความต้านทานต่อการกัดกร่อนแบบหลุมและรอยแยกได้ดีมาก แต่ภายใต้สภาวะที่รุนแรง สิ่งเหล่านี้ก็ยังคงเกิดขึ้นได้

สรุปเปรียบเทียบ:

  • ความต้านทานการกัดกร่อน: โดยทั่วไปแล้ว DSS 22Cr ให้ความต้านทานการกัดกร่อนที่เหนือกว่าเมื่อเปรียบเทียบกับ SMSS 13Cr โดยเฉพาะอย่างยิ่งในสภาพแวดล้อมที่มีทั้ง H₂S และ CO₂
  • ความแข็งแกร่งและความเหนียว: SMSS 13Cr มีความแข็งแรงสูงกว่าแต่ไวต่อปัญหาการกัดกร่อน เช่น SSC และรูพรุนมากกว่า
  • ความเหมาะสมของการใช้งาน: DSS 22Cr มักนิยมใช้ในสภาพแวดล้อมที่มีความเสี่ยงต่อการกัดกร่อนสูง เช่น ที่มีระดับ H₂S และ CO₂ สูง ในขณะที่ SMSS 13Cr อาจเลือกใช้สำหรับการใช้งานที่ต้องการความแข็งแรงสูงกว่า โดยที่ความเสี่ยงต่อการกัดกร่อนอยู่ในระดับปานกลาง

บทสรุป:

เมื่อเลือกระหว่าง SMSS 13Cr และ DSS 22Cr เพื่อใช้ในสภาพแวดล้อม H₂S/CO₂-น้ำมัน-น้ำ โดยทั่วไป DSS 22Cr จะเป็นตัวเลือกที่ดีกว่าสำหรับการต้านทานการกัดกร่อน โดยเฉพาะอย่างยิ่งในสภาพแวดล้อมที่รุนแรงมากขึ้น อย่างไรก็ตาม การตัดสินใจขั้นสุดท้ายควรพิจารณาเงื่อนไขเฉพาะ รวมถึงอุณหภูมิ ความดัน และความเข้มข้นสัมพัทธ์ของ H₂S และ CO₂