NACE MR0175/ISO 15156 คืออะไร

NACE MR0175/ISO 15156 คืออะไร

NACE MR0175/ISO 15156 เป็นมาตรฐานที่ได้รับการยอมรับทั่วโลกซึ่งให้แนวทางในการเลือกวัสดุที่ทนต่อการแตกร้าวจากความเครียดซัลไฟด์ (SSC) และการแตกร้าวที่เกิดจากไฮโดรเจนในรูปแบบอื่นๆ ในสภาพแวดล้อมที่มีไฮโดรเจนซัลไฟด์ (H₂S) มาตรฐานนี้จำเป็นสำหรับการรับรองความน่าเชื่อถือและความปลอดภัยของอุปกรณ์ที่ใช้ในอุตสาหกรรมน้ำมันและก๊าซ โดยเฉพาะอย่างยิ่งในสภาพแวดล้อมที่มีรสเปรี้ยว

ประเด็นสำคัญของ NACE MR0175/ISO 15156

  1. ขอบเขตและวัตถุประสงค์:
    • มาตรฐานนี้กล่าวถึงการเลือกวัสดุสำหรับอุปกรณ์ที่ใช้ในการผลิตน้ำมันและก๊าซที่สัมผัสกับสภาพแวดล้อมที่มี H₂S ซึ่งอาจทำให้เกิดการแตกร้าวในรูปแบบต่างๆ
    • มีวัตถุประสงค์เพื่อป้องกันความล้มเหลวของวัสดุเนื่องจากความเครียดของซัลไฟด์ การกัดกร่อน การแตกร้าวที่เกิดจากไฮโดรเจน และกลไกอื่นที่เกี่ยวข้อง
  2. การเลือกใช้วัสดุ:
    • คู่มือนี้ให้แนวทางในการเลือกวัสดุที่เหมาะสม ได้แก่ เหล็กกล้าคาร์บอน เหล็กกล้าอัลลอยด์ต่ำ เหล็กกล้าไร้สนิม โลหะผสมนิกเกิล และโลหะผสมทนการกัดกร่อนชนิดอื่นๆ
    • ระบุสภาวะแวดล้อมและระดับความเครียดที่วัสดุแต่ละชนิดสามารถทนได้โดยไม่เกิดการแตกร้าว
  3. คุณสมบัติและการทดสอบ:
    • เอกสารนี้จะสรุปขั้นตอนการทดสอบที่จำเป็นสำหรับการรับรองวัสดุสำหรับการบริการที่มีรสเปรี้ยว ซึ่งรวมถึงการทดสอบในห้องปฏิบัติการที่จำลองสภาวะกัดกร่อนที่พบในสภาพแวดล้อม H₂S
    • ระบุเกณฑ์สำหรับประสิทธิภาพที่ยอมรับได้ในการทดสอบเหล่านี้ โดยให้แน่ใจว่าวัสดุจะต้านทานการแตกร้าวภายใต้เงื่อนไขที่ระบุ
  4. การออกแบบและการผลิต:
    • รวมถึงคำแนะนำสำหรับการออกแบบและการผลิตอุปกรณ์เพื่อลดความเสี่ยงของการแตกร้าวอันเกิดจากไฮโดรเจน
    • เน้นความสำคัญของกระบวนการผลิต เทคนิคการเชื่อม และการบำบัดความร้อนที่อาจส่งผลต่อความต้านทานของวัสดุต่อการแตกร้าวที่เกิดจาก H₂S
  5. การบำรุงรักษาและการตรวจสอบ:
    • ให้คำแนะนำเกี่ยวกับแนวทางปฏิบัติในการบำรุงรักษาและกลยุทธ์การติดตามเพื่อตรวจจับและป้องกันการแคร็กในบริการ
    • แนะนำให้มีการตรวจสอบเป็นประจำและใช้วิธีการทดสอบแบบไม่ทำลายเพื่อให้แน่ใจว่าอุปกรณ์จะมีสภาพสมบูรณ์อย่างต่อเนื่อง

ความสำคัญในอุตสาหกรรม

  • ความปลอดภัย: รับประกันการทำงานที่ปลอดภัยของอุปกรณ์ในสภาพแวดล้อมการบริการที่เปรี้ยว โดยลดความเสี่ยงของความล้มเหลวร้ายแรงเนื่องจากการแตกร้าว
  • ความน่าเชื่อถือ: ช่วยเพิ่มความน่าเชื่อถือและอายุการใช้งานของอุปกรณ์ ลดการหยุดทำงานและค่าบำรุงรักษา
  • การปฏิบัติตาม: ช่วยให้บริษัทปฏิบัติตามข้อกำหนดด้านกฎระเบียบและมาตรฐานอุตสาหกรรม หลีกเลี่ยงผลกระทบทางกฎหมายและทางการเงิน

NACE MR0175/ISO 15156 แบ่งออกเป็นสามส่วน โดยแต่ละส่วนมุ่งเน้นไปที่แง่มุมที่แตกต่างกันของการเลือกใช้วัสดุสำหรับใช้ในสภาพแวดล้อมบริการที่มีรสเปรี้ยว ต่อไปนี้เป็นรายละเอียดเพิ่มเติม:

ส่วนที่ 1: หลักการทั่วไปในการเลือกวัสดุต้านทานการแตกร้าว

  • ขอบเขต:ให้แนวทางและหลักการครอบคลุมสำหรับการเลือกวัสดุที่ต้านทานการแตกร้าวในสภาพแวดล้อมที่มี H₂S
  • เนื้อหา:
    • กำหนดคำศัพท์และแนวคิดหลักที่เกี่ยวข้องกับสภาพแวดล้อมการให้บริการที่มีรสเปรี้ยวและการย่อยสลายวัสดุ
    • สรุปเกณฑ์ทั่วไปในการประเมินความเหมาะสมของวัสดุสำหรับการให้บริการที่มีรสเปรี้ยว
    • อธิบายความสำคัญของการพิจารณาปัจจัยด้านสิ่งแวดล้อม คุณสมบัติของวัสดุ และสภาวะการปฏิบัติงานเมื่อเลือกวัสดุ
    • ให้กรอบการทำงานสำหรับการประเมินความเสี่ยงและการตัดสินใจเลือกวัสดุอย่างมีข้อมูล

ส่วนที่ 2: เหล็กกล้าคาร์บอนและเหล็กกล้าผสมต่ำที่ทนต่อการแตกร้าวและการใช้เหล็กหล่อ

  • ขอบเขต:เอกสารนี้มุ่งเน้นไปที่ข้อกำหนดและแนวปฏิบัติในการใช้เหล็กกล้าคาร์บอน เหล็กกล้าอัลลอยด์ต่ำ และเหล็กหล่อในสภาพแวดล้อมการบริการที่มีรสเปรี้ยว
  • เนื้อหา:
    • ให้รายละเอียดเกี่ยวกับเงื่อนไขเฉพาะที่วัสดุเหล่านี้สามารถใช้ได้อย่างปลอดภัย
    • แสดงรายการคุณสมบัติทางกลและองค์ประกอบทางเคมีที่จำเป็นสำหรับวัสดุเหล่านี้ในการต้านทานการแตกร้าวจากความเครียดซัลไฟด์ (SSC) และความเสียหายที่เกิดจากไฮโดรเจนในรูปแบบอื่นๆ
    • ให้แนวทางสำหรับการบำบัดความร้อนและกระบวนการผลิตที่สามารถเพิ่มความต้านทานของวัสดุเหล่านี้ต่อการแตกร้าว
    • กล่าวถึงความจำเป็นของการทดสอบวัสดุที่เหมาะสมและขั้นตอนการตรวจสอบคุณสมบัติเพื่อให้มั่นใจว่าเป็นไปตามมาตรฐาน

ส่วนที่ 3: CRA ที่ทนต่อการแตกร้าว (โลหะผสมที่ทนต่อการกัดกร่อน) และโลหะผสมอื่น ๆ

  • ขอบเขต:จัดการกับโลหะผสมที่ทนต่อการกัดกร่อน (CRA) และโลหะผสมพิเศษอื่นๆ ในสภาพแวดล้อมการบริการที่มีรสเปรี้ยว
  • เนื้อหา:
    • ระบุ CRA ประเภทต่างๆ เช่น เหล็กกล้าไร้สนิม โลหะผสมที่มีนิกเกิลเป็นส่วนประกอบหลัก และโลหะผสมประสิทธิภาพสูงอื่นๆ และความเหมาะสมสำหรับการให้บริการที่มีกรด
    • ระบุองค์ประกอบทางเคมี คุณสมบัติทางกล และการบำบัดความร้อนที่จำเป็นสำหรับวัสดุเหล่านี้ในการต้านทานการแตกร้าว
    • ให้แนวทางในการคัดเลือก ทดสอบ และประเมินคุณสมบัติของ CRA เพื่อให้มั่นใจถึงประสิทธิภาพการทำงานในสภาพแวดล้อม H₂S
    • เอกสารนี้จะกล่าวถึงความสำคัญของการพิจารณาถึงความต้านทานการกัดกร่อนและคุณสมบัติเชิงกลของโลหะผสมเหล่านี้เมื่อเลือกวัสดุสำหรับการใช้งานเฉพาะ

NACE MR0175/ISO 15156 เป็นมาตรฐานที่ครอบคลุมซึ่งช่วยให้แน่ใจว่าวัสดุต่างๆ จะถูกใช้ในสภาพแวดล้อมที่มีก๊าซซัลเฟอร์ไดออกไซด์อย่างปลอดภัยและมีประสิทธิภาพ แต่ละส่วนจะกล่าวถึงวัสดุประเภทต่างๆ และให้แนวทางโดยละเอียดสำหรับการเลือก การทดสอบ และการรับรองคุณภาพ โดยการปฏิบัติตามแนวทางเหล่านี้ บริษัทต่างๆ สามารถลดความเสี่ยงของความล้มเหลวของวัสดุ และเพิ่มความปลอดภัยและความน่าเชื่อถือของการดำเนินงานในสภาพแวดล้อมที่มีก๊าซซัลเฟอร์ไดออกไซด์

ความสมบูรณ์ของหลุม: การใช้งานและลำดับการติดตั้ง OCTG ในบ่อน้ำมันและก๊าซ

การแนะนำ

การสำรวจและผลิตน้ำมันและก๊าซเกี่ยวข้องกับอุปกรณ์และกระบวนการที่ซับซ้อน การเลือกและใช้งานผลิตภัณฑ์ท่ออย่างเหมาะสม เช่น ท่อเจาะ ปลอกเจาะ ดอกสว่าน ปลอกหุ้ม ท่อ แท่งดูด และท่อสาย ถือเป็นสิ่งสำคัญต่อประสิทธิภาพและความปลอดภัยของการดำเนินการขุดเจาะ บล็อกนี้มุ่งหวังที่จะให้ข้อมูลภาพรวมโดยละเอียดเกี่ยวกับส่วนประกอบเหล่านี้ ขนาด และการใช้งานตามลำดับในบ่อน้ำมันและก๊าซ

1. ขนาดท่อเจาะ ปลอกเจาะ และขนาดดอกสว่าน

ท่อเจาะ เป็นแกนหลักของการขุดเจาะโดยส่งกำลังจากพื้นผิวไปยังสว่านพร้อมกับหมุนเวียนของเหลวเจาะ ขนาดทั่วไปได้แก่:

  • 3 1/2 นิ้ว (88.9 มม.)
  • 4 นิ้ว (101.6 มม.)
  • 4 1/2 นิ้ว (114.3 มม.)
  • 5 นิ้ว (127 มม.)
  • 5 1/2 นิ้ว (139.7 มม.)

ปลอกคอเจาะ เพิ่มน้ำหนักให้ดอกสว่าน เจาะทะลุหินได้อย่างมีประสิทธิภาพ ขนาดทั่วไปคือ:

  • 3 1/8 นิ้ว (79.4 มม.)
  • 4 3/4 นิ้ว (120.7 มม.)
  • 6 1/4 นิ้ว (158.8 มม.)
  • 8 นิ้ว (203.2 มม.)

ดอกสว่าน ได้รับการออกแบบมาเพื่อบดขยี้และตัดผ่านแนวหิน ขนาดแตกต่างกันอย่างมาก ขึ้นอยู่กับเส้นผ่านศูนย์กลางรูเจาะที่ต้องการ:

  • 3 7/8 นิ้ว (98.4 มม.) ถึง 26 นิ้ว (660.4 มม.)

2. ขนาดท่อและท่อ

ท่อปลอก ทำให้หลุมเจาะมีความมั่นคง ป้องกันการพังทลาย และแยกโครงสร้างทางธรณีวิทยาต่างๆ ออกจากกัน โดยติดตั้งเป็นขั้นตอน โดยแต่ละเส้นจะมีเส้นผ่านศูนย์กลางใหญ่กว่าเส้นภายใน:

  • ปลอกพื้นผิว: 13 3/8 นิ้ว (339.7 มม.) หรือ 16 นิ้ว (406.4 มม.)
  • ปลอกกลาง: 9 5/8 นิ้ว (244.5 มม.) หรือ 10 3/4 นิ้ว (273.1 มม.)
  • ปลอกการผลิต: 7 นิ้ว (177.8 มม.) หรือ 5 1/2 นิ้ว (139.7 มม.)

ท่อน้ำมัน ถูกสอดเข้าไปในเคสเพื่อขนส่งน้ำมันและก๊าซขึ้นสู่พื้นผิว ขนาดท่อโดยทั่วไปได้แก่:

  • 1.050 นิ้ว (26.7 มม.)
  • 1.315 นิ้ว (33.4 มม.)
  • 1.660 นิ้ว (42.2 มม.)
  • 1,900 นิ้ว (48.3 มม.)
  • 2 3/8 นิ้ว (60.3 มม.)
  • 2 7/8 นิ้ว (73.0 มม.)
  • 3 1/2 นิ้ว (88.9 มม.)
  • 4 นิ้ว (101.6 มม.)

3. ขนาดก้านดูดและท่อ

แท่งดูด เชื่อมต่อหน่วยสูบน้ำที่ผิวน้ำเข้ากับปั๊มใต้หลุม ช่วยให้สามารถยกของเหลวออกจากบ่อได้ จะถูกเลือกตามขนาดท่อ:

  • สำหรับท่อขนาด 2 3/8 นิ้ว: 5/8 นิ้ว (15.9 มม.), 3/4 นิ้ว (19.1 มม.) หรือ 7/8 นิ้ว (22.2 มม.)
  • สำหรับท่อขนาด 2 7/8 นิ้ว: 3/4 นิ้ว (19.1 มม.), 7/8 นิ้ว (22.2 มม.) หรือ 1 นิ้ว (25.4 มม.)

4. ขนาดท่อเส้น

ท่อเส้น ขนส่งไฮโดรคาร์บอนที่ผลิตได้จากหลุมผลิตไปยังโรงงานแปรรูปหรือท่อส่ง พวกเขาจะถูกเลือกตามปริมาณการผลิต:

  • ช่องขนาดเล็ก: 2 นิ้ว (60.3 มม.), 4 นิ้ว (114.3 มม.)
  • ช่องกลาง: 6 นิ้ว (168.3 มม.), 8 นิ้ว (219.1 มม.)
  • ช่องขนาดใหญ่: 10 นิ้ว (273.1 มม.), 12 นิ้ว (323.9 มม.), 16 นิ้ว (406.4 มม.)

การใช้ท่อตามลำดับในบ่อน้ำมันและก๊าซ

1. เวทีการเจาะ

  • การดำเนินการขุดเจาะเริ่มต้นด้วย สว่าน ทะลุผ่านการก่อตัวทางธรณีวิทยา
  • เจาะท่อ ส่งกำลังหมุนและของเหลวสำหรับการเจาะไปยังดอกสว่าน
  • ปลอกคอเจาะ เพิ่มน้ำหนักให้กับบิตทำให้มั่นใจได้ว่าจะแทรกซึมได้อย่างมีประสิทธิภาพ

2. ขั้นตอนการปลอก

  • เมื่อถึงความลึกระดับหนึ่งแล้ว ปลอก ได้รับการติดตั้งเพื่อป้องกันหลุมเจาะและแยกการก่อตัวต่างๆ
  • สตริงเคสพื้นผิว ระดับกลาง และการผลิตจะดำเนินการตามลำดับเมื่อการขุดเจาะดำเนินไป

3. ขั้นตอนเสร็จสมบูรณ์และการผลิต

  • ท่อ ติดตั้งไว้ภายในปลอกการผลิตเพื่ออำนวยความสะดวกในการไหลของไฮโดรคาร์บอนสู่พื้นผิว
  • แท่งดูด ใช้ในบ่อที่มีระบบยกเทียม โดยเชื่อมต่อปั๊มลงหลุมเข้ากับหน่วยพื้นผิว

4. ขั้นตอนการขนส่งทางบก

  • ท่อสายส่งลำเลียง น้ำมันและก๊าซที่ผลิตจากแหล่งผลิตไปยังโรงงานแปรรูปหรือท่อส่งหลัก

บทสรุป

การทำความเข้าใจบทบาท ขนาด และการใช้งานตามลำดับของสินค้ารูปท่อเหล่านี้ถือเป็นสิ่งสำคัญสำหรับการดำเนินการด้านน้ำมันและก๊าซที่มีประสิทธิภาพและปลอดภัย การเลือกและการจัดการท่อเจาะ ปลอกเจาะ ดอกสว่าน ปลอกหุ้ม ท่อ แท่งดูด และท่อสายอย่างเหมาะสมจะช่วยให้มั่นใจถึงความสมบูรณ์ของโครงสร้างของหลุมเจาะและเพิ่มประสิทธิภาพการผลิตให้เหมาะสมที่สุด

ด้วยการบูรณาการส่วนประกอบเหล่านี้อย่างมีประสิทธิภาพ อุตสาหกรรมน้ำมันและก๊าซสามารถตอบสนองความต้องการพลังงานของโลกได้อย่างต่อเนื่อง พร้อมทั้งรักษามาตรฐานความปลอดภัยและประสิทธิภาพการดำเนินงานที่สูงไว้ได้

13Cr กับ Super 13Cr: การวิเคราะห์เปรียบเทียบ

ในภูมิทัศน์ที่ท้าทายของอุตสาหกรรมน้ำมันและก๊าซ การเลือกใช้วัสดุเป็นสิ่งสำคัญในการประกันความยืนยาวและประสิทธิภาพของการดำเนินงาน ในบรรดาวัสดุที่มีอยู่มากมาย เหล็กกล้าไร้สนิม 13Cr และ Super 13Cr โดดเด่นด้วยคุณสมบัติที่โดดเด่นและความเหมาะสมในสภาพแวดล้อมที่มีความต้องการสูง วัสดุเหล่านี้ได้ปฏิวัติอุตสาหกรรม โดยให้ความทนทานต่อการกัดกร่อนและสมรรถนะทางกลที่แข็งแกร่งเป็นพิเศษ เรามาเจาะลึกคุณลักษณะเฉพาะและการใช้งานของเหล็กกล้าไร้สนิม 13Cr และ Super 13Cr กัน

ทำความเข้าใจกับเหล็กกล้าไร้สนิม 13Cr

เหล็กกล้าไร้สนิม 13Cr ซึ่งเป็นโลหะผสมมาร์เทนซิติกที่มีโครเมียมประมาณ 13% ได้กลายเป็นวัตถุดิบหลักในภาคน้ำมันและก๊าซ โดยทั่วไปส่วนประกอบประกอบด้วยคาร์บอน แมงกานีส ซิลิคอน ฟอสฟอรัส ซัลเฟอร์ และโมลิบดีนัมในปริมาณเล็กน้อย ซึ่งทำให้เกิดความสมดุลระหว่างประสิทธิภาพและราคา

คุณสมบัติที่สำคัญของ 13Cr:

  • ความต้านทานการกัดกร่อน:13Cr มีความต้านทานการกัดกร่อนที่ดี โดยเฉพาะในสภาพแวดล้อมที่มี CO2 จึงเหมาะอย่างยิ่งสำหรับใช้ในท่อและปลอกหุ้มใต้หลุม ซึ่งคาดว่าจะสัมผัสกับองค์ประกอบที่กัดกร่อน
  • ความแข็งแรงทางกล: ด้วยความแข็งแรงเชิงกลปานกลาง 13Cr จึงให้ความทนทานที่จำเป็นสำหรับการใช้งานต่างๆ
  • ความเหนียวและความแข็ง:วัสดุนี้มีความเหนียวและความแข็งที่ดี ซึ่งจำเป็นสำหรับการทนต่อความเค้นทางกลที่พบในกระบวนการเจาะและการสกัด
  • ความสามารถในการเชื่อม:13Cr เป็นที่รู้จักกันว่ามีความสามารถในการเชื่อมได้ค่อนข้างดี ช่วยให้สามารถใช้งานได้ในแอปพลิเคชันต่างๆ โดยไม่เกิดความซับซ้อนมากนักในระหว่างการผลิต

การใช้งานในน้ำมันและก๊าซ: เหล็กกล้าไร้สนิม 13Cr ถูกนำมาใช้กันอย่างแพร่หลายในการก่อสร้างท่อ ปลอกหุ้ม และส่วนประกอบอื่นๆ ที่สัมผัสกับสภาพแวดล้อมที่กัดกร่อนเล็กน้อย คุณสมบัติที่สมดุลทำให้เหล็กกล้าไร้สนิม 13Cr เป็นตัวเลือกที่เชื่อถือได้ในการรับรองความสมบูรณ์และประสิทธิภาพของการดำเนินการด้านน้ำมันและก๊าซ

แนะนำตัว ซุปเปอร์ 13Cr: โลหะผสมที่เพิ่มขึ้น

Super 13Cr ใช้ประโยชน์จาก 13Cr ไปอีกขั้นด้วยการผสมผสานองค์ประกอบอัลลอยด์เพิ่มเติม เช่น นิกเกิลและโมลิบดีนัม สิ่งนี้ช่วยเพิ่มคุณสมบัติ ทำให้เหมาะสำหรับสภาพแวดล้อมที่มีฤทธิ์กัดกร่อนรุนแรงมากขึ้น

คุณสมบัติสำคัญของ Super 13Cr:

  • ความต้านทานการกัดกร่อนที่เหนือกว่า:Super 13Cr มีความทนทานต่อการกัดกร่อนที่ดีขึ้นเมื่อเทียบกับ 13Cr มาตรฐาน โดยเฉพาะในสภาพแวดล้อมที่มีระดับ CO2 สูงและมี H2S อยู่ด้วย ซึ่งทำให้เป็นตัวเลือกที่ยอดเยี่ยมสำหรับสภาวะที่ท้าทายยิ่งขึ้น
  • ความแข็งแรงทางกลที่สูงขึ้น:โลหะผสมมีความแข็งแรงเชิงกลที่สูงขึ้น ทำให้สามารถทนต่อแรงเครียดและแรงกดดันที่รุนแรงได้มากขึ้น
  • ปรับปรุงความเหนียวและความแข็ง: ด้วยความเหนียวและความแข็งที่ดีขึ้น Super 13Cr จึงมอบความทนทานและอายุการใช้งานที่ยาวนานขึ้นในการใช้งานที่มีความต้องการสูง
  • ความสามารถในการเชื่อมที่เพิ่มขึ้น:องค์ประกอบที่ได้รับการปรับปรุงของ Super 13Cr ทำให้เชื่อมได้ดีขึ้น ส่งผลให้ใช้งานในกระบวนการผลิตที่ซับซ้อนได้ง่ายขึ้น

การใช้งานในน้ำมันและก๊าซ: Super 13Cr ได้รับการออกแบบมาให้ใช้งานในสภาพแวดล้อมที่กัดกร่อนรุนแรง เช่น สภาพแวดล้อมที่มีระดับ CO2 สูงและมี H2S คุณสมบัติที่เหนือกว่าของ Super 13Cr เหมาะอย่างยิ่งสำหรับท่อใต้หลุม ท่อหุ้ม และส่วนประกอบสำคัญอื่นๆ ในแหล่งน้ำมันและก๊าซที่ท้าทาย

การเลือกโลหะผสมที่เหมาะกับความต้องการของคุณ

การเลือกใช้เหล็กกล้าไร้สนิม 13Cr หรือ Super 13Cr ขึ้นอยู่กับสภาพแวดล้อมและข้อกำหนดด้านประสิทธิภาพเฉพาะของการดำเนินงานด้านน้ำมันและก๊าซของคุณ แม้ว่าเหล็กกล้าไร้สนิม 13Cr จะเป็นทางเลือกที่คุ้มต้นทุนพร้อมคุณสมบัติต้านทานการกัดกร่อนและกลไกที่ดี แต่เหล็กกล้าไร้สนิม Super 13Cr ก็ให้ประสิทธิภาพที่ดีขึ้นสำหรับสภาพแวดล้อมที่ต้องการความแม่นยำสูงกว่า

ข้อควรพิจารณาที่สำคัญ:

  • สภาพแวดล้อม:ประเมิน CO2, H2S และองค์ประกอบที่กัดกร่อนอื่น ๆ ในสภาพแวดล้อมการทำงาน
  • ต้องการประสิทธิภาพการทำงาน: กำหนดความแข็งแรงทางกล ความเหนียว และความแข็งที่จำเป็นสำหรับการใช้งานเฉพาะ
  • ต้นทุนเทียบกับผลประโยชน์: ชั่งน้ำหนักต้นทุนของวัสดุเทียบกับข้อดีของคุณสมบัติที่ได้รับการปรับปรุงและอายุการใช้งานที่ยาวนานขึ้น

บทสรุป

ในอุตสาหกรรมน้ำมันและก๊าซที่มีการเปลี่ยนแปลงอยู่ตลอดเวลา การเลือกใช้วัสดุ เช่น เหล็กกล้าไร้สนิม 13Cr และ Super 13Cr ถือเป็นสิ่งสำคัญอย่างยิ่งในการรับรองความน่าเชื่อถือ ประสิทธิภาพ และความปลอดภัยของการดำเนินงาน การทำความเข้าใจคุณสมบัติเฉพาะและการใช้งานของโลหะผสมเหล่านี้ทำให้ผู้เชี่ยวชาญในอุตสาหกรรมสามารถตัดสินใจได้อย่างรอบรู้ ซึ่งท้ายที่สุดแล้วจะช่วยให้โครงการต่างๆ ประสบความสำเร็จและยั่งยืนได้ ไม่ว่าจะเป็นประสิทธิภาพที่สมดุลของ 13Cr หรือคุณสมบัติที่เหนือกว่าของ Super 13Cr วัสดุเหล่านี้ยังคงมีบทบาทสำคัญในการพัฒนาขีดความสามารถของภาคส่วนน้ำมันและก๊าซ

สินค้าท่อในประเทศน้ำมัน (OCTG)

สินค้าท่อประเทศน้ำมัน (OCTG) เป็นกลุ่มผลิตภัณฑ์รีดไร้รอยต่อ ประกอบด้วยท่อเจาะ ปลอก และท่อที่อยู่ภายใต้เงื่อนไขการรับน้ำหนักตามการใช้งานเฉพาะ (ดูรูปที่ 1 สำหรับแผนผังของบ่อน้ำลึก):

ที่ ท่อเจาะ เป็นท่อไร้รอยต่อที่มีน้ำหนักมากซึ่งหมุนหัวเจาะและหมุนเวียนของเหลวเจาะ ส่วนท่อยาว 30 ฟุต (9 ม.) เชื่อมกับข้อต่อเครื่องมือ ท่อเจาะจะได้รับแรงบิดสูงจากการเจาะ แรงตึงตามแนวแกนจากน้ำหนักบรรทุก และแรงดันภายในจากการไล่ของเหลวเจาะในเวลาเดียวกัน นอกจากนี้ แรงดัดสลับกันเนื่องจากการเจาะที่ไม่ตั้งฉากหรือเบี่ยงเบนอาจทับซ้อนกับรูปแบบการโหลดพื้นฐานเหล่านี้
ท่อปลอก บุผนังหลุมเจาะ โดยต้องรับแรงดึงตามแนวแกนจากน้ำหนักที่ถ่วงไว้ แรงดันภายในจากการระบายของเหลว และแรงดันภายนอกจากชั้นหินโดยรอบ อิมัลชันน้ำมันหรือก๊าซที่ถูกสูบออกจะทำให้ปลอกท่อต้องรับแรงดึงตามแนวแกนและแรงดันภายในเป็นพิเศษ
ท่อคือท่อที่ใช้ลำเลียงน้ำมันหรือก๊าซจากหลุมเจาะ ท่อแต่ละส่วนมีความยาวประมาณ 30 ฟุต [9 ม.] และมีข้อต่อเกลียวที่ปลายทั้งสองข้าง

ความต้านทานการกัดกร่อนภายใต้สภาวะการใช้งานที่มีรสเปรี้ยวถือเป็นคุณลักษณะสำคัญของ OCTG โดยเฉพาะอย่างยิ่งสำหรับตัวเรือนและท่อ

กระบวนการผลิต OCTG ทั่วไปประกอบด้วย (ช่วงขนาดทั้งหมดเป็นค่าโดยประมาณ)

กระบวนการรีดแกนต่อเนื่องและกระบวนการผลักม้านั่งสำหรับขนาดระหว่าง 21 ถึง 178 มม. OD
เครื่องรีดปลั๊กสำหรับขนาดระหว่าง 140 ถึง 406 มม. OD
การเจาะแบบ Cross-roll และการกลิ้งพิลเจอร์สำหรับขนาด OD 250 ถึง 660 มม.
กระบวนการเหล่านี้โดยทั่วไปไม่อนุญาตให้ใช้กระบวนการทางเทอร์โมแมคคานิกส์แบบปกติสำหรับผลิตภัณฑ์แถบและแผ่นที่ใช้สำหรับท่อเชื่อม ดังนั้น จึงต้องผลิตท่อไร้รอยต่อที่มีความแข็งแรงสูงโดยเพิ่มปริมาณโลหะผสมร่วมกับการอบชุบด้วยความร้อนที่เหมาะสม เช่น การดับและการอบให้แข็ง

รูปที่ 1 แผนผังของการเสร็จสมบูรณ์ที่เจริญเติบโตอย่างล้ำลึก

การตอบสนองความต้องการพื้นฐานของโครงสร้างจุลภาคแบบมาร์เทนซิติกอย่างสมบูรณ์ แม้จะมีความหนาของผนังท่อมาก จำเป็นต้องมีการชุบแข็งที่ดี Cr และ Mn เป็นองค์ประกอบโลหะผสมหลักที่ทำให้เหล็กที่ผ่านการอบด้วยความร้อนทั่วไปชุบแข็งได้ดี อย่างไรก็ตาม ข้อกำหนดในการต้านทานการแตกร้าวจากความเค้นซัลไฟด์ (SSC) ที่ดีจำกัดการใช้งาน Mn มีแนวโน้มที่จะแยกตัวในระหว่างการหล่อต่อเนื่อง และสามารถก่อตัวเป็นการรวมตัวของ MnS ขนาดใหญ่ที่ลดความต้านทานการแตกร้าวที่เกิดจากไฮโดรเจน (HIC) ระดับ Cr ที่สูงขึ้นสามารถนำไปสู่การเกิดตะกอน Cr7C3 ที่มีรูปร่างเป็นแผ่นหยาบ ซึ่งทำหน้าที่เป็นตัวรวบรวมไฮโดรเจนและตัวจุดชนวนการแตกร้าว โลหะผสมที่มีโมลิบดีนัมสามารถเอาชนะข้อจำกัดของโลหะผสม Mn และ Cr ได้ Mo เป็นสารชุบแข็งที่แข็งแกร่งกว่า Mn และ Cr มาก จึงสามารถฟื้นคืนผลของธาตุเหล่านี้ในปริมาณที่ลดลงได้อย่างรวดเร็ว

โดยทั่วไป เกรด OCTG จะเป็นเหล็กคาร์บอน-แมงกานีส (ระดับความแข็งแรงสูงสุดถึง 55 ksi) หรือเกรดที่มี Mo สูงสุดถึง 0.4% Mo ในช่วงไม่กี่ปีที่ผ่านมา การเจาะบ่อน้ำลึกและแหล่งกักเก็บที่มีสารปนเปื้อนที่ทำให้เกิดการกัดกร่อนทำให้มีความต้องการวัสดุที่มีความแข็งแรงสูงขึ้นซึ่งต้านทานการเปราะจากไฮโดรเจนและ SCC อย่างมาก มาร์เทนไซต์ที่ผ่านการอบให้ร้อนจัดเป็นโครงสร้างที่มีความต้านทานต่อ SSC มากที่สุดที่ระดับความแข็งแรงที่สูงขึ้น และความเข้มข้นของ Mo 0.75% จะให้การผสมผสานที่เหมาะสมที่สุดของความแข็งแรงผลผลิตและความต้านทาน SSC

สิ่งที่คุณต้องรู้: การตกแต่งหน้าหน้าแปลน

ที่ รหัส ASME B16.5 ต้องการให้หน้าหน้าแปลน (หน้ายกและหน้าแบน) มีความหยาบเฉพาะเพื่อให้แน่ใจว่าพื้นผิวนี้เข้ากันได้กับปะเก็นและให้การซีลคุณภาพสูง

ต้องใช้การตกแต่งแบบฟันปลาที่มีศูนย์กลางหรือเป็นเกลียวโดยมีร่อง 30 ถึง 55 ร่องต่อนิ้ว และผลลัพธ์ที่ได้จะมีความหยาบระหว่าง 125 ถึง 500 ไมโครนิ้ว ช่วยให้ผู้ผลิตหน้าแปลนสามารถเตรียมผิวสำเร็จได้หลายเกรดสำหรับพื้นผิวสัมผัสปะเก็นของหน้าแปลนโลหะ

หน้าแปลนเสร็จสิ้น

ฟันปลาเสร็จสิ้น

สต็อกเสร็จสิ้น
พื้นผิวหน้าแปลนใดๆ ที่ใช้กันอย่างแพร่หลายที่สุด เนื่องจากในทางปฏิบัติแล้ว เหมาะสำหรับทุกสภาพการบริการทั่วไป ภายใต้แรงอัด ใบหน้าที่อ่อนนุ่มจากปะเก็นจะฝังอยู่ในผิวเคลือบนี้ ซึ่งช่วยสร้างการปิดผนึกและเกิดแรงเสียดทานในระดับสูงระหว่างพื้นผิวผสมพันธุ์

ผิวสำเร็จของหน้าแปลนเหล่านี้สร้างขึ้นด้วยเครื่องมือปลายมนที่มีรัศมี 1.6 มม. ที่อัตราการป้อน 0.8 มม. ต่อการปฏิวัติจนถึง 12 นิ้ว สำหรับขนาด 14 นิ้วขึ้นไป การเก็บผิวสำเร็จจะใช้เครื่องมือปลายมนขนาด 3.2 มม. ที่อัตราป้อน 1.2 มม. ต่อรอบ

ผิวหน้าแปลน - ผิวสต็อกผิวหน้าแปลน - ผิวสต็อก

เกลียวหยัก
นี่เป็นร่องเกลียวแบบต่อเนื่องหรือแบบโฟโนกราฟิก แต่จะแตกต่างจากพื้นผิวเดิมตรงที่ร่องมักจะถูกสร้างขึ้นโดยใช้เครื่องมือ 90° ซึ่งสร้างรูปทรง "V" พร้อมฟันปลาที่ทำมุม 45°

ผิวหน้าแปลน - เกลียวหยัก

หยักศูนย์กลาง
ตามชื่อเลย ผิวเคลือบนี้ประกอบด้วยร่องที่มีศูนย์กลางร่วมกัน ใช้เครื่องมือ 90° และมีระยะห่างเท่ากันทั่วทั้งหน้า

ผิวหน้าแปลน - หยักแบบศูนย์กลาง

ผิวเรียบเนียน
พื้นผิวนี้ไม่แสดงเครื่องหมายเครื่องมือที่มองเห็นได้ชัดเจน โดยทั่วไปการเคลือบผิวเหล่านี้ใช้สำหรับปะเก็นที่มีส่วนหน้าเป็นโลหะ เช่น แจ็คเก็ตสองชั้น เหล็กแบน และโลหะลูกฟูก พื้นผิวเรียบจับคู่กันเพื่อสร้างการปิดผนึกและขึ้นอยู่กับความเรียบของใบหน้าของฝ่ายตรงข้ามเพื่อสร้างการปิดผนึก โดยทั่วไปจะทำได้โดยการให้พื้นผิวสัมผัสของปะเก็นเกิดขึ้นจากร่องเกลียวแบบต่อเนื่อง (บางครั้งเรียกว่า phonographic) ที่สร้างโดยเครื่องมือจมูกกลมที่มีรัศมี 0.8 มม. ที่อัตราการป้อน 0.3 มม. ต่อรอบที่มีความลึก 0.05 มม. ซึ่งจะส่งผลให้เกิดความหยาบระหว่าง Ra 3.2 ถึง 6.3 ไมโครเมตร (125 – 250 ไมโครนิ้ว)

การตกแต่งหน้าแปลน - ผิวเรียบ

เรียบเนียน

เหมาะสำหรับปะเก็นเกลียวและปะเก็นอโลหะหรือไม่? ประเภทนี้เหมาะกับการใช้งานประเภทใด?

หน้าแปลนเรียบนั้นพบได้ทั่วไปในท่อแรงดันต่ำและ/หรือเส้นผ่านศูนย์กลางขนาดใหญ่ และมีวัตถุประสงค์หลักเพื่อใช้กับปะเก็นโลหะแข็งหรือปะเก็นพันเกลียว

ผิวเรียบมักพบได้ในเครื่องจักรหรือข้อต่อแบบหน้าแปลน นอกเหนือจากหน้าแปลนท่อ เมื่อทำงานให้ผิวเรียบเนียน สิ่งสำคัญคือต้องพิจารณาใช้ปะเก็นที่บางลงเพื่อลดผลกระทบของการคืบและการไหลของความเย็น อย่างไรก็ตาม ควรสังเกตว่าทั้งปะเก็นที่บางกว่าและผิวเรียบทั้งด้านในและในตัวมันเอง ต้องใช้แรงอัดที่สูงกว่า (เช่น แรงบิดของสลักเกลียว) เพื่อให้เกิดการซีล

การตัดเฉือนผิวหน้าปะเก็นของหน้าแปลนเพื่อให้ได้ผิวสำเร็จที่เรียบ Ra = 3.2 – 6.3 ไมโครเมตร (= 125 – 250 ไมโครนิ้ว AARH)

AARH ย่อมาจากความสูงความหยาบเฉลี่ยทางคณิตศาสตร์ ใช้สำหรับวัดความหยาบ (ค่อนข้างเรียบ) ของพื้นผิว 125 AARH หมายถึง 125 ไมโครนิ้วจะเป็นความสูงเฉลี่ยของการขึ้นและลงของพื้นผิว

63 AARH ถูกระบุสำหรับข้อต่อแบบวงแหวน

ระบุ 125-250 AARH (เรียกว่าผิวเรียบ) สำหรับปะเก็นแผลเกลียว

250-500 AARH (เรียกว่าการขัดผิวสต็อก) ได้รับการระบุไว้สำหรับปะเก็นแบบอ่อน เช่น แร่ใยหินที่ไม่มีใยหิน แผ่นกราไฟท์ อีลาสโตเมอร์ ฯลฯ หากเราใช้การขัดผิวแบบเรียบสำหรับปะเก็นแบบอ่อน "ผลกระทบจากการกัด" ก็เพียงพอแล้วจะไม่เกิดขึ้น และด้วยเหตุนี้ข้อต่อ อาจเกิดการรั่วได้

บางครั้ง AARH ยังเรียกอีกอย่างว่า Ra ซึ่งย่อมาจาก Roughness Average และมีความหมายเหมือนกัน

ท่อครีบ

Successfully Delivered a Batch of Finned Tubes for Industrial Heat Exchangers

An order of 1,170 aluminum alloy finned tubes has been successfully delivered and will be shipped from Shanghai Port, China. The tubes will be supplied to an important customer and will improve the efficiency of heat exchange and transfer in the power plant’s heat exchanger system.

The tubes are available in three different sizes with the following specifications:
The total weight of the cargo is 20,740 kg.
∅25.4 x 2.11 x 9,144 mm, 3,940 kg, 820 pcs.
∅25.4 x 2.77 x 9,144 mm, 6,200 kg, 310 pcs.
∅25.4 x 2.41 x 8,660 mm, 600 kg, 40 pcs.
Fin Material: Aluminum Alloy 1100
Base Tube: มาตรฐาน ASTM A179
Fin Type: G Type
Fin Thickness: 0.016 inches (0.4 mm)
Number of Fins Per Inch: 11 FPI

ท่อครีบ

ท่อครีบ

If you have RFQs for finned tubes, please feel free to contact us at [email protected]. We can produce L Type, LL Type, KL Type, Embedded (G), and Extruded Finned Tubes and will provide you with strong support in quality, price, delivery, and service!