Brunnskomplettering: Applicerings- och installationssekvenser av OCTG i olje- och gaskällor

Introduktion

Prospektering och produktion av olja och gas involverar komplex utrustning och processer. Bland dessa är rätt val och användning av rörformiga varor – borrrör, borrkragar, borrkronor, hölje, slangar, sugstavar och ledningsrör – avgörande för effektiviteten och säkerheten vid borrning. Den här bloggen syftar till att ge en detaljerad översikt över dessa komponenter, deras storlekar och deras sekventiella användning i olje- och gaskällor.

1. Storlekar för borrrör, borrkrage och borrkronor

Borrrör är ryggraden i borroperationen och överför kraft från ytan till borrkronan medan borrvätskan cirkulerar. Vanliga storlekar inkluderar:

  • 3 1/2 tum (88,9 mm)
  • 4 tum (101,6 mm)
  • 4 1/2 tum (114,3 mm)
  • 5 tum (127 mm)
  • 5 1/2 tum (139,7 mm)

Borrkragar lägg till vikt på borrkronan och se till att den penetrerar berget effektivt. Typiska storlekar är:

  • 3 1/8 tum (79,4 mm)
  • 4 3/4 tum (120,7 mm)
  • 6 1/4 tum (158,8 mm)
  • 8 tum (203,2 mm)

Borrkronor är utformade för att krossa och skära igenom klippformationer. Deras storlekar varierar avsevärt, beroende på önskad borrhålsdiameter:

  • 3 7/8 tum (98,4 mm) till 26 tum (660,4 mm)

2. Hölje och slangstorlekar

Höljesrör stabiliserar borrhålet, förhindrar kollaps och isolerar olika geologiska formationer. Den installeras i etapper, där varje sträng har en större diameter än den inuti:

  • Ythölje: 13 3/8 tum (339,7 mm) eller 16 tum (406,4 mm)
  • Mellanhölje: 9 5/8 tum (244,5 mm) eller 10 3/4 tum (273,1 mm)
  • Produktionshölje: 7 tum (177,8 mm) eller 5 1/2 tum (139,7 mm)

Oljeslang sätts in i höljet för att transportera olja och gas till ytan. Typiska slangstorlekar inkluderar:

  • 1 050 tum (26,7 mm)
  • 1,315 tum (33,4 mm)
  • 1 660 tum (42,2 mm)
  • 1 900 tum (48,3 mm)
  • 2 3/8 tum (60,3 mm)
  • 2 7/8 tum (73,0 mm)
  • 3 1/2 tum (88,9 mm)
  • 4 tum (101,6 mm)

3. Sugstång och slangstorlekar

Sucker Stavar anslut ytpumpenheten till borrhålspumpen, vilket möjliggör lyft av vätskor från brunnen. De väljs utifrån slangstorleken:

  • För 2 3/8 tum slangar: 5/8 tum (15,9 mm), 3/4 tum (19,1 mm) eller 7/8 tum (22,2 mm)
  • För 2 7/8 tum slangar: 3/4 tum (19,1 mm), 7/8 tum (22,2 mm) eller 1 tum (25,4 mm)

4. Linjerörstorlekar

Linjerör transportera de producerade kolvätena från brunnshuvudet till processanläggningar eller rörledningar. De väljs utifrån produktionsvolymen:

  • Små fält: 2 tum (60,3 mm), 4 tum (114,3 mm)
  • Mellanstora fält: 6 tum (168,3 mm), 8 tum (219,1 mm)
  • Stora fält: 10 tum (273,1 mm), 12 tum (323,9 mm), 16 tum (406,4 mm)

Sekventiell användning av rör i olje- och gaskällor

1. Borrningsstadium

  • Borrningen börjar med borr bryta igenom de geologiska formationerna.
  • Borrrör överföra roterande kraft och borrvätska till borrkronan.
  • Borrkragar lägg till tyngd på biten och säkerställ att den penetrerar effektivt.

2. Casing Stage

  • När ett visst djup har nåtts, a hölje installeras för att skydda borrhålet och isolera olika formationer.
  • Yt-, mellan- och produktionsmantelsträngar körs sekventiellt allteftersom borrningen fortskrider.

3. Färdigställande och produktionsstadium

  • Slang är installerad inuti produktionshöljet för att underlätta flödet av kolväten till ytan.
  • Sugstavar används i brunnar med konstgjorda lyftsystem som ansluter borrhålspumpen till ytenheten.

4. Yttransportsteg

  • Linjerör transporterar olja och gas som produceras från brunnshuvudet till processanläggningar eller huvudledningar.

Slutsats

Att förstå dessa rörformiga varors roller, storlekar och sekventiell användning är avgörande för effektiv och säker olje- och gasverksamhet. Rätt val och hantering av borrrör, borrkragar, borrkronor, hölje, slangar, sugstavar och ledningsrör säkerställer brunnens strukturella integritet och optimerar produktionsprestanda.

Genom att effektivt integrera dessa komponenter kan olje- och gasindustrin fortsätta att möta världens energibehov samtidigt som höga standarder för säkerhet och drifteffektivitet upprätthålls.

13Cr vs Super 13Cr: En jämförande analys

I olje- och gasindustrins utmanande landskap är materialval avgörande för att säkerställa driftens livslängd och effektivitet. Bland de mängder av material som finns tillgängliga utmärker sig 13Cr och Super 13Cr rostfria stål för sina anmärkningsvärda egenskaper och lämplighet i krävande miljöer. Dessa material har revolutionerat branschen och ger exceptionell motståndskraft mot korrosion och robust mekanisk prestanda. Låt oss fördjupa oss i de unika egenskaperna och tillämpningarna av 13Cr och Super 13Cr rostfria stål.

Förstå 13Cr rostfritt stål

13Cr rostfritt stål, en martensitisk legering som innehåller cirka 13% krom, har blivit en stapelvara i olje- och gassektorn. Dess sammansättning innehåller vanligtvis små mängder kol, mangan, kisel, fosfor, svavel och molybden, vilket ger en balans mellan prestanda och kostnad.

Kritiska egenskaper för 13Cr:

  • Korrosionsbeständighet: 13Cr erbjuder berömvärd motståndskraft mot korrosion, särskilt i miljöer som innehåller CO2. Detta gör den idealisk för användning i borrhålsrör och hölje, där exponering för korrosiva element förväntas.
  • Mekanisk styrka: Med måttlig mekanisk styrka ger 13Cr den nödvändiga hållbarheten för olika applikationer.
  • Seghet och hårdhetMaterialet uppvisar god seghet och hårdhet, väsentligt för att motstå de mekaniska påfrestningar som uppstår vid borr- och extraktionsprocesser.
  • Svetsbarhet: 13Cr är känt för sin relativt goda svetsbarhet, vilket underlättar dess användning i olika applikationer utan betydande komplikationer under tillverkningen.

Tillämpningar inom olja och gas: 13Cr rostfritt stål används i stor utsträckning vid konstruktion av rör, hölje och andra komponenter som utsätts för milt korrosiva miljöer. Dess balanserade egenskaper gör den till ett pålitligt val för att säkerställa integriteten och effektiviteten i olje- och gasverksamheten.

Introducerar Super 13Cr: Den förbättrade legeringen

Super 13Cr tar fördelarna med 13Cr ett steg längre genom att inkludera ytterligare legeringselement som nickel och molybden. Detta förbättrar egenskaperna, vilket gör den lämplig för mer aggressiva korrosiva miljöer.

Kritiska egenskaper hos Super 13Cr:

  • Överlägsen korrosionsbeständighet: Super 13Cr erbjuder förbättrad korrosionsbeständighet jämfört med standard 13Cr, särskilt i miljöer som innehåller högre halter av CO2 och närvaron av H2S. Detta gör den till ett utmärkt val för mer utmanande förhållanden.
  • Högre mekanisk styrka: Legeringen har högre mekanisk hållfasthet, vilket säkerställer att den tål större påfrestningar och tryck.
  • Förbättrad seghet och hårdhet: Med bättre seghet och hårdhet ger Super 13Cr förbättrad hållbarhet och livslängd i krävande applikationer.
  • Förbättrad svetsbarhet: Super 13Crs förbättrade sammansättning resulterar i bättre svetsbarhet, vilket underlättar dess användning i komplexa tillverkningsprocesser.

Tillämpningar inom olja och gas: Super 13Cr är skräddarsydd för användning i mer aggressiva korrosiva miljöer, såsom de med högre halter av CO2 och närvaron av H2S. Dess överlägsna egenskaper är idealiska för borrhålsrör, hölje och andra kritiska komponenter i utmanande olje- och gasfält.

Att välja rätt legering för dina behov

Valet mellan 13Cr och Super 13Cr rostfritt stål beror ytterst på din olje- och gasverksamhets specifika miljöförhållanden och prestandakrav. Medan 13Cr ger en kostnadseffektiv lösning med bra korrosionsbeständighet och mekaniska egenskaper, erbjuder Super 13Cr förbättrad prestanda för mer krävande miljöer.

Viktiga överväganden:

  • Miljöförhållanden: Bedöm CO2, H2S och andra frätande element i driftsmiljön.
  • Prestationskrav: Bestäm nödvändig mekanisk hållfasthet, seghet och hårdhet för den specifika applikationen.
  • Kostnad vs. nytta: Väg kostnaden för materialet mot fördelarna med förbättrade egenskaper och längre livslängd.

Slutsats

I den ständigt utvecklande olje- och gasindustrin är valet av material som 13Cr och Super 13Cr rostfritt stål avgörande för att säkerställa driftens tillförlitlighet, effektivitet och säkerhet. Genom att förstå de unika egenskaperna och tillämpningarna av dessa legeringar kan branschfolk fatta välgrundade beslut, vilket i slutändan bidrar till framgång och hållbarhet för deras projekt. Oavsett om det är den balanserade prestandan hos 13Cr eller de överlägsna egenskaperna hos Super 13Cr, fortsätter dessa material att spela en avgörande roll för att utveckla kapaciteten inom olje- och gassektorn.

Oil Country Tubular Goods (OCTG)

Oljeland rörformiga varor (OCTG) är en familj av sömlösa valsade produkter som består av borrrör, hölje och rör som utsätts för belastningsförhållanden enligt deras specifika tillämpning. (se figur 1 för en schematisk bild av en djup brunn):

De Borrör är ett tungt sömlöst rör som roterar borrkronan och cirkulerar borrvätska. Rörsegment 30 fot (9m) långa är kopplade med verktygsskarvar. Borröret utsätts samtidigt för högt vridmoment genom borrning, axiell spänning genom sin egenvikt och inre tryck genom att tömma borrvätska. Dessutom kan alternerande böjbelastningar på grund av icke-vertikal eller avböjd borrning läggas över dessa grundläggande belastningsmönster.
Höljesrör fodrar borrhålet. Den utsätts för axiell spänning från dess dödvikt, inre tryck från vätskespolning och yttre tryck från omgivande stenformationer. Den pumpade olje- eller gasemulsionen utsätter särskilt höljet för axiell spänning och inre tryck.
Rör är ett rör genom vilket olja eller gas transporteras från borrhålet. Slangsegment är vanligtvis cirka 9 meter långa och har en gängad anslutning i varje ände.

Korrosionsbeständighet under sura driftsförhållanden är en avgörande OCTG-egenskap, speciellt för hölje och rör.

Typiska OCTG-tillverkningsprocesser inkluderar (alla dimensionsområden är ungefärliga)

Kontinuerlig dornrullning och tryckbänksprocesser för storlekar mellan 21 och 178 mm OD.
Pluggvalsning för storlekar mellan 140 och 406 mm OD.
Cross-roll piercing och pilger rolling för storlekar mellan 250 och 660 mm OD.
Dessa processer tillåter vanligtvis inte den termomekaniska bearbetningen som är vanliga för band- och plåtprodukterna som används för det svetsade röret. Därför måste höghållfasta sömlösa rör framställas genom att öka legeringshalten i kombination med en lämplig värmebehandling, såsom härdning och härdning.

Figur 1. Schematisk över en djupt blomstrande avslutning

Att uppfylla de grundläggande kraven på en helt martensitisk mikrostruktur, även vid stor rörväggtjocklek, kräver god härdbarhet. Cr och Mn är de viktigaste legeringselementen som ger god härdbarhet i konventionellt värmebehandlat stål. Kravet på god beständighet mot sulfidspänningssprickbildning (SSC) begränsar emellertid deras användning. Mn tenderar att segregera under kontinuerlig gjutning och kan bilda stora MnS-inneslutningar som minskar väte-inducerad sprickbildning (HIC) motstånd. Högre halter av Cr kan leda till bildning av Cr7C3-fällningar med grov plattaformad morfologi, som fungerar som väteuppsamlare och sprickinitiatorer. Legering med molybden kan övervinna begränsningarna med Mn- och Cr-legering. Mo är en mycket starkare härdare än Mn och Cr, så den kan snabbt återställa effekten av en minskad mängd av dessa element.

Traditionellt var OCTG-kvaliteter kol-manganstål (upp till hållfasthetsnivån 55 ksi) eller Mo-innehållande kvaliteter upp till 0,4% Mo. Under de senaste åren har djupa brunnsborrningar och reservoarer som innehåller föroreningar som orsakar korrosiva angrepp skapat en stark efterfrågan för material med högre hållfasthet som är resistenta mot väteförsprödning och SCC. Höghärdad martensit är den struktur som är mest resistent mot SSC vid högre hållfasthetsnivåer, och 0,75% Mo-koncentration ger den optimala kombinationen av sträckgräns och SSC-beständighet.

Något du behöver veta: Flänsfinish

De ASME B16.5-kod kräver att flänsytan (upphöjd yta och plan yta) har en specifik grovhet för att säkerställa att denna yta är kompatibel med packningen och ger en tätning av hög kvalitet.

En tandad yta, antingen koncentrisk eller spiral, krävs med 30 till 55 spår per tum och en resulterande grovhet mellan 125 och 500 mikrotum. Detta gör att olika kvaliteter av ytfinish kan göras tillgängliga av flänstillverkare för packningskontaktytan på metallflänsar.

Flänsyta

Tandad finish

Lagerfinish
Den mest använda av alla flänsytor, eftersom praktiskt taget är lämplig för alla vanliga serviceförhållanden. Under kompression kommer den mjuka ytan från en packning att bäddas in i denna finish, vilket hjälper till att skapa en tätning och en hög nivå av friktion genereras mellan de matchande ytorna.

Finishen för dessa flänsar genereras av ett verktyg med 1,6 mm radie med rund nos med en matningshastighet på 0,8 mm per varv upp till 12 tum. För storlekar 14 tum och större är finishen gjord med ett 3,2 mm rundnosverktyg med en matning på 1,2 mm per varv.

Flänsyta - Stock FinishFlänsyta - Stock Finish

Spiral tandad
Detta är också ett kontinuerligt eller fonografiskt spiralspår, men det skiljer sig från lagerfinishen genom att spåret vanligtvis genereras med ett 90°-verktyg som skapar en "V"-geometri med 45° vinklad tandning.

Flänsyta - Spiraltandad

Koncentriskt tandad
Som namnet antyder består denna finish av koncentriska spår. Ett 90° verktyg används och tandningarna är jämnt fördelade över ansiktet.

Flänsyta - koncentriskt tandad

Smidig avslutning
Denna finish visar inga visuellt synliga verktygsmarkeringar. Dessa ytbehandlingar används vanligtvis för packningar med metallbeklädnader såsom dubbelmantlad, platt stål och korrugerad metall. De släta ytorna passar ihop för att skapa en tätning och beror på de motstående ytornas planhet för att åstadkomma en tätning. Detta uppnås typiskt genom att packningskontaktytan bildas av ett kontinuerligt (ibland kallat fonografiskt) spiralspår som genereras av ett 0,8 mm-radius rundnosverktyg med en matningshastighet av 0,3 mm per varv med ett djup av 0,05 mm. Detta kommer att resultera i en grovhet mellan Ra 3,2 och 6,3 mikrometer (125 – 250 mikrotum).

Flänsyta - Smidig finish

SMIDIG AVSLUTNING

Är den lämplig för spiralpackningar och icke-metalliska packningar? För vilken typ av applikation är denna typ?

Släta flänsar är vanligare för lågtrycks- och/eller rörledningar med stor diameter och är främst avsedda för användning med solida metall- eller spirallindade packningar.

Släta ytbehandlingar finns vanligtvis på maskiner eller andra flänsförband än rörflänsar. När du arbetar med en slät finish är det viktigt att överväga att använda en tunnare packning för att minska effekterna av krypning och kallflöde. Det bör dock noteras att både en tunnare packning och den släta finishen, i och för sig, kräver en högre tryckkraft (dvs bultmoment) för att uppnå tätningen.

Bearbetning av packningsytor på flänsar till en slät finish på Ra = 3,2 – 6,3 mikrometer (= 125 – 250 mikrotum AARH)

AARH står för Arithmetic Average Roughness Height. Den används för att mäta ytornas grovhet (ganska jämnhet). 125 AARH betyder att 125 mikrotum är den genomsnittliga höjden för ytans upp- och nedgångar.

63 AARH är specificerad för ringtypskarvar.

125-250 AARH (det kallas slät finish) specificeras för spirallindade packningar.

250-500 AARH (det kallas lagerfinish) specificeras för mjuka packningar som icke-asbest, grafitplåtar, elastomerer etc. Om vi använder en slät finish för mjuka packningar kommer inte tillräckligt med "biteffekt" att uppstå och därav fogen kan utveckla en läcka.

Ibland kallas AARH också för Ra som står för Roughness Average och betyder detsamma.

API 5L Gr.B Seamless Line Pipe med 3LPE-beläggning i enlighet med CAN CSA Z245.21

Framgångsrik leverans av order CAN/CSA-Z245.21 3LPE belagt linjerör

En kund som vi har följt upp i 8 år har äntligen lagt en beställning. Beställningen avser en sats av NPS 3“, NPS 4”, NPS 6“ och NPS 8” diametrar, tjocklek SCH40, enkel längd 11,8M, med 2,5 mm tjock 3-lagers polyetenbeläggning för korrosionsskydd, som kommer att grävas ner i marken för naturgastransporter.

Rören tillverkas enl API 5L PSL 1 gr. B sömlöst rör standard och den korrosionsskyddande beläggningen tillverkas i enlighet med CAN/CSA-Z245.21 standard.

API 5L Gr.B Seamless Line Pipe med 3LPE-beläggning i enlighet med CAN CSA Z245.21

API 5L Gr.B Seamless Line Pipe med 3LPE-beläggning i enlighet med CAN CSA Z245.21

Sömlös rörtillverkningsprocessdiagram

Sömlös rörtillverkningsprocessdiagram

3LPE Coating Manufacturing Process Chart

3LPE Coating Manufacturing Process Chart

Våra sömlösa rör valsas i världens mest avancerade PQF-bruk, som tillverkas av SMS Group i Tyskland. Våra 3LPE-beläggningar tillverkas i vår mest avancerade beläggningslinje i Kina, vilket säkerställer att specifikationerna för rören och beläggningarna helt uppfyller våra kunders krav.

Om du har någon efterfrågan på 3LPE/3LPP/FBE/LE-belagda ledningsrör, kontakta oss gärna för en offert via e-post på [email protected]. Vi kommer att strikt kontrollera kvaliteten för dig och bättre stödja dig när det gäller pris och service!

PTT Thailand – Cambodia Oil Jetty Project

PTT Thailand – Cambodia Oil Jetty Project

Projekt: Oljebrygga
Plats: Kambodja
Varaktighet: Februari 2021 – juli 2021

Obligatorisk produkt: Stålrör, Rörkopplingar, Rörflänsar
Specifikationer: API 5L Gr.B, ASME B16.9, ASME B16.5
Kvantitet: 75 ton stålrör, 130 delar rörkopplingar och flänsar
Använda sig av: Oil Jetty Submarine Pipeline System
Beläggningsspecifikationer: DIN 30670-2012 3LPE Beläggning
Använda sig av: Förebyggande av korrosion av havsvatten och havssalt och förlängning av livslängden