Wpisy

Proces produkcyjny rur wiertniczych - 0

Specyfikacja API 5DP Rura wiertnicza: kompleksowy przewodnik

Wprowadzenie Specyfikacja API 5DP Rura wiertnicza

Rury wiertnicze są kluczowymi elementami w przemyśle naftowym i gazowym, stanowiąc kręgosłup operacji wiertniczych. Rury te łączą wiertnicę z wiertłem, przenosząc moc i płyn wiertniczy w celu tworzenia otworów wiertniczych na powierzchni ziemi. Ten blog zawiera szczegółowe omówienie specyfikacji API 5DP Drill Pipes, w tym ich procesu produkcyjnego, typów, połączeń, klas i nie tylko. Celem jest wyposażenie Cię w praktyczną wiedzę i rozwiązania, które pomogą Ci poruszać się po zawiłościach efektywnego korzystania z rur wiertniczych.

Co jest Specyfikacja API 5DP Rura wiertnicza?

Rura wiertnicza to ciężka, bezszwowa, pusta rura, która obraca wiertło i krąży płynem wiertniczym podczas operacji wiercenia. Jest zaprojektowana tak, aby wytrzymać znaczne naprężenia, w tym skręcanie, rozciąganie i ciśnienie, a jednocześnie jest wystarczająco lekka, aby łatwo obsługiwać platformę wiertniczą.

Kluczowe funkcje rur wiertniczych:

  • Przenoszenie mocy: Rury wiertnicze przenoszą ruch obrotowy z urządzenia wiertniczego na wiertło.
  • Obieg płynu wiertniczego: Umożliwiają cyrkulację płuczki wiertniczej, która chłodzi wiertło, przenosi zwierciny na powierzchnię i stabilizuje otwór wiertniczy.
  • Wydłużanie przewodu wiertniczego: W miarę postępu wierceń do przewodu wiertniczego dodawane są kolejne odcinki rury wiertniczej, aby osiągnąć większe głębokości.

Proces produkcyjny rur wiertniczych zgodnych ze specyfikacją API 5DP

Produkcja rur wiertniczych to ściśle kontrolowany proces mający na celu zapewnienie, że produkt końcowy spełnia najsurowsze normy wymagane w operacjach wiertniczych.

Proces produkcji rur wiertniczych

Proces produkcji rur wiertniczych

1. Wybór materiału

  • Stal wysokiej jakości: Proces rozpoczyna się od wybrania stali wysokiej jakości, zazwyczaj stopowej, takiej jak AISI 4130 lub 4140, znanej ze swojej wysokiej wytrzymałości i odporności.
  • Skład chemiczny: Skład stali jest starannie kontrolowany w celu uzyskania pożądanych właściwości mechanicznych, w tym odporności na zużycie, zmęczenie i korozję.

2. Formowanie rur

  • Produkcja bezszwowa: Stal jest podgrzewana i przebijana, tworząc pustą rurę, która jest wydłużana i walcowana, tworząc korpus rury wiertniczej.
  • Spawanie (opcjonalnie): W przypadku niektórych typów rur, blachy stalowe mogą być walcowane i spawane.

3. Obróbka cieplna

  • Hartowanie i odpuszczanie: Rury poddawane są obróbce cieplnej mającej na celu poprawę ich właściwości mechanicznych, dzięki czemu wytrzymują trudy wiercenia.

4. Denerwujące

  • Zakończ rozczarowujące: Końce rury są pogrubiane, aby zwiększyć ich wytrzymałość. Proces ten, znany jako spęczanie, jest kluczowy dla zwiększenia trwałości rury w miejscach połączeń.

5. Spawanie narzędzi

  • Mocowanie złączy narzędziowych: Złącza narzędziowe są przyspawane do końców rury, tworząc połączenia łączące poszczególne sekcje przewodu wiertniczego.

6. Twarde opasanie

  • Powłoka odporna na zużycie: Aby zabezpieczyć złącza narzędzi przed zużyciem i wydłużyć żywotność rury, do ich połączeń stosuje się stop odporny na zużycie.

7. Kontrola i testowanie

  • Badania nieniszczące: Każda rura wiertnicza przechodzi rygorystyczne testy, obejmujące badanie ultradźwiękowe i magnetyczno-proszkowe, w celu wykluczenia jakichkolwiek wad.
  • Kontrola wymiarowa: Rury są mierzone tak, aby spełniały wymagane specyfikacje.

8. Znakowanie i powlekanie

  • Identyfikacja: Na każdej rurze znajdują się istotne informacje, takie jak klasa, rozmiar i producent.
  • Powłoka ochronna: Aby zabezpieczyć rury na czas transportu i przechowywania, pokrywa się je powłoką odporną na korozję.

Rodzaje specyfikacji API 5DP Rura wiertnicza

Istnieje kilka rodzajów rur wiertniczych, z których każda jest przeznaczona do konkretnych zastosowań:

1. Standardowa rura wiertnicza

  • Opis: Najbardziej powszechny typ rury wiertniczej stosowany w standardowych operacjach wiertniczych.
  • Aplikacja: Nadaje się do konwencjonalnych odwiertów w środowiskach lądowych i morskich.

2. Ciężka rura wiertnicza (HWDP)

  • Opis: Grubsza i cięższa od standardowej rury wiertniczej, HWDP została zaprojektowana w celu zwiększenia ciężaru przewodu wiertniczego, zmniejszenia wyboczenia i poprawy stabilności.
  • Aplikacja: Idealny do wierceń kierunkowych i odwiertów o dużym zasięgu.

3. Rura wiertnicza spiralna

  • Opis: Ten typ wiertła charakteryzuje się spiralnym rowkiem, który zmniejsza tarcie i zużycie podczas wiercenia.
  • Aplikacja: Stosowany w operacjach, w których redukcja tarcia ma kluczowe znaczenie.

4. Rura wiertnicza kwadratowa

  • Opis: Mniej popularny typ o kwadratowym przekroju poprzecznym, zapewniający większą sztywność.
  • Aplikacja: Stosowane w szczególnych scenariuszach wierceń wymagających sztywnego przewodu wiertniczego.

5. Rura wiertnicza sześciokątna

  • Opis: Podobna do rury wiertniczej kwadratowej, ale o sześciokątnym przekroju poprzecznym, co zapewnia zwiększoną wytrzymałość na skręcanie.
  • Aplikacja: Nadaje się do wiercenia przy wysokim momencie obrotowym.

Jakie są procesy końcowe rur wiertniczych zgodnych ze specyfikacją API 5DP?

W kontekście rur wiertniczych terminy IU, UE, I IEU odnoszą się do różnych procesów końcowych, które przygotowują końce rur wiertniczych do połączeń. Procesy te są kluczowe dla zapewnienia, że końce rur wiertniczych są trwałe, prawidłowo wyrównane i nadają się do gwintowania i łączenia z innymi komponentami w rurze wiertniczej.

IU EU IEU końcówek rur wiertniczych

IU EU IEU końcówek rur wiertniczych

1. Wewnętrzne zaburzenie (IU)

  • Opis: W procesie spęczania wewnętrznego (IU) zmniejsza się wewnętrzna średnica rury, co powoduje powstanie grubszej ścianki na końcach rury.
  • Zamiar: To pogrubienie zwiększa wytrzymałość końcówek rur, dzięki czemu stają się one bardziej odporne na naprężenia i zużycie występujące podczas operacji wiertniczych.
  • Aplikacja: Rury IU stosuje się w sytuacjach, w których średnica wewnętrzna rury wiertniczej ma kluczowe znaczenie, np. podczas wierceń pod wysokim ciśnieniem, gdzie niezbędne jest utrzymanie stałego otworu.

2. Zderzenie zewnętrzne (UE)

  • Opis: Spęczanie zewnętrzne (EU) polega na zwiększeniu grubości ścianki rury na zewnętrznej średnicy jej końców.
  • Zamiar: Proces ten wzmacnia końce rur i zwiększa ich trwałość, zwłaszcza w miejscach, w których rura wiertnicza jest najbardziej narażona na zużycie i uderzenia.
  • Aplikacja: Rury wiertnicze EU są powszechnie stosowane w standardowych operacjach wiertniczych, w których priorytetem jest wytrzymałość zewnętrzna i odporność na uderzenia.

3. Wewnętrzno-zewnętrzne zdenerwowanie (IEU)

  • Opis: Spęczanie wewnętrzno-zewnętrzne (IEU) łączy spęczanie wewnętrzne i zewnętrzne, w którym końce rur zostają pogrubione wewnętrznie i zewnętrznie.
  • Zamiar: Proces podwójnego zagęszczania zapewnia maksymalną wytrzymałość i trwałość na końcu rury wiertniczej, oferując zwiększoną odporność na siły wewnętrzne i zewnętrzne.
  • Aplikacja: Rury IEU są zazwyczaj stosowane w bardziej wymagających warunkach wiertniczych, takich jak głębokie odwierty, scenariusze wysokiego ciśnienia i wiercenia kierunkowe, gdzie niezbędne jest wzmocnienie wewnętrzne i zewnętrzne.

Połączenia złączy narzędziowych rur wiertniczych zgodnych ze specyfikacją API 5DP

Połączenia między sekcjami rur wiertniczych są krytyczne dla zachowania integralności przewodu wiertniczego. Rury wiertnicze API 5DP charakteryzują się różnymi typami połączeń:

1. Wewnętrzne połączenie spłukiwania (IF)

  • Opis: Zaprojektowano z płaskim profilem wewnętrznym, aby zminimalizować spadki ciśnienia i turbulencje.
  • Aplikacja: Stosowany w środowiskach wiertniczych, w których występuje wysokie ciśnienie.

2. Połączenie pełnootworowe (FH)

  • Opis: Posiada większy otwór zapewniający lepszy przepływ płynu, dzięki czemu nadaje się do głębokich studni.
  • Aplikacja: Idealny do głębokich wierceń.

3. Połączenie API Regular (API REG)

  • Opis: Standardowy typ połączenia, znany ze swojej wytrzymałości i łatwości użytkowania.
  • Aplikacja: Stosowane powszechnie w standardowych operacjach wiertniczych.

4. Połączenie numeryczne (NC)

  • Opis: Połączenie klasy premium o dużym momencie obrotowym, często o konstrukcji dwuramiennej.
  • Aplikacja: Nadaje się do trudnych warunków wiercenia.

Czym są pojęcia Pin i Box w specyfikacji API 5DP Drill Pipe?

Przypnij i wpisz odnoszą się do dwóch uzupełniających się końców połączenia rury wiertniczej, które umożliwiają bezpieczne połączenie odcinków rury w ciągu wiertniczym. Ten system połączeń jest krytyczny dla utrzymania integralności i stabilności ciągu wiertniczego podczas operacji wiertniczych.

Szpilka

  • Opis: Pin to męski koniec połączenia. Jest stożkowy i gwintowany, co pozwala na wkręcenie go do skrzynki.
  • Projekt: Zewnętrzne gwinty sworznia są precyzyjnie przycięte i dopasowane do wewnętrznych gwintów skrzynki, co gwarantuje ścisłe i bezpieczne dopasowanie.
  • Funkcjonować: Kołek zaprojektowano tak, aby łączył się bezpiecznie z obudową, tworząc solidne i szczelne połączenie, wytrzymujące wysokie ciśnienia, siły skrętne i wibracje występujące podczas wiercenia.

Skrzynka

  • Opis: Box to żeński koniec połączenia. Jest on również gwintowany wewnętrznie, aby pomieścić Pin.
  • Projekt: Wewnętrzne gwinty skrzynki są precyzyjnie obrabiane maszynowo i pasują do gwintów sworznia, co pozwala na uzyskanie bezpiecznego i szczelnego połączenia.
  • Funkcjonować: Skrzynka przyjmuje sworzeń, co tworzy solidne połączenie gwarantujące, że sekcje rury wiertniczej pozostaną połączone i wyrównane podczas operacji wiercenia.

Znaczenie połączeń pinowych i skrzynkowych

  • Integralność strukturalna: Połączenie typu Pin and Box zapewnia bezpieczne mocowanie odcinków rury wiertniczej, zachowując integralność strukturalną przewodu wiertniczego.
  • Odporność na ciśnienie: Połączenia te zaprojektowano tak, aby wytrzymywały wysokie ciśnienia wewnętrzne powstające na skutek cyrkulacji płynu wiertniczego.
  • Łatwość użytkowania: Połączenia typu Pin and Box zaprojektowano z myślą o łatwym montażu i demontażu, umożliwiając szybką wymianę i regulację przewodu wiertniczego.

Aplikacje

  • Rury wiertnicze: Połączenia typu Pin and Box stosowane są we wszystkich rurach wiertniczych, w tym standardowych, ciężkich i specjalistycznych.
  • Połączenia narzędzi: Tego typu połączenia wykorzystuje się również w złączach narzędziowych, czyli grubszych, cięższych odcinkach rur wiertniczych, które zapewniają dodatkową wytrzymałość i trwałość.

Gatunki, średnice, zakresy długości i zastosowania

Rury wiertnicze występują w różnych gatunkach, średnicach i długościach, dostosowanych do różnych warunków wiercenia:

Klas

  • E-75: Stosowane powszechnie przy ogólnych operacjach wiertniczych.
  • X-95: Zapewnia większą wytrzymałość i nadaje się do głębszych studni.
  • G-105: Zapewnia doskonałą odporność na zmęczenie, co czyni go idealnym do wiercenia otworów o dużym zasięgu.
  • S-135: Najwyższy stopień wytrzymałości, stosowany w odwiertach o bardzo dużej głębokości i wysokim ciśnieniu.

Średnice i długości

  • Średnice: Zwykle mieszczą się w przedziale od 2 3/8″ do 6 5/8″.
  • Długości: Dostępne są długości od 27 do 31 stóp, a długości niestandardowe są dostępne w zależności od potrzeb projektu.

Aplikacje według stopnia

  • E-75: Wiercenia lądowe w warunkach standardowych.
  • X-95: Głębokie studnie o umiarkowanym ciśnieniu.
  • G-105: Odwierty o dużym zasięgu i wiercenia z dużym momentem obrotowym.
  • S-135: Studnie ultragłębokie, wysokociśnieniowe i wysokotemperaturowe.

Pakowanie, przechowywanie, konserwacja i transport

Prawidłowe obchodzenie się z rurami wiertniczymi ma kluczowe znaczenie dla zachowania ich integralności i wydłużenia ich żywotności.

Uszczelka

  • Pakietowanie: Rury wiertnicze są zazwyczaj łączone w wiązki, co ułatwia ich obsługę i transport.
  • Nasadki ochronne: Oba końce rury wiertniczej posiadają zaślepki ochronne, zapobiegające uszkodzeniu gwintów.

Składowanie

  • Przechowywanie w pomieszczeniach: Rury wiertnicze należy w miarę możliwości przechowywać w pomieszczeniach, aby chronić je przed działaniem czynników atmosferycznych.
  • Podwyższone miejsce do przechowywania: Rury należy przechowywać na stojakach nad ziemią, aby zapobiec ich kontaktowi z wilgocią i zanieczyszczeniami.

Konserwacja

  • Regularne kontrole: Rury wiertnicze należy regularnie sprawdzać pod kątem oznak zużycia, korozji lub uszkodzeń.
  • Ponowne nawlekanie: W przypadku uszkodzenia gwintu należy go ponownie przyciąć, aby zapewnić trwałe połączenie.

Transport

  • Bezpieczne ładowanie: Rury wiertnicze powinny być bezpiecznie załadowane na ciężarówki lub przyczepy, aby zapobiec ich przemieszczaniu się podczas transportu.
  • Zastosowanie kołysek: Rury należy transportować w uchwytach, aby zapobiec ich wygięciu lub uszkodzeniu.

Wniosek

Specyfikacja API 5DP Rura wiertnicza jest krytycznym elementem operacji wiertniczych, zaprojektowanym tak, aby wytrzymać trudne warunki występujące podczas wydobywania ropy naftowej i gazu. Zrozumienie procesu produkcyjnego, typów, połączeń, klas i obsługi rur wiertniczych jest niezbędne do optymalizacji ich wydajności i zapewnienia bezpiecznych, wydajnych operacji wiertniczych.

Przestrzegając najlepszych praktyk w zakresie doboru, przechowywania i konserwacji rur wiertniczych, operatorzy mogą wydłużyć żywotność swojego sprzętu, obniżyć koszty operacyjne i zminimalizować ryzyko awarii. Ten kompleksowy przewodnik jest cennym źródłem dla profesjonalistów w branży wiertniczej, oferującym praktyczne spostrzeżenia i rozwiązania wyzwań związanych z rurami wiertniczymi.

Badanie kluczowej roli rur stalowych w poszukiwaniach ropy i gazu

Wstęp

Rury stalowe są kluczowe w przemyśle naftowym i gazowym, oferując niezrównaną trwałość i niezawodność w ekstremalnych warunkach. Niezbędne do eksploracji i transportu, te rury wytrzymują wysokie ciśnienie, środowiska korozyjne i trudne temperatury. Ta strona bada krytyczne funkcje rur stalowych w eksploracji ropy naftowej i gazu, szczegółowo opisując ich znaczenie w wierceniu, infrastrukturze i bezpieczeństwie. Dowiedz się, w jaki sposób wybór odpowiednich rur stalowych może zwiększyć wydajność operacyjną i obniżyć koszty w tej wymagającej branży.

I. Podstawowa wiedza o rurach stalowych dla przemysłu naftowego i gazowego

1. Wyjaśnienie terminologii

API: Skrót od Amerykański Instytut Paliw.
OKTG: Skrót od Towary rurowe z krajów naftowych, w tym rura osłonowa oleju, rura olejowa, rura wiertnicza, kołnierz wiertniczy, wiertła, pręt ssący, złącza Pup itp.
Węże olejowe: Rury stosuje się w odwiertach naftowych do wydobycia ropy naftowej, wydobywania gazu, wtryskiwania wody i szczelinowania kwasem.
Obudowa: Rura opuszczana z powierzchni ziemi do wywierconego otworu wiertniczego, pełniąca funkcję wykładziny zapobiegającej zawaleniu się ściany.
Rura wiertnicza: Rura używana do wiercenia otworów wiertniczych.
Rura przewodowa: Rura używana do transportu ropy lub gazu.
Złącza: Cylindry służące do łączenia dwóch rur gwintowanych z gwintem wewnętrznym.
Materiał złącza: Rura używana do produkcji złączek.
Wątki API: Gwinty rurowe określone w normie API 5B, w tym gwinty okrągłe rur naftowych, krótkie gwinty okrągłe obudowy, długie gwinty okrągłe obudowy, częściowe gwinty trapezowe obudowy, gwinty rur przewodowych itp.
Połączenie premium: Gwinty inne niż API, o wyjątkowych właściwościach uszczelniających, właściwościach połączeniowych i innych właściwościach.
Awarie: deformację, pęknięcie, uszkodzenie powierzchni i utratę pierwotnej funkcji w określonych warunkach użytkowania.
Podstawowe formy awarii: zgniecenie, poślizg, pęknięcie, przeciek, korozja, sklejenie, zużycie itp.

2. Normy związane z ropą naftową

Specyfikacja API 5B, wydanie 17 – Specyfikacja gwintowania, sprawdzania i kontroli gwintów osłon, rurek i rur przewodowych
Specyfikacja API 5L, wydanie 46 – Specyfikacja rury przewodowej
Specyfikacja API 5CT, wydanie 11 – Specyfikacja obudowy i rurek
Specyfikacja API 5DP, wydanie 7 – Specyfikacja rury wiertniczej
Specyfikacja API 7-1, wydanie 2 – Specyfikacja elementów trzonu wiertła obrotowego
Specyfikacja API 7-2, wydanie 2 – Specyfikacja gwintowania i sprawdzania połączeń gwintowych z kołnierzem obrotowym
Specyfikacja API 11B, wydanie 24 – Specyfikacja prętów ssących, polerowanych prętów i wykładzin, złączy, prętów ciężarkowych, polerowanych zacisków prętów, dławnic i trójników pompujących
ISO 3183:2019 – Przemysł naftowy i gazowniczy – Rury stalowe do rurociągowych systemów transportowych
ISO 11960:2020 – Przemysł naftowy i gazowniczy – Rury stalowe do użytku jako osłony lub przewody rurowe do studni
NACE MR0175 / ISO 15156:2020 – Przemysł naftowy i gazowy – Materiały do stosowania w środowiskach zawierających H2S w produkcji ropy i gazu

II. Wąż olejowy

1. Klasyfikacja przewodów olejowych

Rury olejowe dzielą się na rury olejowe bez spęczania (NU), rury olejowe zewnętrznie spęczane (EU) i rury olejowe ze zintegrowanym łączeniem (IJ). Rury olejowe NU oznaczają, że koniec rury ma średnią grubość, bezpośrednio obraca gwint i łączy złączki. Rury ze spęczaniem oznaczają, że końce obu rur są zewnętrznie spęczane, a następnie gwintowane i łączone. Rury ze zintegrowanym łączeniem oznaczają, że jeden koniec rury jest spęczany z gwintami zewnętrznymi, a drugi jest spęczany z gwintami wewnętrznymi połączonymi bezpośrednio bez złączek.

2. Funkcja przewodu olejowego

① Wydobycie ropy i gazu: po wywierceniu i zacementowaniu odwiertów naftowych i gazowych, rurę umieszcza się w obudowie naftowej w celu wydobycia ropy i gazu na ziemię.
② Wtrysk wody: gdy ciśnienie w odwiercie jest niewystarczające, wstrzyknij wodę do studni przez rurkę.
③ Wtrysk pary: W przypadku wydobycia gorącej, gęstej ropy, para jest wprowadzana do odwiertu za pomocą izolowanych rur olejowych.
④ Zakwaszanie i szczelinowanie: Na późnym etapie wiercenia otworów lub w celu zwiększenia wydobycia ropy naftowej i gazu konieczne jest wprowadzenie środka zakwaszającego i szczelinującego lub materiału utwardzającego do warstwy ropy naftowej i gazu, a następnie środek ten i materiał utwardzający są transportowane przez rurę naftową.

3. Gatunek stali rur olejowych

Gatunki stali rur olejowych to H40, J55, N80, L80, C90, T95, P110.
N80 dzieli się na N80-1 i N80Q, oba mają takie same właściwości rozciągania; dwiema różnicami są stan dostawy i różnice w odporności na uderzenia, N80-1 dostawa w stanie znormalizowanym lub gdy końcowa temperatura walcowania jest wyższa od temperatury krytycznej Ar3 i redukcja naprężenia po schłodzeniu na powietrzu i może być wykorzystana do znalezienia walcowania na gorąco zamiast znormalizowanego, nie są wymagane badania udarności i nieniszczące; N80Q musi być odpuszczony (hartowany i odpuszczany) Obróbka cieplna, funkcja udarności powinna być zgodna z postanowieniami API 5CT i powinna być poddana badaniom nieniszczącym.
L80 dzieli się na L80-1, L80-9Cr i L80-13Cr. Ich właściwości mechaniczne i status dostawy są takie same. Różnice w zastosowaniu, trudności produkcyjne i cenie: L80-1 jest dla typu ogólnego, L80-9Cr i L80-13Cr to rury o wysokiej odporności na korozję, trudności produkcyjne, są drogie i zwykle stosowane w studniach silnie korozyjnych.
C90 i T95 dzielą się na 1 i 2 typy, a mianowicie C90-1, C90-2 i T95-1, T95-2.

4. Powszechnie używany gatunek stali, nazwa stali i status dostawy

Węże olejowe J55 (37Mn5) NU: walcowane na gorąco zamiast normalizowanego
J55 (37Mn5) Wąż olejowy UE: Pełnej długości Znormalizowany po spęczeniu
N80-1 (36Mn2V) Węże olejowe NU: walcowane na gorąco zamiast normalizowanego
N80-1 (36Mn2V) Węże olejowe UE: Pełnej długości Znormalizowane po spęczeniu
Wąż olejowy N80-Q (30Mn5): 30Mn5, hartowany na całej długości
Wąż olejowy L80-1 (30Mn5): 30Mn5, hartowany na całej długości
Węże olejowe P110 (25CrMnMo): 25CrMnMo, odpuszczane na całej długości
Złącze J55 (37Mn5): walcowane na gorąco, normalizowane na linii
Sprzęgło N80 (28MnTiB): Hartowane na całej długości
Sprzęgło L80-1 (28MnTiB): hartowane na całej długości
Sprzęgło P110 (25CrMnMo): Hartowane na całej długości

III. Rura osłonowa

1. Klasyfikacja i rola osłonki

Obudowa to stalowa rura podtrzymująca ścianę szybów naftowych i gazowych. W każdym odwiercie stosuje się kilka warstw obudowy, w zależności od głębokości wiercenia i warunków geologicznych. Cement służy do cementowania obudowy po jej opuszczeniu do odwiertu i w przeciwieństwie do rur naftowych i rur wiertniczych nie nadaje się do ponownego wykorzystania i należy do materiałów jednorazowego użytku. Dlatego zużycie osłon stanowi ponad 70 procent wszystkich rur do odwiertów naftowych. Obudowę można podzielić na obudowę przewodnika, obudowę pośrednią, obudowę produkcyjną i obudowę wykładzinową w zależności od jej przeznaczenia, a ich budowę w szybach naftowych pokazano na rysunku 1.

①Obudowa przewodu: Obudowa przewodnika, zwykle wykorzystująca gatunki API K55, J55 lub H40, stabilizuje głowicę odwiertu i izoluje płytkie warstwy wodonośne o średnicach zwykle około 20 cali lub 16 cali.

②Obudowa pośrednia: Osłona pośrednia, często wykonana z gatunków API K55, N80, L80 lub P110, służy do izolowania niestabilnych formacji i stref o zmiennym ciśnieniu, o typowych średnicach 13 3/8 cala, 11 3/4 cala lub 9 5/8 cala .

③Obudowa produkcyjna: Obudowa produkcyjna, wykonana ze stali wysokiej jakości, takiej jak gatunki API J55, N80, L80, P110 lub Q125, została zaprojektowana tak, aby wytrzymać ciśnienia produkcyjne, zwykle o średnicach 9 5/8 cala, 7 cali lub 5 1/2 cala.

④Obudowa wkładki: Rury wykładane są materiałami o klasie API L80, N80 lub P110, które przedłużają otwór wiertniczy do złoża, a ich typowe średnice wynoszą 7, 5 lub 4 1/2 cala.

⑤Rury: Rury transportują węglowodory na powierzchnię przy użyciu klas API J55, L80 lub P110 i są dostępne w średnicach 4 1/2 cala, 3 1/2 cala lub 2 7/8 cala.

IV. Rura wiertnicza

1. Klasyfikacja i funkcja rur do narzędzi wiertniczych

Rura wiertnicza kwadratowa, rura wiertnicza, obciążona rura wiertnicza i kołnierz wiertniczy w narzędziach wiertniczych tworzą rurę wiertniczą. Rura wiertnicza jest rdzeniowym narzędziem wiertniczym, które napędza wiertło z ziemi do dna odwiertu, a także jest kanałem od ziemi do dna odwiertu. Ma trzy główne role:

① Aby przenieść moment obrotowy w celu napędzania wiertła do wiercenia;

② Poleganie na ciężarze wiertła w celu przełamania nacisku skały na dnie odwiertu;

③ Do transportu płynu płuczącego, czyli płuczki wiertniczej przez ziemię za pomocą wysokociśnieniowych pomp płuczkowych, kolumna wiertnicza do odwiertu wpływa na dno studni w celu wypłukania gruzu skalnego i ochłodzenia wiertła oraz przeniesienia gruzu skalnego przez zewnętrzną powierzchnię kolumny i ścianę studni między pierścieniem, aby powrócić do ziemi, aby osiągnąć cel wiercenia studni.

Rura wiertnicza jest używana w procesie wiercenia, aby wytrzymać różnorodne złożone obciążenia przemienne, takie jak rozciąganie, ściskanie, skręcanie, zginanie i inne naprężenia. Powierzchnia wewnętrzna jest również narażona na szorowanie i korozję płuczki wiertniczej pod wysokim ciśnieniem.
(1) Kwadratowa rura wiertnicza: Rury wiertnicze kwadratowe występują w dwóch typach: czworokątne i sześciokątne. W chińskich rurach wiertniczych do ropy naftowej każdy zestaw kolumn wiertniczych zwykle wykorzystuje rurę wiertniczą typu czworokątnego. Jej specyfikacje to 63,5 mm (2-1/2 cala), 88,9 mm (3-1/2 cala), 107,95 mm (4-1/4 cala), 133,35 mm (5-1/4 cala), 152,4 mm (6 cali) itd. Używana długość wynosi zwykle 1214,5 m.
(2) Rura wiertnicza: Rura wiertnicza jest podstawowym narzędziem do wiercenia studni, podłączona do dolnego końca kwadratowej rury wiertniczej, a w miarę pogłębiania się studni wiertniczej rura wiertnicza wydłuża kolumnę wiertniczą jedna po drugiej. Specyfikacje rury wiertniczej to: 60,3 mm (2-3/8 cala), 73,03 mm (2-7/8 cala), 88,9 mm (3-1/2 cala), 114,3 mm (4-1/2 cala), 127 mm (5 cali), 139,7 mm (5-1/2 cala) itd.
(3) Rura wiertnicza o dużej wytrzymałości: Obciążona rura wiertnicza to narzędzie przejściowe łączące rurę wiertniczą z kołnierzem wiertniczym, które może poprawić stan siły rury wiertniczej i zwiększyć nacisk na wiertło. Główne specyfikacje ważonej rury wiertniczej to 88,9 mm (3-1/2 cala) i 127 mm (5 cali).
(4) Kołnierz wiertniczy: Kołnierz wiertniczy jest połączony z dolną częścią rury wiertniczej, która jest specjalną rurą o grubych ściankach i dużej sztywności. Wywiera nacisk na wiertło, aby rozbić skałę i odgrywa rolę prowadzącą podczas wiercenia prostego odwiertu. Typowe specyfikacje kołnierzy wiertniczych to 158,75 mm (6-1/4 cala), 177,85 mm (7 cali), 203,2 mm (8 cali), 228,6 mm (9 cali) itd.

V. Rura przewodowa

1. Klasyfikacja rur przewodowych

Rury przewodowe są używane w przemyśle naftowym i gazowym do przesyłu ropy naftowej, rafinowanej ropy naftowej, gazu ziemnego i wody, w skrócie rury stalowe. Rury przesyłowe ropy naftowej i gazu dzielą się na główne, odgałęzione i miejskie sieci rurociągów. Trzy rodzaje przesyłu rurociągów głównych mają typowe specyfikacje ∅406 ~ 1219 mm, grubość ścianki 10 ~ 25 mm, gatunek stali X42 ~ X80; rurociągi odgałęzione i miejskie sieci rurociągów mają zwykle specyfikacje dla ∅114 ~ 700 mm, grubość ścianki 6 ~ 20 mm, gatunek stali dla X42 ~ X80. Gatunek stali to X42~X80. Rury przewodowe są dostępne w typach spawanych i bezszwowych. Spawane rury przewodowe są używane częściej niż rury przewodowe bezszwowe.

2. Standard rury przewodowej

API Spec 5L – Specyfikacja rury przewodowej
ISO 3183 – Przemysł naftowy i gazowy – Rury stalowe do rurociągowych systemów transportowych

3. PSL1 i PSL2

PSL to skrót od poziom specyfikacji produktu. Poziom specyfikacji produktu rury przewodowej jest podzielony na PSL 1 i PSL 2, a poziom jakości jest podzielony na PSL 1 i PSL 2. PSL 2 jest wyższy niż PSL 1; dwa poziomy specyfikacji mają nie tylko różne wymagania testowe, ale także wymagania dotyczące składu chemicznego i właściwości mechanicznych są różne, więc zgodnie z zamówieniem API 5L warunki umowy, oprócz określenia specyfikacji, gatunku stali i innych wspólnych wskaźników, ale także muszą wskazywać poziom specyfikacji produktu, czyli PSL 1 lub PSL 2. PSL 2 w składzie chemicznym, właściwościach rozciągających, sile uderzenia, badaniach nieniszczących i innych wskaźnikach jest bardziej rygorystyczny niż PSL 1.

4. Gatunek stali rur przewodowych, skład chemiczny i właściwości mechaniczne

Gatunki stali do rur przewodowych od niskich do wysokich są podzielone na A25, A, B, X42, X46, X52, X60, X65, X70 i X80. Aby uzyskać szczegółowe informacje na temat składu chemicznego i właściwości mechanicznych, zapoznaj się ze specyfikacją API 5L, 46. wydanie książki.

5. Wymagania dotyczące próby hydrostatycznej rur przewodowych i badań nieniszczących

Rurociągi powinny być poddawane testowi hydraulicznemu gałąź po gałęzi, a norma nie zezwala na nieniszczące generowanie ciśnienia hydraulicznego, co również stanowi dużą różnicę między normą API a naszymi normami. PSL 1 nie wymaga nieniszczącego testowania; PSL 2 powinno być nieniszczącym testowaniem gałąź po gałęzi.

VI. Połączenia premium

1. Wprowadzenie Połączeń Premium

Premium Connection to gwint rurowy o unikalnej strukturze, która różni się od gwintu API. Chociaż istniejąca obudowa olejowa z gwintem API jest szeroko stosowana w eksploatacji odwiertów naftowych, jej wady są wyraźnie widoczne w unikalnym środowisku niektórych pól naftowych: okrągła kolumna rurowa z gwintem API, chociaż jej właściwości uszczelniające są lepsze, siła rozciągająca przenoszona przez część gwintowaną jest równa tylko 60% do 80% wytrzymałości korpusu rury, a zatem nie może być stosowana w eksploatacji głębokich odwiertów; trapezoidalna kolumna rurowa z gwintem API, chociaż jej właściwości rozciągające są znacznie wyższe niż w przypadku okrągłego połączenia gwintowanego API, jej właściwości uszczelniające nie są tak dobre. Chociaż właściwości rozciągające kolumny są znacznie wyższe niż w przypadku okrągłego połączenia gwintowanego API, jej właściwości uszczelniające nie są zbyt dobre, więc nie może być stosowana w eksploatacji odwiertów gazowych wysokociśnieniowych; Ponadto smar do gwintów może spełniać swoją funkcję wyłącznie w środowisku o temperaturze poniżej 95℃, dlatego nie można go stosować przy eksploatacji odwiertów o wysokiej temperaturze.

W porównaniu z gwintem okrągłym API i połączeniem z gwintem częściowym trapezowym, połączenie premium poczyniło przełomowy postęp w następujących aspektach:

(1) Dobre uszczelnienie, dzięki elastyczności i metalowej konstrukcji uszczelniającej, sprawia, że uszczelnienie gazowe złącza jest odporne na osiągnięcie granicy korpusu rury w zakresie ciśnienia plastyczności;

(2) Wysoka wytrzymałość połączenia, połączenie ze specjalnym złączem klamrowym obudowy olejowej, jego siła połączenia osiąga lub przekracza wytrzymałość korpusu rurki, aby zasadniczo rozwiązać problem poślizgu;

(3) Dzięki doborowi materiału i ulepszeniu procesu obróbki powierzchni zasadniczo rozwiązano problem zatykania się klamry;

(4) Poprzez optymalizację konstrukcji, tak aby rozkład naprężeń w połączeniu był bardziej rozsądny i sprzyjał odporności na korozję naprężeniową;

(5) Poprzez konstrukcję barku o rozsądnej konstrukcji, tak aby obsługa klamry była bardziej dostępna.

Branża naftowa i gazowa może pochwalić się ponad 100 opatentowanymi połączeniami premium, co stanowi znaczący postęp w technologii rur. Te specjalistyczne konstrukcje gwintów oferują doskonałe właściwości uszczelniające, zwiększoną wytrzymałość połączenia i zwiększoną odporność na naprężenia środowiskowe. Rozwiązując takie wyzwania, jak wysokie ciśnienie, środowiska korozyjne i ekstremalne temperatury, te innowacje zapewniają doskonałą niezawodność i wydajność w operacjach przyjaznych dla ropy na całym świecie. Ciągłe badania i rozwój połączeń premium podkreślają ich kluczową rolę we wspieraniu bezpieczniejszych i bardziej produktywnych praktyk wiertniczych, odzwierciedlając stałe zaangażowanie w doskonałość technologiczną w sektorze energetycznym.

Połączenie VAM®: Znane ze swojej solidnej wydajności w trudnych warunkach, połączenia VAM® charakteryzują się zaawansowaną technologią uszczelniania metal-metal i wysokim momentem obrotowym, zapewniając niezawodne działanie w głębokich studniach i zbiornikach wysokociśnieniowych.

Seria klinów TenarisHydril: Seria ta oferuje szeroką gamę połączeń, takich jak Blue®, Dopeless® i Wedge 521®, znanych z wyjątkowej gazoszczelności i odporności na siły ściskające i rozciągające, co zwiększa bezpieczeństwo operacyjne i wydajność.

Niebieski TSH®: Zaprojektowane przez Tenaris, połączenia TSH® Blue wykorzystują opatentowaną konstrukcję z podwójnym kołnierzem i wysokowydajny profil gwintu, zapewniając doskonałą odporność na zmęczenie i łatwość montażu w krytycznych zastosowaniach wiertniczych.

Połączenie Grant Prideco™ XT®: Połączenia XT® opracowane przez NOV charakteryzują się unikalnym uszczelnieniem metal-metal i solidnym gwintem, co gwarantuje doskonałą wytrzymałość na moment obrotowy i odporność na zatarcia, wydłużając tym samym żywotność połączenia.

Połączenie Hunting Seal-Lock®: Wyposażone w uszczelnienie metal-metal i unikalny profil gwintu, połączenie Seal-Lock® firmy Hunting słynie z doskonałej odporności na ciśnienie i niezawodności zarówno w operacjach wiertniczych na lądzie, jak i na morzu.

Wniosek

Podsumowując, skomplikowana sieć stalowych rur, które są kluczowe dla przemysłu naftowego i gazowego, obejmuje szeroką gamę specjalistycznego sprzętu zaprojektowanego tak, aby wytrzymać trudne warunki i złożone wymagania operacyjne. Od rur obudowy fundamentowej, które podtrzymują i chronią zdrowe ściany, po wszechstronne rury stosowane w procesach ekstrakcji i wtrysku, każdy rodzaj rury służy odrębnemu celowi w eksploracji, produkcji i transporcie węglowodorów. Normy, takie jak specyfikacje API, zapewniają jednolitość i jakość tych rur, podczas gdy innowacje, takie jak połączenia premium, zwiększają wydajność w trudnych warunkach. Wraz z rozwojem technologii te krytyczne komponenty rozwijają się, zwiększając wydajność i niezawodność w globalnych operacjach energetycznych. Zrozumienie tych rur i ich specyfikacji podkreśla ich niezastąpioną rolę w infrastrukturze nowoczesnego sektora energetycznego.