Super 13Cr SMSS 13Cr behuizing en buizen

SMSS 13Cr en DSS 22Cr in H₂S/CO₂-olie-wateromgeving

Invoering

Het corrosiegedrag van supermartensitisch roestvrij staal (SMS) 13Cr en duplex roestvrij staal (DSS) 22Cr in een H₂S/CO₂-olie-wateromgeving zijn van groot belang, vooral in de olie- en gasindustrie, waar deze materialen vaak worden blootgesteld aan zulke zware omstandigheden. Hier is een overzicht van hoe elk materiaal zich onder deze omstandigheden gedraagt:

1. Supermartensitisch roestvrij staal (SMSS) 13Cr:

Samenstelling: SMSS 13Cr bevat doorgaans ongeveer 12-14% chroom, met kleine hoeveelheden nikkel en molybdeen. Het hoge chroomgehalte zorgt voor een goede weerstand tegen corrosie, terwijl de martensitische structuur voor een hoge sterkte zorgt.
Corrosiegedrag:
CO₂-corrosie: SMSS 13Cr vertoont matige weerstand tegen CO₂-corrosie, voornamelijk door de vorming van een beschermende chroomoxidelaag. In aanwezigheid van CO₂ is lokale corrosie, zoals putcorrosie en spleetcorrosie, echter riskant.
H₂S-corrosie: H₂S verhoogt het risico op sulfide stress cracking (SSC) en waterstofbrosheid. SMSS 13Cr is enigszins resistent, maar niet immuun voor deze vormen van corrosie, vooral bij hogere temperaturen en drukken.
Olie-wateromgeving: Olie kan soms een beschermende barrière vormen, waardoor de blootstelling van het metalen oppervlak aan corrosieve stoffen wordt verminderd. Water, met name pekel, kan echter zeer corrosief zijn. De balans van olie- en waterfasen kan de algehele corrosiesnelheid aanzienlijk beïnvloeden.
Gebruikelijke problemen:
Sulfidespanningsscheuren (SSC): De martensitische structuur, hoewel sterk, is gevoelig voor SSC in aanwezigheid van H₂S.
Put- en spleetcorrosie: Dit zijn grote zorgen, vooral in omgevingen met chloriden en CO₂.

2. Duplex roestvrij staal (DSS) 22Cr:

Samenstelling: DSS 22Cr bevat ongeveer 22% Chroom, ongeveer 5% Nikkel, 3% Molybdeen en een gebalanceerde austeniet-ferriet microstructuur. Dit geeft DSS uitstekende corrosiebestendigheid en hoge sterkte.
Corrosiegedrag:
CO₂-corrosie: DSS 22Cr is beter bestand tegen CO₂-corrosie dan SMSS 13Cr. Het hoge chroomgehalte en de aanwezigheid van molybdeen helpen een stabiele en beschermende oxidelaag te vormen die bestand is tegen corrosie.
H₂S-corrosie: DSS 22Cr is zeer resistent tegen H₂S-geïnduceerde corrosie, inclusief SSC en waterstofbrosheid. De uitgebalanceerde microstructuur en legeringssamenstelling helpen deze risico's te beperken.
Olie-wateromgeving: DSS 22Cr presteert goed in gemengde olie-wateromgevingen en is bestand tegen algemene en lokale corrosie. De aanwezigheid van olie kan de corrosiebestendigheid verbeteren door een beschermende film te vormen, maar dit is minder kritisch voor DSS 22Cr vanwege de inherente corrosiebestendigheid.
Gebruikelijke problemen:
Spanningscorrosiescheuren (SCC): Hoewel resistenter dan SMSS 13Cr, kan DSS 22Cr onder bepaalde omstandigheden nog steeds gevoelig zijn voor SCC, zoals hoge chlorideconcentraties bij verhoogde temperaturen.
Gelokaliseerde corrosie: DSS 22Cr is over het algemeen zeer goed bestand tegen put- en spleetcorrosie, maar dit kan onder extreme omstandigheden toch nog optreden.

Vergelijkende samenvatting:

Corrosieweerstand: DSS 22Cr biedt over het algemeen een betere corrosiebestendigheid dan SMSS 13Cr, vooral in omgevingen met H₂S en CO₂.
Sterkte en taaiheid: SMSS 13Cr is robuuster, maar gevoeliger voor corrosieproblemen zoals SSC en pitting.
Toepassingsgeschiktheid: DSS 22Cr heeft vaak de voorkeur in omgevingen met een hoger corrosierisico, zoals omgevingen met hoge concentraties H₂S en CO₂, terwijl SMSS 13Cr kan worden gekozen voor toepassingen waarbij een hogere sterkte met een matig corrosierisico vereist is.

Conclusie:

Wanneer u kiest tussen SMSS 13Cr en DSS 22Cr voor gebruik in H₂S/CO₂-olie-wateromgevingen, is DSS 22Cr doorgaans de betere keuze om corrosie te weerstaan, vooral in agressievere omgevingen. Bij de uiteindelijke beslissing moeten echter rekening worden gehouden met de specifieke omstandigheden, waaronder temperatuur, druk en de relatieve concentraties van H₂S en CO₂.

Platen en oppervlakteprocessen voor het bouwen van olieopslagtanks

Het bouwen van olieopslagtanks: plaatselectie en processen

Invoering

Het bouwen van olieopslagtanks is cruciaal voor de olie- en gasindustrie. Deze tanks moeten nauwkeurig worden ontworpen en gebouwd om veiligheid, duurzaamheid en efficiëntie bij het opslaan van olieproducten te garanderen. Een van de meest cruciale onderdelen van deze tanks is de selectie en verwerking van platen die worden gebruikt bij de constructie. Deze blog biedt een gedetailleerd overzicht van de selectiecriteria voor platen, fabricageprocessen en overwegingen voor het bouwen van olieopslagtanks.

Belang van plaatselectie

Platen zijn het belangrijkste structurele onderdeel van olieopslagtanks. De selectie van geschikte platen is om verschillende redenen cruciaal:
Veiligheid:Het geschikte plaatmateriaal zorgt ervoor dat de tank bestand is tegen de interne druk van het opgeslagen product, de omgevingsomstandigheden en mogelijke chemische reacties.
Duurzaamheid: Hoogwaardige materialen verlengen de levensduur van de tank, waardoor onderhoudskosten en uitvaltijd worden verlaagd.
Naleving: Naleving van industriële normen en voorschriften is essentieel voor legale exploitatie en milieubescherming.
Kost efficiëntie: Het kiezen van de juiste materialen en verwerkingsmethoden kan de bouw- en operationele kosten aanzienlijk verlagen.

Soorten olieopslagtanks

Voordat u zich verdiept in de keuze van de platen, is het belangrijk om de verschillende soorten olieopslagtanks te begrijpen. Elk type heeft namelijk specifieke vereisten:
Vaste daktanks zijn het meest voorkomende type opslagtank dat wordt gebruikt voor olie en petroleumproducten. Ze zijn geschikt voor vloeistoffen met een lage dampspanning.
Drijvende daktanks: Deze tanks hebben een dak dat op het oppervlak van de opgeslagen vloeistof drijft, waardoor verdampingsverliezen en explosiegevaar worden verminderd.
Kogeltanks:In deze cilindrische tanks worden vloeibaar gemaakte gassen en vluchtige vloeistoffen opgeslagen.
Bolvormige tanks: Gebruikt voor het opslaan van vloeistoffen en gassen onder hoge druk, waardoor een gelijke spanningsverdeling wordt geboden.

Plaatselectiecriteria

1. Materiaalsamenstelling
Koolstofstaal: Op grote schaal gebruikt vanwege de kracht, betaalbaarheid en beschikbaarheid. Geschikt voor de meeste olie- en aardolieproducten.
Roestvrij staal: Aanbevolen voor de opslag van corrosieve producten of producten met hoge temperaturen vanwege de corrosieweerstand.
Aluminium: Lichtgewicht en corrosiebestendig, ideaal voor drijvende dakcomponenten en tanks in corrosieve omgevingen.
Composiet materialen: Af en toe gebruikt voor specifieke toepassingen die een hoge corrosieweerstand en lichtgewicht vereisen.
2. Dikte en maat
Dikte: Dit wordt bepaald door de ontwerpdruk, diameter en hoogte van de tank. Het varieert over het algemeen van 5 mm tot 30 mm.
Maat: Platen moeten groot genoeg zijn om lasnaden tot een minimum te beperken, maar beheersbaar zijn voor hantering en transport.
3. Mechanische eigenschappen
Treksterkte: Zorgt ervoor dat de tank interne druk en externe krachten kan weerstaan.
Ductiliteit: Maakt vervorming mogelijk zonder te breken, en biedt ruimte voor veranderingen in druk en temperatuur.
Impact weerstand: Belangrijk voor het weerstaan van plotselinge krachten, vooral in koudere omgevingen.
4. Omgevingsfactoren
Temperatuur schommelingen: Rekening houden met materiaalgedrag bij extreme temperaturen.
Corrosieve omgeving: Selectie van materialen die bestand zijn tegen omgevingscorrosie, vooral voor offshore- of kustinstallaties.

Materiaalnormen en kwaliteiten

Bij de selectie van materialen voor olietanks is het van cruciaal belang dat u zich houdt aan erkende normen en klassen. Zo bent u verzekerd van kwaliteit, prestaties en naleving van de industriële regelgeving.

Koolstofstaal

Normen: ASTM A36, ASTM A283, JIS G3101
Cijfers:
ASTM A36: Gangbare constructiestaalsoort die wordt gebruikt voor tankconstructies vanwege de goede lasbaarheid en bewerkbaarheid.
ASTM A283 klasse C: Biedt goede sterkte en flexibiliteit voor toepassingen met matige belasting.
JISG3101SS400: Een Japanse norm voor koolstofstaal gebruikt voor algemene structurele doeleinden, bekend om zijn goede mechanische eigenschappen en lasbaarheid.

Roestvrij staal

Normen: ASTM A240
Cijfers:
304/304L: Biedt een goede corrosiebestendigheid en wordt gebruikt voor de opslag van licht corrosieve producten in tanks.
Door toegevoegd molybdeen, 316/316L Biedt superieure corrosiebestendigheid, vooral in maritieme omgevingen.
904L (UNS N08904): Bekend om zijn hoge corrosieweerstand, vooral tegen chloriden en zwavelzuur.
Duplexroestvrij staal 2205 (UNS S32205): Combineert hoge sterkte met uitstekende corrosieweerstand, geschikt voor zware omstandigheden.

Aluminium

Normen: ASTM B209
Cijfers:
5083: Staat bekend om zijn hoge sterkte en uitstekende corrosiebestendigheid en is ideaal voor tanks in maritieme omgevingen.
6061: Biedt goede mechanische eigenschappen en lasbaarheid, geschikt voor structurele componenten.

Composiet materialen

Normen: ASME RTP-1
Toepassingen: Gebruikt in gespecialiseerde toepassingen die weerstand tegen chemische aantasting en gewichtsbesparing vereisen.

Soorten voeringen en coatings

Voeringen en coatings beschermen olieopslagtanks tegen corrosie en milieuschade. De keuze van de voering en coating hangt af van de locatie van de tank, de inhoud en de ecologische omstandigheden.

Externe coatings

Epoxycoatings:
Eigenschappen: Biedt uitstekende hechting en corrosiebestendigheid. Geschikt voor ruwe omgevingen.
Toepassingen: Gebruikt op de buitenkant van tanks om te beschermen tegen verwering en blootstelling aan chemicaliën.
Aanbevolen merken:
Hempel: Hempel's Epoxy 35540
AkzoNobel: Interseal 670HS
Jotun: Jotamastic 90
3M: Scotchkote Epoxycoating 162PWX
Aanbevolen DFT (droge filmdikte): 200-300 micron
Polyurethaan coatings:
Eigenschappen: Biedt uitstekende UV-bestendigheid en flexibiliteit.
Toepassingen: Ideaal voor tanks die worden blootgesteld aan zonlicht en wisselende weersomstandigheden.
Aanbevolen merken:
Hempel: Hempel's Polyurethaan Email 55300
AkzoNobel: Interthane 990
Jotun: Hardtop XP
Aanbevolen DFT: 50-100 micron
Zinkrijke primers:
Eigenschappen: Bied kathodische bescherming aan stalen oppervlakken.
Toepassingen: Gebruikt als basislaag om roesten te voorkomen.
Aanbevolen merken:
Hempel: Hempadur Zink 17360
AkzoNobel: Interzink 52
Jotun: Slagboom 77
Aanbevolen DFT: 120-150 micron

Interne voeringen

Fenolische epoxyvoeringen:
Eigenschappen: Uitstekende chemische bestendigheid tegen aardolieproducten en oplosmiddelen.
Toepassingen: Gebruikt in tanks waarin ruwe olie en geraffineerde producten worden opgeslagen.
Aanbevolen merken:
Hempel: Hempel's Fenol 35610
AkzoNobel: Interlijn 984
Jotun: Tankguard-opslag
Aanbevolen DFT: 400-600 micron
Coatings van glasschilfers:
Eigenschappen: Hoge chemische en slijtvastheid.
Toepassingen: Geschikt voor agressieve chemicaliënopslag en tankbodems.
Aanbevolen merken:
Hempel: Hempel's Glassflake 35620
AkzoNobel: Interzone 954
Jotun: Baltoflake
Aanbevolen DFT: 500-800 micron
Rubberen voeringen:
Eigenschappen: Biedt flexibiliteit en weerstand tegen chemicaliën.
Toepassingen: Gebruikt voor opslag van bijtende stoffen zoals zuren.
Aanbevolen merken:
3M: Scotchkote Poly-Tech 665
Aanbevolen DFT: 2-5mm

Selectieoverwegingen

Productcompatibiliteit: Zorg ervoor dat de voering of coating compatibel is met het opgeslagen product om reacties te voorkomen.
Milieu omstandigheden: Houd bij het selecteren van voeringen en coatings rekening met temperatuur, vochtigheid en blootstelling aan chemicaliën.
Onderhoud en duurzaamheid: Kies voeringen en coatings die langdurige bescherming bieden en gemakkelijk te onderhouden zijn.

Fabricageprocessen

Bij de productie van olietanks zijn verschillende belangrijke processen betrokken:
1. Snijden
Mechanisch snijden: omvat knippen, zagen en frezen om de platen te vormen.
Thermisch snijden: Maakt gebruik van zuurstof-brandstof-, plasma- of lasersnijden voor nauwkeurig en efficiënt vormgeven.
2. Lassen
Lassen is van cruciaal belang voor het verbinden van platen en het waarborgen van de structurele integriteit.
Afgeschermd metaalbooglassen (SMAW): Vaak gebruikt vanwege zijn eenvoud en veelzijdigheid.
Gaswolfraambooglassen (GTAW): Biedt hoogwaardige lasnaden voor kritische verbindingen.
Ondergedompeld booglassen (SAW): Geschikt voor dikke platen en lange naden, biedt diepe penetratie en hoge afzettingssnelheden.
3. Vorming
Rollend: Platen worden in de gewenste kromming gerold voor cilindrische tankwanden.
Druk op Vormen: Gebruikt voor het vormgeven van tankuiteinden en andere complexe componenten.
4. Inspectie en testen
Niet-destructief onderzoek (NDT): Technieken zoals ultrasoon testen en radiografie garanderen de laskwaliteit en structurele integriteit zonder het materiaal te beschadigen.
Druk testen: Zorgt ervoor dat de tank de ontwerpdruk kan weerstaan zonder te lekken.
5. Oppervlaktevoorbereiding en coating
Stralen: Reinigt en bereidt het oppervlak voor op coating.
Coating: Aanbrengen van beschermende coatings om corrosie te voorkomen en de levensduur van de tank te verlengen.
Industrienormen en -voorschriften
Naleving van industrienormen garandeert veiligheid, kwaliteit en naleving. Belangrijke normen omvatten:
API-650: Standaard voor gelaste stalen opslagtanks voor olie en gas.
API-620: Omvat het ontwerp en de constructie van grote lagedrukopslagtanks.
ASME Sectie VIII: Geeft richtlijnen voor de constructie van drukvaten.

Conclusie

De constructie van olieopslagtanks vereist nauwkeurige aandacht voor detail, met name bij de selectie en verwerking van platen. Door rekening te houden met factoren zoals materiaalsamenstelling, dikte, mechanische eigenschappen en omgevingsomstandigheden, kunnen bouwers de veiligheid, duurzaamheid en kosteneffectiviteit van deze kritieke structuren garanderen. Naleving van industrienormen en -regelgeving zorgt verder voor naleving en bescherming van het milieu. Naarmate de olie- en gasindustrie zich blijft ontwikkelen, zullen ontwikkelingen in materialen en fabricagetechnologieën de constructie van olieopslagtanks blijven verbeteren.

Jet A-1 brandstofopslagtank en pijpleiding

De juiste epoxyprimercoating kiezen voor Jet A-1-brandstofpijpleidingen

Invoering

Op het zeer gespecialiseerde gebied van het transport van vliegtuigbrandstof, waarbij de integriteit en veiligheid van Jet A-1-brandstofpijpleidingen is cruciaal. Deze pijpleidingen moeten bestand zijn tegen zware chemische omgevingen, corrosie voorkomen en het risico op opbouw van statische elektriciteit minimaliseren. Het selecteren van de juiste epoxyprimercoating is essentieel om deze doelen te bereiken. Deze blog onderzoekt de beste epoxyprimercoating voor Jet A-1-brandstofpijpleidingopties en hun betekenis voor het onderhouden van efficiënte en veilige brandstoftransportsystemen.

Waarom epoxyprimercoatings?

Epoxy primer coatings worden veel gebruikt in de brandstofindustrie vanwege hun uitzonderlijke beschermende eigenschappen. Ze bieden een robuuste barrière tegen corrosie en chemische aanvallen, verlengen de levensduur van de pijpleiding en zorgen voor de zuiverheid van de brandstof. Belangrijke voordelen van het gebruik van epoxy primers voor Jet A-1 pijpleidingen zijn:

  • Chemische weerstand: Epoxycoatings bieden uitstekende weerstand tegen koolwaterstoffen, waardoor de pijpleiding onaangetast blijft door langdurige blootstelling aan Jet A-1-brandstof.
  • Bescherming tegen corrosieEpoxyprimers voorkomen roest en corrosie, waardoor de structurele integriteit van de pijpleiding behouden blijft en onderhoudskosten en uitvaltijd worden verlaagd.
  • Antistatische eigenschappen: Statische elektriciteit is een aanzienlijk veiligheidsrisico bij het transporteren van ontvlambare vloeistoffen zoals Jet A-1. Antistatische epoxycoatings helpen statische ladingen af te voeren, waardoor het risico op vonken en mogelijke explosies wordt verminderd.
  • Gladde oppervlakteafwerking:Door het aanbrengen van een epoxyprimer ontstaat een glad binnenoppervlak, waardoor de doorstroming van de pijpleiding wordt verbeterd en het energieverbruik tijdens het brandstoftransport wordt verlaagd.

Top-epoxyprimers voor Jet A-1-brandstofpijpleidingen

Bij het selecteren van een epoxyprimer voor Jet A-1-brandstofleidingen is het essentieel om een product te kiezen dat specifiek is samengesteld voor koolwaterstoffen en voldoet aan de industrienormen. Hier zijn enkele van de beste keuzes:

1. Hempel's Hempadur 35760

Hempel's Hempadur 35760 is een antistatische epoxyprimer die speciaal is ontworpen voor vliegtuigbrandstofpijpleidingen en opslagtanks. Het biedt uitstekende chemische bestendigheid en antistatische eigenschappen, waardoor het ideaal is voor omgevingen waar het voorkomen van statische ontladingen van cruciaal belang is. De sterke hechting op metalen oppervlakken zorgt voor langdurige bescherming.

2. Hempel's 876CN

Hempel 876CN is een tweecomponenten, hoogwaardige epoxyprimer die uitstekende corrosiebestendigheid en chemische bescherming biedt, waardoor het geschikt is voor Jet A-1-brandstofleidingen. De formule biedt een robuuste barrière tegen de zware omstandigheden die kenmerkend zijn voor vliegtuigbrandstofsystemen, wat de veiligheid en duurzaamheid verbetert. Deze primer wordt met name gewaardeerd om zijn sterke hechtingseigenschappen en slijtvastheid, die cruciaal zijn in omgevingen met een hoge stroming.

3. Interline 850 van International Paint

Interline 850 van International Paint (AkzoNobel) is een hoogwaardige, tweecomponenten epoxyvoering. Het biedt superieure chemische bestendigheid, specifiek geformuleerd voor Jet A-1 en andere vliegtuigbrandstoffen. De antistatische eigenschappen maken het een betrouwbare keuze voor brandstofleidingen, wat de veiligheid en naleving van industrienormen garandeert.

4. Dura-plaat 235 van Sherwin-Williams

Dura-Plate 235 is een veelzijdige epoxyprimer die bekend staat om zijn duurzaamheid en chemische bestendigheid. Het is geschikt voor zware serviceomgevingen en biedt robuuste bescherming tegen corrosie en koolwaterstofpermeatie. De flexibiliteit en hechting maken het een populaire keuze voor vliegtuigbrandstofleidingen.

5. Jotun's Tankguard 412

Tankguard 412 van Jotun is een gespecialiseerde epoxycoating voor brandstoftanks en pijpleidingen. Het biedt uitstekende weerstand tegen verschillende chemicaliën, waaronder Jet A-1. De gladde afwerking en beschermende eigenschappen zorgen voor een efficiënte brandstofstroom en langdurige pijpleidingintegriteit.

Toepassing en onderhoud

Om de voordelen van epoxyprimercoatings optimaal te benutten, zijn een juiste toepassing en onderhoud van cruciaal belang:

  • Voorbereiding van het oppervlak: Zorg ervoor dat de pijpleidingoppervlakken grondig gereinigd en voorbereid zijn voordat u de epoxyprimer aanbrengt. Dit kan stralen en ontvetten inhouden om optimale hechting te bereiken.
  • Toepassingsmethode: Volg de instructies van de fabrikant met betrekking tot de applicatiemethode, zoals spuiten, borstelen of rollen.
  • Regelmatige inspectie: Voer regelmatig inspecties uit van de pijpleiding om tekenen van slijtage of schade snel te identificeren en aan te pakken. Goed onderhoud zal helpen de levensduur van de coating en de pijpleiding te verlengen.

Conclusie

Het selecteren van de geschikte epoxyprimercoating voor Jet A-1-brandstofleidingen is essentieel om veiligheid, efficiëntie en levensduur te garanderen. Met opties zoals Hempel's Hempadur 35760, Hempel 876CN, International Paint's Interline 850, Sherwin-Williams' Dura-Plate 235 en Jotun's Tankguard 412 kunnen operators een oplossing vinden die is afgestemd op hun specifieke behoeften. Brandstoftransportsystemen kunnen optimale prestaties en betrouwbaarheid bereiken door te investeren in hoogwaardige coatings en een rigoureus applicatie- en inspectieproces te handhaven.

Super 13Cr naadloze buis

Toepassing van Super 13Cr in olie- en gasvelden

Invoering

In de steeds veeleisender wordende wereld van olie- en gaswinning, waar zware omgevingen en extreme omstandigheden de norm zijn, is het selecteren van geschikte materialen cruciaal voor operationeel succes en veiligheid. Van de reeks materialen die in de industrie worden gebruikt, onderscheidt Super 13Cr roestvrij staal zich als een topkeuze voor toepassingen die uitzonderlijke corrosiebestendigheid en duurzaamheid vereisen. Laten we eens kijken waarom Super 13Cr het materiaal bij uitstek is voor moderne olie- en gasveldtoepassingen en hoe het andere opties overtreft.

Wat is super 13Cr roestvrij staal?

Super 13Cr roestvrij staal is een legering met een hoog chroomgehalte die is ontworpen om de zware omstandigheden te weerstaan die voorkomen in olie- en gasoperaties. De samenstelling omvat doorgaans ongeveer 13% chroom, samen met extra elementen zoals molybdeen en nikkel. Vergeleken met standaard 13Cr-kwaliteiten biedt deze legering een verbeterde corrosiebestendigheid en hogetemperatuurprestaties.

Waarom Super 13Cr?

1. Superieure corrosieweerstand

Olie- en gasputten komen vaak corrosieve stoffen tegen zoals waterstofsulfide (H2S), koolstofdioxide (CO2) en chloriden. Super 13Cr roestvrij staal blinkt uit in deze omgevingen vanwege het hoge chroomgehalte, dat een beschermende oxidelaag vormt op het stalen oppervlak. Deze laag vermindert de corrosiesnelheid aanzienlijk en voorkomt putcorrosie en spanningscorrosie, wat de levensduur en betrouwbaarheid van apparatuur garandeert.

2. Hoge sterkte en taaiheid

Naast zijn corrosieweerstand biedt Super 13Cr indrukwekkende mechanische eigenschappen. De legering behoudt een hoge sterkte en taaiheid, zelfs onder hoge druk en hoge temperaturen. Dit maakt het ideaal voor kritische componenten zoals buizen, behuizingen en connectoren die worden gebruikt in olie- en gasbronnen, waar structurele integriteit van het grootste belang is.

3. Weerstand tegen zure serviceomstandigheden

Zure serviceomgevingen die worden gekenmerkt door H2S vormen een aanzienlijke uitdaging voor olie- en gaswinningsmaterialen. Super 13Cr is nauwkeurig ontworpen om deze zware omstandigheden te weerstaan, waardoor het risico op materiaalfalen wordt verminderd en een veilige en efficiënte werking wordt gegarandeerd. De naleving van de NACE MR0175 / ISO 15156-normen bevestigt de geschiktheid ervan voor zure servicetoepassingen.

4. Verbeterde prestaties in omgevingen met hoge temperaturen

Olie- en gasvelden werken vaak bij hoge temperaturen, wat corrosie en materiaaldegradatie verergert. Super 13Cr roestvrij staal is ontworpen om zijn prestaties in dergelijke omgevingen te behouden, waarbij de corrosiebestendigheid en mechanische eigenschappen zelfs bij hogere temperaturen behouden blijven. Deze betrouwbaarheid is cruciaal voor de veilige en efficiënte werking van productieapparatuur.

Toepassingen in de olie- en gasindustrie

Super 13Cr roestvrij staal wordt gebruikt in verschillende kritische toepassingen binnen de olie- en gassector:

  • Behuizing en buizen: Essentiële componenten van olie- en gasbronnen. Super 13Cr-buizen zijn gekozen vanwege hun vermogen om hoge druk en corrosieve omgevingen te weerstaan.
  • Gereedschappen in het boorgat: Super 13Cr wordt gebruikt in diverse boorputgereedschappen en -apparatuur, waaronder boorpijpen en productieapparatuur, waar betrouwbaarheid en prestaties van cruciaal belang zijn.
  • Onderzeese uitrusting: De weerstand van de legering tegen zeewater en andere corrosieve stoffen maakt het ideaal voor onderzeese toepassingen, waaronder stijgbuizen, voedingskabels en connectoren.

Toekomstperspectieven en innovaties

Naarmate de olie- en gasindustrie de grenzen van exploratie en productie blijft verleggen, zal de vraag naar geavanceerde materialen zoals Super 13Cr toenemen. Doorlopend onderzoek en ontwikkeling zijn gericht op het verder verbeteren van de eigenschappen van deze legering, het verkennen van nieuwe toepassingen en het verbeteren van de prestaties om te voldoen aan de veranderende behoeften van de industrie.

Conclusie

Super 13Cr roestvrij staal vertegenwoordigt het toppunt van materiaalwetenschap in de olie- en gassector en combineert ongeëvenaarde corrosieweerstand met hoge sterkte en taaiheid. Het vermogen om betrouwbaar te presteren in zware omgevingen met hoge druk en hoge temperaturen maakt het een voorkeurskeuze voor kritische toepassingen. Naarmate de industrie zich verder ontwikkelt, zal Super 13Cr een cruciale rol blijven spelen bij het garanderen van veilige, efficiënte en succesvolle olie- en gasactiviteiten.

Door voor Super 13Cr te kiezen kunnen operators en ingenieurs met vertrouwen de uitdagingen van de moderne olie- en gasexploratie aangaan, hun investeringen veiligstellen en vooruitgang in het veld stimuleren.

Wat is NACE MR0175/ISO 15156?

Wat is NACE MR0175/ISO 15156?

NACE MR0175/ISO 15156 is een wereldwijd erkende norm die richtlijnen biedt voor de selectie van materialen die bestand zijn tegen sulfidespanningsscheuren (SSC) en andere vormen van door waterstof geïnduceerd kraken in omgevingen die waterstofsulfide (H₂S) bevatten. Deze norm is essentieel voor het garanderen van de betrouwbaarheid en veiligheid van apparatuur die wordt gebruikt in de olie- en gasindustrie, met name in zure serviceomgevingen.

Kritische aspecten van NACE MR0175/ISO 15156

  1. Reikwijdte en doel:
    • De norm heeft betrekking op de selectie van materialen voor apparatuur die wordt gebruikt bij de olie- en gasproductie en die wordt blootgesteld aan omgevingen die H₂S bevatten, wat verschillende vormen van scheurvorming kan veroorzaken.
    • Het doel hiervan is om materiaalfalen als gevolg van sulfidespanning, corrosie, waterstofgeïnduceerde scheurvorming en andere gerelateerde mechanismen te voorkomen.
  2. Materiaalkeuze:
    • Deze gids biedt richtlijnen voor het selecteren van geschikte materialen, waaronder koolstofstaal, laaggelegeerd staal, roestvrij staal, nikkellegeringen en andere corrosiebestendige legeringen.
    • Geeft de omgevingsomstandigheden en spanningsniveaus aan die elk materiaal kan weerstaan zonder dat er scheuren ontstaan.
  3. Kwalificatie en testen:
    • In dit document worden de benodigde testprocedures beschreven om materialen te kwalificeren voor zure toepassingen, inclusief laboratoriumtests die de corrosieve omstandigheden simuleren die in H₂S-omgevingen voorkomen.
    • Geeft de criteria voor acceptabele prestaties in deze tests aan, om ervoor te zorgen dat materialen bestand zijn tegen scheuren onder gespecificeerde omstandigheden.
  4. Ontwerp en fabricage:
    • Bevat aanbevelingen voor het ontwerpen en fabriceren van apparatuur om het risico op waterstofgeïnduceerde scheurvorming te minimaliseren.
    • Benadrukt het belang van productieprocessen, lastechnieken en warmtebehandelingen die de weerstand van het materiaal tegen door H₂S veroorzaakte scheuren kunnen beïnvloeden.
  5. Onderhoud en monitoring:
    • Adviseert over de onderhoudspraktijken en monitoringstrategieën om scheuren tijdens het gebruik te detecteren en te voorkomen.
    • Regelmatige inspecties en niet-destructieve testmethoden worden aanbevolen om de voortdurende integriteit van de apparatuur te waarborgen.

Belang in de industrie

  • Veiligheid: Garandeert de veilige werking van apparatuur in zure serviceomgevingen door het risico op catastrofale storingen als gevolg van scheuren te verminderen.
  • Betrouwbaarheid: Verbetert de betrouwbaarheid en levensduur van apparatuur, waardoor uitvaltijd en onderhoudskosten worden verminderd.
  • Naleving: Helpt bedrijven te voldoen aan wettelijke vereisten en industrienormen, waardoor juridische en financiële gevolgen worden vermeden.

NACE MR0175/ISO 15156 is verdeeld in drie delen, elk gericht op verschillende aspecten van het selecteren van materialen voor gebruik in zure serviceomgevingen. Hier is een meer gedetailleerd overzicht:

Deel 1: Algemene principes voor de selectie van scheurbestendige materialen

  • Domein: Biedt overkoepelende richtlijnen en principes voor het selecteren van materialen die bestand zijn tegen scheuren in omgevingen met H₂S.
  • Inhoud:
    • Definieert sleuteltermen en concepten met betrekking tot zure serviceomgevingen en materiaaldegradatie.
    • Geeft algemene criteria weer voor het beoordelen van de geschiktheid van materialen voor zure service.
    • Beschrijft het belang van het overwegen van omgevingsfactoren, materiaaleigenschappen en operationele omstandigheden bij het selecteren van materialen.
    • Biedt een raamwerk voor het uitvoeren van risicobeoordelingen en het nemen van weloverwogen materiële selectiebeslissingen.

Deel 2: Scheurbestendige koolstof- en laaggelegeerde staalsoorten en het gebruik van gietijzer

  • Domein:In dit artikel worden de eisen en richtlijnen voor het gebruik van koolstofstaal, laaggelegeerde staalsoorten en gietijzer in zure omgevingen besproken.
  • Inhoud:
    • Geeft details over de specifieke omstandigheden waaronder deze materialen veilig kunnen worden gebruikt.
    • Geeft een overzicht van de mechanische eigenschappen en chemische samenstellingen die deze materialen nodig hebben om bestand te zijn tegen sulfidespanningsscheuren (SSC) en andere vormen van door waterstof veroorzaakte schade.
    • Biedt richtlijnen voor de warmtebehandeling en fabricageprocessen die de weerstand van deze materialen tegen scheuren kunnen verbeteren.
    • Bespreekt de noodzaak van goede materiaaltest- en kwalificatieprocedures om naleving van de norm te garanderen.

Deel 3: Krasbestendige CRA's (corrosiebestendige legeringen) en andere legeringen

  • Domein: Geschikt voor corrosiebestendige legeringen (CRA's) en andere speciale legeringen in zure omgevingen.
  • Inhoud:
    • Identificeert verschillende soorten CRA's, zoals roestvrij staal, legeringen op nikkelbasis en andere hoogwaardige legeringen, en hun geschiktheid voor zure service.
    • Specificeert de chemische samenstelling, mechanische eigenschappen en warmtebehandelingen die nodig zijn om deze materialen bestand te maken tegen scheuren.
    • Biedt richtlijnen voor het selecteren, testen en kwalificeren van CRA's om hun prestaties in H₂S-omgevingen te garanderen.
    • In dit artikel wordt besproken hoe belangrijk het is om bij het selecteren van materialen voor specifieke toepassingen rekening te houden met zowel de corrosiebestendigheid als de mechanische eigenschappen van deze legeringen.

NACE MR0175/ISO 15156 is een uitgebreide norm die helpt het veilige en effectieve gebruik van materialen in zure serviceomgevingen te waarborgen. Elk deel behandelt verschillende categorieën materialen en biedt gedetailleerde richtlijnen voor hun selectie, testen en kwalificatie. Door deze richtlijnen te volgen, kunnen bedrijven het risico op materiaalfalen verminderen en de veiligheid en betrouwbaarheid van hun activiteiten in H₂S-bevattende omgevingen verbeteren.

Voltooiing van putten: toepassings- en installatiesequenties van OCTG in olie- en gasbronnen

Invoering

Olie- en gasexploratie en -productie omvatten complexe apparatuur en processen. Hiertoe behoren de juiste selectie en het juiste gebruik van buisvormige goederen (boorpijpen, boorkragen, boorbits, casing, tubing, zuigerstangen en leidingpijpen) die cruciaal zijn voor de efficiëntie en veiligheid van booroperaties. Deze blog wil een gedetailleerd overzicht bieden van deze componenten, hun afmetingen en hun opeenvolgende gebruik in olie- en gasputten.

1. Afmetingen boorpijp, boorkraag en boor

Boor pijpen vormen de ruggengraat van de booroperatie, waarbij kracht van het oppervlak naar de boor wordt overgebracht terwijl de boorvloeistof circuleert. Veel voorkomende maten zijn onder meer:

  • 3 1/2 inch (88,9 mm)
  • 4 inch (101,6 mm)
  • 4 1/2 inch (114,3 mm)
  • 5 inch (127 mm)
  • 5 1/2 inch (139,7 mm)

Boor kragen voeg gewicht toe aan de boor, zodat deze effectief in de rots dringt. Typische maten zijn:

  • 3 1/8 inch (79,4 mm)
  • 4 3/4 inch (120,7 mm)
  • 6 1/4 inch (158,8 mm)
  • 8 inch (203,2 mm)

Boren zijn ontworpen om rotsformaties te verpletteren en door te snijden. Hun afmetingen variëren aanzienlijk, afhankelijk van de vereiste boorgatdiameter:

  • 3 7/8 inch (98,4 mm) tot 26 inch (660,4 mm)

2. Afmetingen behuizing en buizen

Behuizing pijp stabiliseert het boorgat, voorkomt instorting en isoleert verschillende geologische formaties. Het wordt in fasen geïnstalleerd, waarbij elke string een grotere diameter heeft dan degene erin:

  • Oppervlaktebehuizing: 13 3/8 inch (339,7 mm) of 16 inch (406,4 mm)
  • Tussenbehuizing: 9 5/8 inch (244,5 mm) of 10 3/4 inch (273,1 mm)
  • Productiebehuizing: 7 inch (177,8 mm) of 5 1/2 inch (139,7 mm)

Olieslang wordt in de behuizing gestoken om olie en gas naar de oppervlakte te transporteren. Typische slangmaten zijn onder meer:

  • 1,050 inch (26,7 mm)
  • 1,315 inch (33,4 mm)
  • 1,660 inch (42,2 mm)
  • 1.900 inch (48,3 mm)
  • 2 3/8 inch (60,3 mm)
  • 2 7/8 inch (73,0 mm)
  • 3 1/2 inch (88,9 mm)
  • 4 inch (101,6 mm)

3. Afmetingen zuigstang en slang

Sucker staven sluit de oppervlaktepompeenheid aan op de pomp in het boorgat, waardoor vloeistoffen uit de put kunnen worden getransporteerd. Ze worden geselecteerd op basis van de slangmaat:

  • Voor buizen van 2 3/8 inch: 5/8 inch (15,9 mm), 3/4 inch (19,1 mm) of 7/8 inch (22,2 mm)
  • Voor 2 7/8 inch slang: 3/4 inch (19,1 mm), 7/8 inch (22,2 mm) of 1 inch (25,4 mm)

4. Afmetingen leidingleidingen

Lijnpijpen transporteer de geproduceerde koolwaterstoffen van de putmond naar verwerkingsfaciliteiten of pijpleidingen. Ze worden gekozen op basis van het productievolume:

  • Kleine velden: 2 inch (60,3 mm), 4 inch (114,3 mm)
  • Middelgrote velden: 6 inch (168,3 mm), 8 inch (219,1 mm)
  • Grote velden: 10 inch (273,1 mm), 12 inch (323,9 mm), 16 inch (406,4 mm)

Opeenvolgend gebruik van buizen in olie- en gasbronnen

1. Boorfase

  • De booroperatie begint met de boor het doorbreken van de geologische formaties.
  • Boor pijpen Rotatiekracht en boorvloeistof overbrengen naar de boor.
  • Boor kragen voeg gewicht toe aan het bit en zorg ervoor dat het effectief doordringt.

2. Behuizingsfase

  • Zodra een bepaalde diepte is bereikt, behuizing is geïnstalleerd om het boorgat te beschermen en verschillende formaties te isoleren.
  • Oppervlakte-, tussen- en productiemantelreeksen worden opeenvolgend uitgevoerd naarmate het boren vordert.

3. Voltooiing en productiefase

  • Slangen wordt in de productiebehuizing geïnstalleerd om de stroom koolwaterstoffen naar het oppervlak te vergemakkelijken.
  • Sucker staven worden gebruikt in putten met kunstmatige liftsystemen, waarbij de pomp in het boorgat wordt aangesloten op de oppervlakte-eenheid.

4. Fase van oppervlaktevervoer

  • De leidingen transporteren de olie en gas geproduceerd vanaf de bron naar verwerkingsfaciliteiten of hoofdpijpleidingen.

Conclusie

Het begrijpen van de rollen, afmetingen en het opeenvolgende gebruik van deze buisvormige goederen is essentieel voor efficiënte en veilige olie- en gasoperaties. De juiste selectie en behandeling van boorpijpen, boorkragen, boorbits, casing, tubing, zuigerstangen en leidingpijpen zorgen voor de structurele integriteit van de put en optimaliseren de productieprestaties.

Door deze componenten effectief te integreren, kan de olie- en gasindustrie blijven voldoen aan de wereldwijde energiebehoefte en tegelijkertijd hoge normen op het gebied van veiligheid en operationele efficiëntie handhaven.