スーパー 13Cr SMSS 13Cr ケーシングとチューブ

H₂S/CO₂-油-水環境におけるSMSS 13CrおよびDSS 22Cr

導入

スーパーマルテンサイト系ステンレス鋼の腐食挙動 (SMSS)13Cr および二相ステンレス鋼 (DSS) 22Cr の H₂S/CO₂-油-水環境における挙動は、特にこれらの材料が過酷な条件にさらされることが多い石油・ガス業界では大きな関心を集めています。これらの条件下での各材料の挙動の概要は次のとおりです。

1. スーパーマルテンサイト系ステンレス鋼(SMSS)13Cr:

構成: SMSS 13Cr には通常、約 12 ~ 14% のクロムが含まれており、少量のニッケルとモリブデンも含まれています。クロム含有量が多いため耐腐食性に優れ、マルテンサイト構造により高い強度が得られます。
腐食挙動:
CO₂腐食: SMSS 13Cr は、主に保護酸化クロム層を形成することにより、CO₂ 腐食に対して中程度の耐性を示します。ただし、CO₂ が存在すると、孔食や隙間腐食などの局部腐食が発生する危険性があります。
H₂S腐食: H₂S は硫化物応力割れ (SSC) と水素脆化のリスクを高めます。SMSS 13Cr はある程度の耐性がありますが、特に高温高圧下ではこれらの腐食に対して耐性がありません。
油水環境: 油は保護バリアとして機能する場合があり、金属表面が腐食剤にさらされるのを軽減します。ただし、水、特に塩水は腐食性が極めて高い場合があります。油相と水相のバランスは、全体的な腐食速度に大きな影響を与える可能性があります。
よくある問題:
硫化物応力割れ(SSC): マルテンサイト構造は強固ですが、H₂S が存在すると SSC の影響を受けやすくなります。
孔食および隙間腐食: これらは、特に塩化物や CO₂ が存在する環境では重大な懸念事項となります。

2. 二相ステンレス鋼(DSS)22Cr:

構成: DSS 22Cr には、約 22% のクロム、約 5% のニッケル、3% のモリブデン、およびバランスのとれたオーステナイト-フェライト微細構造が含まれています。これにより、DSS は優れた耐腐食性と高い強度を備えています。
腐食挙動:
CO₂腐食: DSS 22Cr は、SMSS 13Cr よりも CO₂ 腐食に対する耐性が優れています。クロム含有量が高く、モリブデンが含まれているため、腐食に強い安定した保護酸化層が形成されます。
H₂S腐食: DSS 22Cr は、SSC や水素脆化などの H₂S 誘発腐食に対して高い耐性があります。バランスのとれた微細構造と合金組成により、これらのリスクを軽減できます。
油水環境: DSS 22Cr は、油水混合環境で優れた性能を発揮し、一般的な腐食や局部的な腐食に耐えます。油が存在すると保護膜が形成されて耐腐食性が向上しますが、DSS 22Cr は本来耐腐食性を備えているため、この点はそれほど重要ではありません。
よくある問題:
応力腐食割れ(SCC): DSS 22Cr は SMSS 13Cr よりも耐性が優れていますが、高温での高塩化物濃度など、特定の条件下では SCC の影響を受けやすくなります。
局所腐食: DSS 22Cr は一般に孔食や隙間腐食に対して非常に耐性がありますが、極端な条件下ではこれらが発生する可能性があります。

比較概要:

耐腐食性: DSS 22Cr は、SMSS 13Cr に比べて、特に H₂S および CO₂ が存在する環境において、一般に優れた耐腐食性を発揮します。
強さと強靭さ: SMSS 13Cr はより堅牢ですが、SSC や孔食などの腐食の問題の影響を受けやすくなります。
アプリケーションの適合性: DSS 22Cr は、H₂S や CO₂ レベルが高いなど、腐食リスクが高い環境で好まれることが多い一方、SMSS 13Cr は、中程度の腐食リスクでより高い強度を必要とする用途に選択される場合があります。

結論:

H₂S/CO₂-油-水環境での使用にSMSS 13CrとDSS 22Crのどちらかを選択する場合、特により過酷な環境では、腐食耐性の点でDSS 22Crの方が一般的に優れています。ただし、最終的な決定では、温度、圧力、H₂SとCO₂の相対濃度などの特定の条件を考慮する必要があります。

石油貯蔵タンクの建造用プレートと表面処理

石油貯蔵タンクの建設:プレートの選択とプロセス

導入

石油貯蔵タンクの建設は、石油・ガス業界にとって極めて重要です。これらのタンクは、石油製品の貯蔵における安全性、耐久性、効率性を確保するために、正確に設計および構築する必要があります。これらのタンクの最も重要なコンポーネントの 1 つは、その構築に使用されるプレートの選択と処理です。このブログでは、プレートの選択基準、製造プロセス、および石油貯蔵タンクの構築に関する考慮事項について詳細に説明します。

プレート選択の重要性

プレートは石油貯蔵タンクの主要な構造部品です。適切なプレートの選択は、いくつかの理由から非常に重要です。
安全性適切なプレート材質により、タンクは貯蔵製品の内部圧力、環境条件、および潜在的な化学反応に耐えることができます。
耐久性: 高品質の材料によりタンクの寿命が延び、メンテナンスコストとダウンタイムが削減されます。
コンプライアンス: 業界の標準と規制を遵守することは、合法的な運営と環境保護に不可欠です。
コスト効率適切な材料と処理方法を選択すると、建設コストと運用コストを大幅に削減できます。

石油貯蔵タンクの種類

プレートの選択に入る前に、各タイプに特定の要件があるため、さまざまなタイプの石油貯蔵タンクを理解することが重要です。
固定屋根タンク 石油や石油製品の貯蔵に使用される最も一般的なタイプのタンクです。蒸気圧の低い液体に適しています。
浮き屋根式タンクこれらのタンクには貯蔵液体の表面に浮かぶ屋根があり、蒸発による損失と爆発の危険性を軽減します。
弾丸タンクこれらの円筒形のタンクは液化ガスと揮発性液体を貯蔵します。
球形タンク: 高圧の液体やガスを貯蔵し、均等な応力分散を実現するために使用されます。

プレート選択基準

1. 材料構成
炭素鋼: 強度、手頃な価格、入手しやすさから広く使用されています。ほとんどのオイルおよび石油製品に適しています。
ステンレス鋼: 耐腐食性があるため、腐食性製品や高温製品の保管に適しています。
アルミニウム: 軽量で耐腐食性があり、腐食環境の浮き屋根部品やタンクに最適です。
複合材料: 高い耐腐食性と軽量性が求められる特定の用途に使用されることがあります。
2. 厚さとサイズ
厚さ: タンクの設計圧力、直径、高さによって決まります。一般的には 5 mm から 30 mm の範囲です。
サイズ: プレートは、溶接継ぎ目を最小限に抑えるのに十分な大きさで、取り扱いや輸送がしやすい大きさである必要があります。
3. 機械的性質
抗張力: タンクが内部圧力と外部力に耐えられることを保証します。
延性: 圧力や温度の変化に対応し、破損することなく変形できます。
耐衝撃性特に寒冷な環境では、突然の力に耐えることが重要です。
4. 環境要因
温度変化: 極端な温度における材料の挙動を考慮します。
腐食性環境特に沖合または沿岸の設備向けに、環境腐食に耐性のある材料を選択します。

材料規格と等級

石油貯蔵タンクの材料を選択する際には、品質、性能、業界規制への準拠を保証するために、認められた基準と等級を遵守することが重要です。

炭素鋼

標準:ASTM A36、ASTM A283、JIS G3101
成績:
ASTM A36: 溶接性と機械加工性に優れているため、タンク構造に使用される一般的な構造用鋼種です。
ASTM A283 グレードC: 中程度のストレスがかかる用途に優れた強度と柔軟性を提供します。
JIS G3101 SS400: 優れた機械的性質と溶接性で知られる、一般構造用炭素鋼の日本規格。

ステンレス鋼

標準: ASTM A240
成績:
304/304L: 耐食性に優れており、軽度の腐食性製品をタンクに保管するために使用されます。
モリブデン添加により316/316L 特に海洋環境において優れた耐腐食性を発揮します。
904L (UNS N08904)特に塩化物や硫酸に対して高い耐腐食性があることで知られています。
二相ステンレス鋼 2205 (UNS S32205): 高い強度と優れた耐腐食性を兼ね備え、過酷な環境にも適しています。

アルミニウム

標準: ASTM B209
成績:
5083: 高い強度と優れた耐腐食性で知られており、海洋環境のタンクに最適です。
6061: 優れた機械的特性と溶接性を備え、構造部品に適しています。

複合材料

標準: ASME RTP-1
アプリケーション: 化学的な攻撃に対する耐性と軽量化が求められる特殊な用途に使用されます。

ライニングとコーティングの種類

ライニングとコーティングは、石油貯蔵タンクを腐食や環境による損傷から保護します。ライニングとコーティングの選択は、タンクの場所、内容物、および生態学的条件によって異なります。

外部コーティング

エポキシコーティング:
プロパティ: 優れた接着性と耐腐食性を備えています。過酷な環境にも適しています。
アプリケーション: タンクの外部に使用され、風化や化学物質への曝露から保護します。
おすすめブランド:
ヘンペル: ヘンペルエポキシ35540
アクゾノーベル: インターシール670HS
ヨトゥン: ジョタマスティック90
3M: スコッチコートエポキシコーティング 162PWX
推奨DFT(乾燥膜厚): 200~300ミクロン
ポリウレタンコーティング:
プロパティ: 優れた紫外線耐性と柔軟性を提供します。
アプリケーション: 日光やさまざまな気象条件にさらされる水槽に最適です。
おすすめブランド:
ヘンペル: ヘンペルのポリウレタンエナメル 55300
アクゾノーベル: インターセイン 990
ヨトゥン: ハードトップXP
推奨DFT: 50~100ミクロン
亜鉛リッチプライマー:
プロパティ: 鋼鉄表面に陰極保護を施します。
アプリケーション: 錆び防止のためのベースコートとして使用されます。
おすすめブランド:
ヘンペル: ヘンパデュール亜鉛17360
アクゾノーベル: インタージンク52
ヨトゥン: バリア77
推奨DFT: 120~150ミクロン

内部ライニング

フェノールエポキシライニング:
プロパティ: 石油製品や溶剤に対する耐薬品性に優れています。
アプリケーション: 原油や精製品を貯蔵するタンク内で使用されます。
おすすめブランド:
ヘンペル: ヘンペルフェノール 35610
アクゾノーベル: インターライン984
ヨトゥン: タンクガードストレージ
推奨DFT: 400~600ミクロン
ガラスフレークコーティング:
プロパティ: 耐薬品性、耐摩耗性に優れています。
アプリケーション: 腐食性の高い化学薬品の保管やタンクの底部に適しています。
おすすめブランド:
ヘンペル: ヘンペルグラスフレーク 35620
アクゾノーベル: インターゾーン954
ヨトゥン: バルトフレーク
推奨DFT: 500~800ミクロン
ゴムライニング:
プロパティ: 柔軟性と耐薬品性を提供します。
アプリケーション: 酸などの腐食性物質の保管に使用されます。
おすすめブランド:
3M: スコッチコートポリテック665
推奨DFT: 2~5mm

選択の考慮事項

製品の互換性: 反応を防ぐために、ライニングまたはコーティングが保管されている製品と互換性があることを確認してください。
環境条件ライニングやコーティングを選択する際には、温度、湿度、化学物質への曝露を考慮してください。
メンテナンスと耐久性: 長期的な保護を提供し、メンテナンスが容易なライニングとコーティングを選択してください。

製造プロセス

石油貯蔵タンクの製造には、いくつかの重要なプロセスが含まれます。
1. 切断
機械切断: プレートを成形するために、せん断、鋸引き、フライス加工を行います。
熱切断: 酸素燃料、プラズマ、またはレーザー切断を利用して、正確で効率的な成形を行います。
2. 溶接
溶接はプレートを接合し、構造の完全性を確保するために不可欠です。
シールドメタルアーク溶接(SMAW): シンプルさと汎用性のため、よく使用されます。
ガスタングステンアーク溶接(GTAW): 重要な接合部に高品質の溶接を提供します。
サブマージアーク溶接(SAW): 厚い板や長い継ぎ目に適しており、深い浸透と高い堆積速度を実現します。
3. 形成
圧延: プレートは円筒形のタンクの壁に必要な曲率に丸められます。
プレス成形: タンク端部やその他の複雑な部品の成形に使用されます。
4. 検査とテスト
非破壊検査(NDT)超音波検査や放射線検査などの技術により、材料を損傷することなく溶接品質と構造的完全性を確保します。
圧力テスト: タンクが漏れることなく設計圧力に耐えられることを保証します。
5. 表面処理とコーティング
爆破: 表面を洗浄し、コーティングの準備を整えます。
コーティング腐食を防ぎ、タンクの寿命を延ばすために保護コーティングを施します。
業界標準と規制
業界標準を遵守することで、安全性、品質、コンプライアンスが確保されます。主な標準は次のとおりです。
650 試験: 石油およびガス用の溶接鋼製貯蔵タンクの規格。
620 の大型の低圧貯蔵タンクの設計と建設について説明します。
ASMEセクションVIII: 圧力容器の構築に関するガイドラインを提供します。

結論

石油貯蔵タンクの建設には、特にプレートの選択と処理において、細部にまで細心の注意を払う必要があります。材料の組成、厚さ、機械的特性、環境条件などの要素を考慮することで、建設者はこれらの重要な構造物の安全性、耐久性、および費用対効果を確保できます。業界の標準と規制を順守することで、コンプライアンスと環境保護がさらに保証されます。石油およびガス業界が進化し続けるにつれて、材料と製造技術の進歩により、石油貯蔵タンクの建設が強化され続けます。

ジェット A-1 燃料貯蔵タンクとパイプライン

ジェット A-1 燃料パイプラインに適したエポキシプライマーコーティングの選択

導入

航空燃料輸送の高度に専門化された分野では、 ジェット A-1 燃料パイプライン は重要です。これらのパイプラインは、過酷な化学環境に耐え、腐食を防ぎ、静電気の蓄積のリスクを最小限に抑える必要があります。これらの目標を達成するには、適切なエポキシプライマーコーティングを選択することが不可欠です。このブログでは、Jet A-1 燃料パイプラインのオプションに最適なエポキシプライマーコーティングと、効率的で安全な燃料輸送システムを維持する上での重要性について説明します。

なぜエポキシプライマーコーティングなのか?

エポキシプライマーコーティングは、その優れた保護特性により、燃料業界で広く使用されています。腐食や化学攻撃に対する強力なバリアを提供し、パイプラインの寿命を延ばし、燃料の純度を保証します。Jet A-1 パイプラインにエポキシプライマーを使用する主な利点は次のとおりです。

  • 耐薬品性: エポキシコーティングは炭化水素に対する優れた耐性を備えており、パイプラインがジェット A-1 燃料に長時間さらされても影響を受けません。
  • 腐食防止エポキシプライマーは錆や腐食を防ぎ、パイプラインの構造的完全性を維持し、メンテナンスコストとダウンタイムを削減します。
  • 帯電防止特性: 静電気は、Jet A-1 のような可燃性液体を輸送する場合、重大な安全上の危険となります。帯電防止エポキシコーティングは静電気を消散させ、火花や爆発の危険性を軽減します。
  • 滑らかな表面仕上げエポキシプライマーを塗布すると、内面が滑らかになり、パイプラインの流量効率が向上し、燃料輸送中のエネルギー消費が削減されます。

ジェット A-1 燃料パイプライン用トップエポキシプライマー

Jet A-1 燃料パイプライン用のエポキシ プライマーを選択する場合、業界標準を満たす炭化水素用に特別に配合された製品を選択することが重要です。主な選択肢は次のとおりです。

1. ヘンペルズ ヘンパドゥール 35760

Hempel の Hempadur 35760 は、航空燃料パイプラインおよび貯蔵タンク用に特別に設計された帯電防止エポキシプライマーです。優れた耐薬品性と帯電防止性を備えているため、静電気放電防止が重要な環境に最適です。金属表面への強力な接着により、長期間の保護が保証されます。

2. ヘンペルの876CN

Hempel 876CN は、優れた耐腐食性と化学保護性を備えた 2 成分の高性能エポキシ プライマーで、Jet A-1 燃料パイプラインに適しています。この配合は、航空燃料システムに特有の厳しい条件に対して堅牢なバリアを提供し、安全性と耐久性を高めます。このプライマーは、高流量環境で重要な強力な接着特性と耐摩耗性で特に評価されています。

3. インターナショナルペイントのインターライン850

International Paint (AkzoNobel) の Interline 850 は、高性能の 2 成分エポキシ ライニングです。優れた耐薬品性を備え、Jet A-1 やその他の航空燃料専用に配合されています。帯電防止機能により、燃料パイプラインの信頼性が高まり、安全性と業界標準への準拠が保証されます。

4. シャーウィン・ウィリアムズのデュラプレート 235

Dura-Plate 235 は、耐久性と耐薬品性で知られる多用途エポキシプライマーです。厳しい使用環境に適しており、腐食や炭化水素の浸透に対する強力な保護を提供します。柔軟性と接着性に優れているため、航空燃料パイプラインによく使用されています。

5. ヨトゥンのタンクガード 412

Jotun の Tankguard 412 は、燃料タンクとパイプライン用の特殊なエポキシコーティングです。Jet A-1 を含むさまざまな化学物質に対して優れた耐性を発揮します。滑らかな仕上げと保護特性により、効率的な燃料の流れとパイプラインの完全性が長期間維持されます。

アプリケーションとメンテナンス

エポキシプライマーコーティングの利点を最大限に引き出すには、適切な塗布とメンテナンスが重要です。

  • 表面処理: エポキシプライマーを塗布する前に、パイプラインの表面が十分に洗浄され、準備されていることを確認してください。最適な接着を実現するために、ブラスト処理や脱脂が必要になる場合があります。
  • 応募方法: スプレー、ブラシ、ローラーなどの塗布方法については、製造元の指示に従ってください。
  • 定期検査: パイプラインを定期的に検査して、摩耗や損傷の兆候をすぐに特定し、対処してください。適切なメンテナンスは、コーティングとパイプラインの寿命を延ばすのに役立ちます。

結論

安全性、効率性、耐久性を確保するには、Jet A-1 燃料パイプラインに適したエポキシ プライマー コーティングを選択することが不可欠です。Hempel の Hempadur 35760、Hempel 876CN、International Paint の Interline 850、Sherwin-Williams の Dura-Plate 235、Jotun の Tankguard 412 などのオプションにより、オペレーターは特定のニーズに合わせたソリューションを見つけることができます。燃料輸送システムは、高品質のコーティングに投資し、厳格な塗布および検査プロセスを維持することで、最適なパフォーマンスと信頼性を実現できます。

スーパー13Crシームレスパイプ

石油・ガス田におけるスーパー13Crの応用

導入

厳しい環境と極限状態が当たり前の、常に要求の厳しい石油・ガス探査の世界では、適切な材料を選択することが、作業の成功と安全性にとって極めて重要です。業界で使用されるさまざまな材料の中でも、スーパー 13Cr ステンレス鋼は、優れた耐腐食性と耐久性が求められる用途に最適な選択肢として際立っています。スーパー 13Cr が現代の石油・ガス田用途に最適な材料である理由と、他の選択肢よりも優れている点について見ていきましょう。

スーパー13Crステンレス鋼とは何ですか?

スーパー 13Cr ステンレス鋼は、石油およびガス事業の厳しい条件に耐えられるように設計された高クロム合金です。その組成には、通常、約 13% のクロムと、モリブデンやニッケルなどの追加元素が含まれます。標準の 13Cr グレードと比較して、この合金は耐腐食性と高温性能が向上しています。

なぜ スーパー13Cr?

1. 優れた耐腐食性

石油やガスの井戸は、硫化水素 (H2S)、二酸化炭素 (CO2)、塩化物などの腐食性物質に遭遇することがよくあります。スーパー 13Cr ステンレス鋼は、鋼の表面に保護酸化層を形成する高クロム含有量により、これらの環境に最適です。この層により、腐食速度が大幅に低下し、孔食や応力腐食割れが防止され、機器の寿命と信頼性が確保されます。

2. 高い強度と靭性

耐腐食性に加え、スーパー 13Cr は優れた機械的特性を備えています。この合金は、高圧および高温の条件下でも高い強度と靭性を維持します。そのため、構造的完全性が最優先される油井やガス井で使用されるチューブ、ケーシング、コネクタなどの重要なコンポーネントに最適です。

3. 酸性条件に対する耐性

H2S を特徴とする酸性サービス環境は、石油およびガス抽出材料にとって大きな課題となります。Super 13Cr は、これらの過酷な条件に耐えられるように精密に設計されており、材料破損のリスクを軽減し、安全で効率的な操作を保証します。NACE MR0175 / ISO 15156 規格に準拠しているため、酸性サービス用途への適合性がさらに証明されています。

4. 高温環境でのパフォーマンスの向上

石油・ガス田は高温で稼働することが多く、腐食や材料の劣化が悪化します。スーパー 13Cr ステンレス鋼は、このような環境でも性能が維持されるよう設計されており、高温でも耐腐食性と機械的特性が維持されます。この信頼性は、生産設備の安全で効率的な運用に不可欠です。

石油・ガス産業における応用

スーパー 13Cr ステンレス鋼は、石油およびガス部門のさまざまな重要な用途で利用されています。

  • ケーシングとチューブ: 石油・ガス井の必須コンポーネントであるスーパー 13Cr パイプは、高圧および腐食環境に耐える能力を備えているため選ばれています。
  • ダウンホールツール: スーパー 13Cr は、信頼性と性能が重要となるドリルパイプや生産設備など、さまざまなダウンホール ツールや設備に使用されます。
  • 海底機器: この合金は海水やその他の腐食性物質に対する耐性があるため、ライザー、アンビリカル、コネクタなどの海中用途に最適です。

将来の展望とイノベーション

石油・ガス業界が探査と生産の限界を押し広げ続けるにつれ、Super 13Cr のような先進的な材料の需要は増大します。進行中の研究開発は、この合金の特性をさらに強化し、新しい用途を模索し、業界の進化するニーズを満たすためにその性能を向上させることを目的としています。

結論

スーパー 13Cr ステンレス鋼は、比類のない耐腐食性と高い強度および靭性を兼ね備えた、石油およびガス部門における材料科学の最高峰です。過酷な高圧および高温環境でも確実に機能する能力により、重要な用途に好まれています。業界が進歩するにつれ、スーパー 13Cr は、安全で効率的かつ成功する石油およびガス事業の実現において、今後も重要な役割を果たし続けるでしょう。

Super 13Cr を選択することで、オペレーターとエンジニアは現代の石油およびガス探査の課題に自信を持って対処し、投資を保護し、現場での進歩を促進することができます。

NACE MR0175/ISO 15156 とは何ですか?

NACE MR0175/ISO 15156 とは何ですか?

NACE MR0175/ISO 15156 は、硫化水素 (H₂S) を含む環境における硫化物応力割れ (SSC) やその他の水素誘起割れに耐性のある材料を選択するためのガイドラインを提供する世界的に認められた規格です。この規格は、特に酸性サービス環境において、石油およびガス業界で使用される機器の信頼性と安全性を確保するために不可欠です。

NACE MR0175/ISO 15156 の重要な側面

  1. 範囲と目的:
    • この規格は、さまざまな形態の亀裂を引き起こす可能性のある H₂S を含む環境にさらされる石油およびガス生産に使用される機器の材料の選択を規定しています。
    • 硫化物応力、腐食、水素誘起割れ、およびその他の関連メカニズムによる材料の破損を防ぐことを目的としています。
  2. 材料の選択:
    • このガイドでは、炭素鋼、低合金鋼、ステンレス鋼、ニッケル基合金、その他の耐腐食合金など、適切な材料を選択するためのガイドラインを示します。
    • 各材料がひび割れを起こさずに耐えられる環境条件と応力レベルを指定します。
  3. 資格とテスト:
    • このホワイト ペーパーでは、H₂S 環境で発生する腐食条件をシミュレートする実験室テストを含む、酸性環境で使用する材料を認定するために必要なテスト手順について説明します。
    • これらのテストで許容されるパフォーマンスの基準を指定し、指定された条件下で材料がひび割れに耐えることを保証します。
  4. 設計と製造:
    • 水素誘起割れのリスクを最小限に抑えるための機器の設計と製造に関する推奨事項が含まれています。
    • H₂S による割れに対する材料の耐性に影響を与える可能性のある製造プロセス、溶接技術、熱処理の重要性を強調します。
  5. メンテナンスと監視:
    • 使用中のひび割れを検出し防止するためのメンテナンス方法と監視戦略についてアドバイスします。
    • 機器の継続的な完全性を保証するために、定期的な検査と非破壊検査方法が推奨されます。

業界における重要性

  • 安全性: 亀裂による壊滅的な故障のリスクを軽減することで、酸性サービス環境における機器の安全な動作を保証します。
  • 信頼性: 機器の信頼性と寿命を向上させ、ダウンタイムとメンテナンスコストを削減します。
  • コンプライアンス: 企業が規制要件や業界標準に準拠し、法的および財務的影響を回避できるよう支援します。

NACE MR0175/ISO 15156 は 3 つのパートに分かれており、それぞれ酸性サービス環境で使用する材料の選択に関するさまざまな側面に焦点を当てています。より詳細な内訳は次のとおりです。

パート1:ひび割れ耐性材料の選択に関する一般原則

  • 範囲: H₂S を含む環境での亀裂に耐性のある材料を選択するための包括的なガイドラインと原則を提供します。
  • コンテンツ:
    • 酸性サービス環境と材料の劣化に関連する重要な用語と概念を定義します。
    • サワーサービス用の材料の適合性を評価するための一般的な基準を概説します。
    • 材料を選択する際に、環境要因、材料特性、動作条件を考慮することの重要性について説明します。
    • リスク評価を実行し、情報に基づいた材料選択の決定を行うためのフレームワークを提供します。

パート2:割れに強い炭素鋼と低合金鋼および鋳鉄の使用

  • 範囲この論文では、酸性使用環境で炭素鋼、低合金鋼、鋳鉄を使用するための要件とガイドラインに焦点を当てています。
  • コンテンツ:
    • これらの材料を安全に使用できる具体的な条件について詳しく説明します。
    • これらの材料が硫化物応力割れ (SSC) やその他の水素誘起損傷に耐えるために必要な機械的特性と化学組成を一覧表示します。
    • これらの材料の割れに対する耐性を高めることができる熱処理および製造プロセスに関するガイドラインを提供します。
    • 規格への準拠を保証するために適切な材料試験と認定手順の必要性について説明します。

パート3:耐割れ性CRA(耐腐食合金)およびその他の合金

  • 範囲: 酸性サービス環境における耐腐食合金 (CRA) およびその他の特殊合金について説明します。
  • コンテンツ:
    • ステンレス鋼、ニッケルベースの合金、その他の高性能合金などのさまざまなタイプの CRA を識別し、酸性サービスへの適合性を識別します。
    • これらの材料が割れに耐えるために必要な化学組成、機械的特性、および熱処理を指定します。
    • H₂S 環境でのパフォーマンスを保証するために、CRA を選択、テスト、および認定するためのガイドラインを提供します。
    • この論文では、特定の用途向けに材料を選択する際に、これらの合金の耐食性と機械的特性の両方を考慮することの重要性について説明します。

NACE MR0175/ISO 15156 は、酸性サービス環境での材料の安全かつ効果的な使用を保証する包括的な規格です。各パートでは、さまざまなカテゴリの材料を取り上げ、その選択、テスト、および認定に関する詳細なガイドラインを提供します。これらのガイドラインに従うことで、企業は材料の破損リスクを軽減し、H₂S を含む環境での運用の安全性と信頼性を高めることができます。

油井完成:石油・ガス井における OCTG の適用と設置手順

導入

石油とガスの探査と生産には、複雑な装置とプロセスが伴います。その中でも、掘削作業の効率と安全性を確保するには、ドリルパイプ、ドリルカラー、ドリルビット、ケーシング、チューブ、サッキングロッド、ラインパイプなどの管状製品を適切に選択して使用することが非常に重要です。このブログでは、これらのコンポーネント、サイズ、および石油とガスの井戸での連続的な使用について、詳細な概要を説明します。

1. ドリルパイプ、ドリルカラー、ドリルビットのサイズ

ドリルパイプ 掘削作業の要であり、掘削液を循環させながら地表からドリルビットに動力を伝達します。一般的なサイズは次のとおりです。

  • 3 1/2インチ(88.9 mm)
  • 4インチ(101.6 mm)
  • 4 1/2インチ(114.3 mm)
  • 5インチ(127 mm)
  • 5 1/2インチ(139.7 mm)

ドリルカラー ドリルビットに重量を加え、岩石に効果的に貫通できるようにします。一般的なサイズは次のとおりです。

  • 3 1/8インチ(79.4 mm)
  • 4 3/4インチ(120.7 mm)
  • 6 1/4インチ(158.8 mm)
  • 8インチ(203.2 mm)

ドリルビット 岩石層を粉砕し、切り開くために設計されています。そのサイズは、必要な掘削孔の直径に応じて大きく異なります。

  • 3 7/8 インチ (98.4 mm) ~ 26 インチ (660.4 mm)

2. ケーシングとチューブのサイズ

ケーシングパイプ 掘削孔を安定させ、崩壊を防ぎ、さまざまな地質構造を隔離します。段階的に設置され、各ストリングは内部のストリングよりも直径が大きくなっています。

  • 表面ケーシング: 13 3/8 インチ (339.7 mm) または 16 インチ (406.4 mm)
  • 中間ケーシング: 9 5/8 インチ (244.5 mm) または 10 3/4 インチ (273.1 mm)
  • 生産ケース: 7 インチ (177.8 mm) または 5 1/2 インチ (139.7 mm)

オイルチューブ 石油やガスを地上まで輸送するためにケーシング内に挿入されます。一般的なチューブのサイズは次のとおりです。

  • 1.050インチ(26.7 mm)
  • 1.315インチ(33.4 mm)
  • 1.660インチ(42.2 mm)
  • 1.900インチ(48.3 mm)
  • 2 3/8インチ(60.3 mm)
  • 2 7/8インチ(73.0 mm)
  • 3 1/2インチ(88.9 mm)
  • 4インチ(101.6 mm)

3. サッカーロッドとチューブのサイズ

サッカーロッド 地上ポンプユニットをダウンホールポンプに接続し、井戸から流体を汲み上げられるようにします。チューブのサイズに基づいて選択されます。

  • 2 3/8 インチチューブの場合: 5/8 インチ (15.9 mm)、3/4 インチ (19.1 mm)、または 7/8 インチ (22.2 mm)
  • 2 7/8 インチのチューブの場合: 3/4 インチ (19.1 mm)、7/8 インチ (22.2 mm)、または 1 インチ (25.4 mm)

4. ラインパイプのサイズ

ラインパイプ 生産された炭化水素を坑口から処理施設またはパイプラインに輸送します。生産量に基づいて選択されます。

  • 小型フィールド: 2 インチ (60.3 mm)、4 インチ (114.3 mm)
  • 中距離フィールド: 6インチ (168.3 mm)、8インチ (219.1 mm)
  • ラージフィールド: 10 インチ (273.1 mm)、12 インチ (323.9 mm)、16 インチ (406.4 mm)

石油・ガス井におけるチューブラーの連続使用

1. 掘削段階

  • 掘削作業は、 ドリルビット 地質構造を突き破る。
  • ドリルパイプ 回転動力と掘削液をドリルビットに伝達します。
  • ドリルカラー ビットに重量を加え、効果的に貫通するようにします。

2. ケーシング段階

  • 一定の深さに達すると、 ケーシング ボーリングホールを保護し、異なる地層を隔離するために設置されます。
  • 掘削が進むにつれて、表面、中間、および生産ケーシングストリングが順番に実行されます。

3. 完成と生産段階

  • チューブ 炭化水素が地表に流れやすくするために、生産ケーシング内に設置されています。
  • サッカーロッド 人工リフトシステムを備えた井戸で使用され、ダウンホールポンプを地上ユニットに接続します。

4. 地上輸送段階

  • ラインパイプは 生産された石油とガスを坑口から処理施設または主要パイプラインまで輸送します。

結論

これらの管状製品の役割、サイズ、および連続使用を理解することは、効率的で安全な石油およびガス事業に不可欠です。ドリルパイプ、ドリルカラー、ドリルビット、ケーシング、チューブ、サッカーロッド、およびラインパイプを適切に選択して取り扱うことで、井戸の構造的完全性が確保され、生産パフォーマンスが最適化されます。

これらのコンポーネントを効果的に統合することで、石油・ガス業界は安全性と運用効率の高水準を維持しながら、世界のエネルギー需要に応え続けることができます。