3LPEコーティングと3LPPコーティング

3LPE vs 3LPP: パイプラインコーティングの総合比較

導入

パイプラインコーティングは、鋼管を腐食やその他の環境要因から保護します。最も一般的に使用されるコーティングには、 3層ポリエチレン(3LPE) そして 3層ポリプロピレン(3LPP) コーティング。どちらのコーティングも強力な保護を提供しますが、用途、構成、および性能が異なります。このブログでは、コーティングの選択、コーティングの構成、コーティングの性能、建設要件、建設プロセスという 5 つの主要領域に焦点を当てて、3LPE コーティングと 3LPP コーティングを詳細に比較します。

1. コーティングの選択

3LPEコーティング:
使用法: 3LPE は、石油・ガス産業の陸上および海上パイプラインに広く使用されています。特に、中程度の耐熱性と優れた機械的保護が求められる環境に適しています。
温度範囲3LPE コーティングは通常、-40 °C から 80 80 °C の温度で動作するパイプラインに使用されます。
コストの考慮: 3LPE は一般に 3LPP よりもコスト効率が高いため、温度要件がサポート範囲内にある予算制約のあるプロジェクトでよく選ばれます。
3LPPコーティング:
使用法: 3LPP は、深海沖合パイプラインや高温流体を輸送するパイプラインなどの高温環境で好まれます。また、優れた機械的保護が必要な領域でも使用されます。
温度範囲3LPP コーティングは、通常 -20°C ~ 140°C の高温に耐えることができるため、より要求の厳しい用途に適しています。
コストの考慮3LPP コーティングは、優れた耐熱性と機械的特性を備えているため高価ですが、過酷な条件下で稼働するパイプラインには必要です。
選択の概要: 3LPE と 3LPP の選択は、主にパイプラインの動作温度、環境条件、予算の考慮によって決まります。3LPE は中程度の温度とコスト重視のプロジェクトに最適ですが、3LPP は強化された機械的保護が不可欠な高温環境に適しています。

2. コーティング組成

3LPEコーティング組成:
レイヤー 1: フュージョンボンドエポキシ (FBE)最内層は鋼板基材への接着性に優れ、主な腐食防止層となります。
層2: 共重合体接着剤この層は FBE 層をポリエチレン トップコートに結合し、強力な接着性と追加の腐食保護を保証します。
層3: ポリエチレン (PE): 外層は、取り扱い、輸送、設置中の物理的な損傷に対する機械的な保護を提供します。
3LPPコーティング組成:
レイヤー 1: フュージョンボンドエポキシ (FBE)3LPE と同様に、3LPP の FBE 層は主な腐食防止および接着層として機能します。
層2: 共重合体接着剤この接着層は FBE をポリプロピレントップコートに接着し、強力な接着を保証します。
層3: ポリプロピレン (PP)ポリプロピレンの外層は、ポリエチレンよりも優れた機械的保護と高い耐熱性を備えています。
構成概要: 両方のコーティングは、FBE 層、コポリマー接着剤、および外側の保護層を備えた同様の構造を共有しています。ただし、外側の層の材質が異なり (3LPE ではポリエチレン、3LPP ではポリプロピレン)、これによりパフォーマンス特性が異なります。

3. コーティング性能

3LPEコーティング性能:
耐熱性: 3LPE は中程度の温度環境では適切に機能しますが、80°C を超える温度には適さない場合があります。
機械的保護: ポリエチレンの外層は物理的損傷に対する優れた耐性を備えており、陸上および海上パイプラインに適しています。
耐腐食性FBE 層と PE 層の組み合わせにより、特に湿気の多い環境や濡れた環境でも腐食に対する強力な保護が実現します。
耐薬品性3LPE は化学薬品に対して優れた耐性を備えていますが、3LPP と比較すると、強力な化学薬品にさらされる環境では効果が低くなります。
3LPPコーティング性能:
耐熱性3LPP は最高 140°C の温度に耐えるように設計されており、高温の流体を輸送するパイプラインや高温環境に最適です。
機械的保護: ポリプロピレン層は、特に外部圧力と物理的ストレスが高い深海の海洋パイプラインにおいて、優れた機械的保護を提供します。
耐腐食性3LPP は 3LPE と同様に優れた耐腐食性を備えていますが、高温環境ではより優れた性能を発揮します。
耐薬品性3LPP は耐薬品性に優れているため、腐食性の高い化学物質や炭化水素が存在する環境に適しています。
パフォーマンス概要: 3LPP は高温環境で 3LPE より優れており、機械的および化学的耐性に優れています。ただし、3LPE は中程度の温度とそれほど過酷でない環境では依然として非常に効果的です。

4. 建設要件

3LPE 構築要件:
表面処理: 3LPE コーティングの効果を得るには、適切な表面処理が重要です。FBE 層に必要な接着力を得るには、鋼鉄表面を洗浄し、粗くする必要があります。
応募条件: 各層の適切な接着を確保するために、3LPE コーティングは制御された環境で適用する必要があります。
厚さ仕様各層の厚さは重要であり、パイプラインの用途に応じて、合計の厚さは通常 1.8 mm から 3.0 mm の範囲になります。
3LPP構築要件:
表面処理: 3LPE と同様に、表面処理が重要です。鋼は汚染物質を除去するために洗浄し、FBE 層が適切に接着するように粗くする必要があります。
応募条件3LPP の塗布プロセスは 3LPE と似ていますが、コーティングの耐熱性が高いため、より正確な制御が必要になることがよくあります。
厚さ仕様3LPP コーティングは通常 3LPE よりも厚く、特定の用途に応じて合計の厚さは 2.0 mm から 4.0 mm の範囲になります。
建設要件の概要: 3LPE および 3LPP には、綿密な表面処理と制御された塗布環境が必要です。ただし、3LPP コーティングでは、保護特性を高めるために通常、より厚い塗布が必要です。

5. 建設プロセス

3LPE構築プロセス:
表面洗浄: 鋼管は、研磨ブラストなどの方法を使用して洗浄され、錆、スケール、その他の汚染物質が除去されます。
FBE アプリケーション: 洗浄されたパイプは予熱され、FBE 層が静電的に塗布され、鋼鉄との強固な結合が実現します。
接着層の塗布コポリマー接着剤が FBE 層の上に塗布され、FBE が外側のポリエチレン層に接着されます。
PE 層の適用: ポリエチレン層がパイプ上に押し出され、機械的保護と追加の耐腐食性を提供します。
冷却と検査: コーティングされたパイプは冷却され、欠陥がないか検査され、輸送の準備が整います。
3LPP建設プロセス:
表面洗浄3LPE と同様に、鋼管は徹底的に洗浄され、コーティング層の適切な接着が確保されます。
FBE アプリケーションFBE 層は予熱されたパイプに適用され、主な腐食保護層として機能します。
接着層の塗布: FBE 層の上にコポリマー接着剤を塗布し、ポリプロピレン トップコートとの強固な接着を確保します。
PP層の適用: ポリプロピレン層は押し出し成形により塗布され、優れた機械的耐性と耐熱性を備えています。
冷却と検査: パイプを冷却し、欠陥がないか検査し、展開の準備を整えます。
建設プロセスの概要: 3LPE と 3LPP の構築プロセスは似ていますが、外側の保護層に使用される材料が異なります。どちらの方法でも、最適なパフォーマンスを確保するには、温度、清潔さ、層の厚さを慎重に制御する必要があります。

結論

3LPE コーティングと 3LPP コーティングのどちらを選択するかは、動作温度、環境条件、機械的ストレス、予算など、いくつかの要因によって決まります。
3LPE 中程度の温度で稼働し、コストが重要な考慮事項となるパイプラインに最適です。ほとんどの陸上および海上アプリケーションで優れた耐腐食性と機械的保護を提供します。
3LPP一方、高温環境や優れた機械的保護を必要とする用途では、 が好まれます。 コストが高いのは、厳しい条件下でも優れた性能を発揮するためです。

パイプライン プロジェクトの特定の要件を理解することは、適切なコーティングを選択する上で不可欠です。3LPE と 3LPP はどちらも長所と用途があり、適切な選択を行うことで、パイプライン インフラストラクチャの長期的な保護と耐久性を確保できます。

石油・ガス探査における鋼管の重要な役割を探る

導入

鋼管は石油とガスに欠かせないもので、過酷な条件下でも比類のない耐久性と信頼性を発揮します。探査と輸送に欠かせないこれらのパイプは、高圧、腐食環境、過酷な温度に耐えます。このページでは、石油とガスの探査における鋼管の重要な機能について説明し、掘削、インフラストラクチャ、安全性における鋼管の重要性について詳しく説明します。適切な鋼管を選択することで、この厳しい業界で運用効率を高め、コストを削減できる方法をご覧ください。

I. 石油・ガス産業向け鋼管の基礎知識

1. 用語の説明

API: の略称 アメリカ石油協会.
OCTG: の略称 石油産業向け鋼管オイルケーシングパイプ、オイルチューブ、ドリルパイプ、ドリルカラー、ドリルビット、サッカーロッド、パップジョイントなど。
オイルチューブ: チューブは、油井での抽出、ガス抽出、水注入、酸破砕に使用されます。
ケース: 壁の崩壊を防ぐためのライナーとして、地表から掘削されたボーリング孔に降ろされるチューブ。
ドリルパイプ: ボーリング孔を掘る際に使用するパイプ。
ラインパイプ: 石油やガスを輸送するために使用されるパイプ。
カップリング: 2 本の内ねじ付きパイプを接続するために使用されるシリンダー。
カップリング材質: カップリングの製造に使用されるパイプ。
API スレッド: API 5B規格で規定されたパイプねじ。油管用丸ねじ、ケーシング用短丸ねじ、ケーシング用長丸ねじ、ケーシング用部分台形ねじ、ラインパイプ用ねじなど。
プレミアム接続: 独自のシーリング プロパティ、接続プロパティ、およびその他のプロパティを持つ非 API スレッド。
失敗: 特定の使用条件下での変形、破損、表面損傷、および本来の機能の喪失。
失敗の主な形態: 破裂、滑り、破裂、漏れ、腐食、接着、摩耗など。

2. 石油関連規格

API 仕様 5B、第 17 版 – ケーシング、チューブ、ラインパイプのねじのねじ切り、ゲージング、ねじ検査の仕様
API 仕様 5L、第 46 版 – ラインパイプの仕様
API 仕様 5CT、第 11 版 – ケーシングとチューブの仕様
API 仕様 5DP、第 7 版 – ドリルパイプの仕様
API 仕様 7-1、第 2 版 – ロータリードリルステムエレメントの仕様
API 仕様 7-2、第 2 版 – 回転肩付きねじ接続部のねじ切りおよびゲージの仕様
API 仕様 11B、第 24 版 – サッカーロッド、研磨ロッドとライナー、カップリング、シンカーバー、研磨ロッドクランプ、スタッフィングボックス、ポンピングティーの仕様
ISO 3183:2019 – 石油・天然ガス産業 — パイプライン輸送システム用鋼管
ISO 11960:2020 – 石油・天然ガス産業 — 井戸のケーシングや配管に使用される鋼管
NACE MR0175 / ISO 15156:2020 – 石油・天然ガス産業 — 石油・ガス生産におけるH2S含有環境で使用する材料

II. オイルチューブ

1. オイルチューブの分類

オイルチューブは、非アプセットオイルチューブ (NU)、外部アプセットオイルチューブ (EU)、およびインテグラルジョイント (IJ) オイルチューブに分けられます。NU オイルチューブとは、チューブの端が中厚で、直接ねじを回してカップリングをもたらすことを意味します。アプセットチューブとは、両方のチューブの端が外部にアプセットされ、次にねじを切ってカップリングされることを意味します。インテグラルジョイントチューブとは、チューブの一方の端が外部ねじでアプセットされ、もう一方の端がカップリングなしで直接接続された内部ねじでアプセットされていることを意味します。

2. オイルチューブの機能

① 石油・ガスの採掘:油井・ガス井を掘削し、セメントで固めた後、油井内にチューブを設置して石油・ガスを地中に採掘します。
②注水:坑内圧力が不十分な場合、チューブを通して井戸内に水を注入します。
③ 蒸気注入:濃厚油の高温回収では、断熱された油管を通じて蒸気が坑井内に注入されます。
④ 酸性化破砕:油井掘削後期や油ガス井の生産性向上のため、油ガス層に酸性化破砕媒体や硬化材を投入する必要があり、媒体と硬化材は油管を通じて輸送されます。

3. オイルチューブの鋼種

オイルチューブの鋼材グレードは、H40、J55、N80、L80、C90、T95、P110 です。
N80はN80-1とN80Qに分けられ、両者の引張特性は同じです。2つの違いは出荷状態と衝撃性能の違いです。N80-1は出荷時に正規化された状態、または最終圧延温度が臨界温度Ar3より高い場合、空冷後に張力が低下し、正規化の代わりに熱間圧延に使用できるため、衝撃や非破壊検査は必要ありません。N80Qは焼入れ(焼き入れ焼戻し)熱処理が必要で、衝撃機能はAPI 5CTの規定に準拠する必要があり、非破壊検査を行う必要があります。
L80はL80-1、L80-9Cr、L80-13Crに分かれており、機械的性質や納期は同じです。用途、製造難易度、価格の違い:L80-1は一般用、L80-9CrとL80-13Crは耐腐食性の高いチューブで、製造が難しく、高価で、通常は重腐食井で使用されます。
C90 と T95 は、C90-1、C90-2 と T95-1、T95-2 の 1 型と 2 型に分けられます。

4. オイルチューブによく使用される鋼種、鋼名、納入状況

J55 (37Mn5) NUオイルチューブ: 焼鈍ではなく熱間圧延
J55 (37Mn5) EUオイルチューブ:全長アプセット後の正規化
N80-1 (36Mn2V) NUオイルチューブ: 焼鈍ではなく熱間圧延
N80-1 (36Mn2V) EUオイルチューブ: 全長 圧縮後正規化
N80-Q (30Mn5) オイルチューブ: 30Mn5、全長焼戻し
L80-1 (30Mn5) オイルチューブ: 30Mn5、全長焼戻し
P110 (25CrMnMo) オイルチューブ: 25CrMnMo、全長焼戻し
J55 (37Mn5) カップリング: 熱間圧延オンライン 焼鈍
N80 (28MnTiB) カップリング: 全長焼戻し
L80-1 (28MnTiB) カップリング: 全長強化
P110 (25CrMnMo) カップリング: 全長焼戻し

III. ケーシングパイプ

1. ケーシングの分類と役割

ケーシングは、油井やガス井の壁を支える鋼管です。掘削深度や地質条件の違いにより、各井戸では数層のケーシングが使用されます。ケーシングを井戸に降ろした後、セメントで固めますが、油管や掘削管とは異なり、再利用できず、使い捨ての消耗品です。そのため、ケーシングの消費量は油井管全体の70%以上を占めています。ケーシングは用途により、導体ケーシング、中間ケーシング、生産ケーシング、ライナーケーシングに分けられ、油井における構造は図1に示されています。

①導体ケース: 通常、API グレードの K55、J55、または H40 を使用する導体ケーシングは、坑口を安定させ、直径が通常約 20 インチまたは 16 インチの浅い帯水層を隔離します。

②中間ケーシング: 中間ケーシングは、多くの場合 API グレードの K55、N80、L80、または P110 で作られ、不安定な地層や変化する圧力ゾーンを隔離するために使用され、一般的な直径は 13 3/8 インチ、11 3/4 インチ、または 9 5/8 インチです。

③製造ケース: 生産ケーシングは、API グレード J55、N80、L80、P110、Q125 などの高級鋼で作られており、生産圧力に耐えられるように設計されており、通常、直径は 9 5/8 インチ、7 インチ、または 5 1/2 インチです。

④ライナーケース: ライナーは、API グレードの L80、N80、または P110 などの材料を使用して、通常の直径が 7 インチ、5 インチ、または 4 1/2 インチの井筒を貯留層まで延長します。

⑤チューブ: チューブは API グレード J55、L80、または P110 を使用して炭化水素を地表まで輸送し、直径は 4 1/2 インチ、3 1/2 インチ、または 2 7/8 インチから選択できます。

IV. ドリルパイプ

1. 掘削工具用パイプの分類と機能

掘削ツールの角型ドリルパイプ、ドリルパイプ、加重ドリルパイプ、ドリルカラーがドリルパイプを形成します。ドリルパイプは、ドリルビットを地面から井戸の底まで駆動するコア掘削ツールであり、地面から井戸の底までのチャネルでもあります。ドリルパイプには、3つの主要な役割があります。

① ドリルビットを駆動して掘削するためのトルクを伝達する。

② ドリルビットの重量を利用して井戸底の岩盤の圧力を破る。

③洗浄液を輸送する、すなわち、掘削泥水を高圧泥水ポンプを通して地中を通過させ、掘削柱内の泥水をボーリングホールに流入させて井戸底に流し込み、岩石の破片を洗い流すとともにドリルビットを冷却し、岩石の破片を柱の外面と井戸壁の間の環状部を通して地中へ戻し、井戸を掘削する目的を達成する。

ドリルパイプは、掘削プロセスで使用され、引張、圧縮、ねじり、曲げ、その他の応力など、さまざまな複雑な交互負荷に耐えます。内面は、高圧泥による洗掘や腐食にもさらされます。
(1)角型ドリルパイプ: 角型ドリルパイプには、四角形と六角形の2種類があります。中国の石油掘削パイプでは、ドリルコラム1セットにつき、通常、四角形のドリルパイプが使用されています。その仕様は、63.5mm(2-1/2インチ)、88.9mm(3-1/2インチ)、107.95mm(4-1/4インチ)、133.35mm(5-1/4インチ)、152.4mm(6インチ)などです。使用される長さは通常12〜14.5mです。
(2)ドリルパイプ: ドリルパイプは井戸を掘るための主な道具で、角形のドリルパイプの下端に接続され、井戸の掘削が深くなるにつれて、ドリルパイプはドリル柱を次々に長くしていきます。ドリルパイプの規格は、60.3mm(2-3/8インチ)、73.03mm(2-7/8インチ)、88.9mm(3-1/2インチ)、114.3mm(4-1/2インチ)、127mm(5インチ)、139.7mm(5-1/2インチ)などです。
(3)高耐久性ドリルパイプ: 加重ドリルパイプは、ドリルパイプとドリルカラーを接続する移行ツールであり、ドリルパイプの力条件を改善し、ドリルビットへの圧力を高めることができます。加重ドリルパイプの主な仕様は、88.9mm(3-1/2インチ)と127mm(5インチ)です。
(4)ドリルカラー: ドリルカラーは、剛性の高い特殊な厚肉パイプであるドリルパイプの下部に接続され、ドリルビットに圧力をかけて岩を破砕し、直井掘削時のガイドの役割を果たします。ドリルカラーの一般的な仕様は、158.75mm(6-1/4インチ)、177.85mm(7インチ)、203.2mm(8インチ)、228.6mm(9インチ)などです。

V. ラインパイプ

1. ラインパイプの分類

ラインパイプは、石油・ガス業界で石油、精製油、天然ガス、水道管の輸送に使用され、略称は鋼管です。石油・ガスの輸送パイプラインは、幹線、支線、都市パイプラインネットワークパイプラインに分かれています。幹線パイプライン輸送の3種類の規格は、通常、∅406〜1219mm、壁厚10〜25mm、鋼種X42〜X80です。支線パイプラインと都市パイプラインネットワークパイプラインの規格は通常、∅114〜700mm、壁厚6〜20mm、鋼種X42〜X80です。鋼種はX42〜X80です。ラインパイプには、溶接タイプとシームレスタイプがあります。溶接ラインパイプは、シームレスラインパイプよりも多く使用されています。

2. ラインパイプの規格

API 仕様 5L – ラインパイプの仕様
ISO 3183 – 石油および天然ガス産業 – パイプライン輸送システム用鋼管

3. PSL1とPSL2

PSLは、 製品仕様レベルラインパイプ製品の規格レベルはPSL 1とPSL 2に分かれており、品質レベルもPSL 1とPSL 2に分かれています。PSL 2はPSL 1よりも高く、2つの規格レベルは試験要件が異なるだけでなく、化学組成と機械的特性要件も異なるため、API 5L規則に従って契約条件では、規格、鋼種、その他の共通指標を指定するほか、製品の規格レベル、つまりPSL 1かPSL 2かを明記する必要があります。PSL 2は化学組成、引張特性、衝撃力、非破壊検査などの指標がPSL 1よりも厳格です。

4. ラインパイプの鋼種、化学成分および機械的性質

ラインパイプ鋼のグレードは、低級から高級まで、A25、A、B、X42、X46、X52、X60、X65、X70、X80 に分類されます。詳細な化学組成と機械的特性については、API 5L 仕様、第 46 版を参照してください。

5. ラインパイプの水圧試験および非破壊検査の要件

ラインパイプは分岐ごとに油圧テストを行う必要がありますが、この規格では油圧の非破壊生成は許可されていません。これも API 規格と当社の規格の大きな違いです。PSL 1 では非破壊テストは必要ありませんが、PSL 2 では分岐ごとに非破壊テストを行う必要があります。

VI. プレミアム接続

1. プレミアム接続の導入

プレミアムコネクションは、API スレッドとは異なる独自の構造を持つパイプスレッドです。既存の API スレッドオイルケーシングは油井開発で広く使用されていますが、一部の油田の特殊な環境では、その欠点が明確に示されています。API 丸ねじパイプコラムは、シール性能が優れていますが、ねじ部分が負担する引張力はパイプ本体の強度の 60% ~ 80% にしか相当しないため、深井戸の開発には使用できません。API 偏向台形ねじパイプコラムは、引張性能が API 丸ねじ接続よりもはるかに高いものの、シール性能はそれほど良くありません。コラムの引張性能は API 丸ねじ接続よりもはるかに高いものの、シール性能はあまり良くないため、高圧ガス井の開発には使用できません。また、ねじ付きグリースは95℃以下の環境でのみその役割を果たすことができるため、高温井戸の採掘には使用できません。

API 丸ねじおよび部分台形ねじ接続と比較して、プレミアム接続は次の点で画期的な進歩を遂げました。

(1)優れた密封性、弾性と金属密封構造設計により、ジョイントガス密封が降伏圧力内でチューブ本体の限界に達するのを防ぎます。

(2)接続部の強度が高く、オイルケーシングの特殊なバックル接続部と接続し、その接続強度はチューブ本体の強度に達するかそれを超え、滑りの問題を根本的に解決します。

(3)材料の選択と表面処理工程の改善により、糸がバックルに固着する問題を基本的に解決しました。

(4)構造の最適化により、接合部の応力分布がより合理的になり、応力腐食に対する耐性が向上する。

(5)肩部構造を合理的に設計することにより、バックルの操作がより容易に行える。

石油・ガス業界は、パイプ技術の大きな進歩を示す 100 を超える特許取得済みのプレミアム接続を誇っています。これらの特殊なねじ設計は、優れた密閉機能、接続強度の向上、環境ストレスに対する耐性の強化を実現します。高圧、腐食環境、極端な温度などの課題に対処することで、これらのイノベーションは、世界中の石油に安全な作業で優れた信頼性と効率性を保証します。プレミアム接続の継続的な研究開発は、より安全で生産性の高い掘削作業をサポートする上での極めて重要な役割を強調し、エネルギー分野における技術的卓越性への継続的な取り組みを反映しています。

VAM® 接続: 厳しい環境でも堅牢なパフォーマンスを発揮することで知られる VAM® 接続は、高度な金属対金属のシーリング技術と高トルク機能を備えており、深井戸や高圧貯留層での信頼性の高い動作を保証します。

TenarisHydril ウェッジシリーズ: このシリーズは、Blue®、Dopeless®、Wedge 521® などの幅広い接続部を提供し、優れた気密性、圧縮力および張力に対する耐性で知られ、操作の安全性と効率性を高めます。

TSH®ブルー: Tenaris が設計した TSH® Blue コネクションは、独自のダブルショルダー設計と高性能スレッドプロファイルを採用しており、重要な掘削アプリケーションにおいて優れた耐疲労性と簡単な取り付けを実現します。

Grant Prideco™ XT® 接続: NOV が設計した XT® 接続部には、独自の金属対金属シールと堅牢なねじ山形状が組み込まれており、優れたトルク容量と耐摩耗性が保証され、接続部の動作寿命が延長されます。

ハンティングシールロック®接続: 金属同士のシールと独自のねじプロファイルを特徴とする Hunting の Seal-Lock® 接続は、陸上および海上掘削作業の両方において優れた耐圧性と信頼性を備えていることで知られています。

結論

結論として、石油・ガス産業に不可欠な鋼管の複雑なネットワークには、厳しい環境と複雑な運用要件に耐えるように設計されたさまざまな特殊機器が含まれています。健全な壁を支えて保護する基礎ケーシング パイプから、抽出および注入プロセスで使用される多用途のチューブまで、各タイプのパイプは炭化水素の探査、生産、輸送において異なる目的を果たします。API 仕様などの標準により、これらのパイプ全体の均一性と品質が保証され、プレミアム接続などのイノベーションにより、厳しい条件下でのパフォーマンスが向上します。テクノロジーの進化に伴い、これらの重要なコンポーネントが進化し、世界のエネルギー運用の効率と信頼性が向上します。これらのパイプとその仕様を理解することで、現代のエネルギー部門のインフラストラクチャにおけるパイプの不可欠な役割が強調されます。

スーパー 13Cr SMSS 13Cr ケーシングとチューブ

H₂S/CO₂-油-水環境におけるSMSS 13CrおよびDSS 22Cr

導入

スーパーマルテンサイト系ステンレス鋼の腐食挙動 (SMSS)13Cr および二相ステンレス鋼 (DSS) 22Cr の H₂S/CO₂-油-水環境における挙動は、特にこれらの材料が過酷な条件にさらされることが多い石油・ガス業界では大きな関心を集めています。これらの条件下での各材料の挙動の概要は次のとおりです。

1. スーパーマルテンサイト系ステンレス鋼(SMSS)13Cr:

構成: SMSS 13Cr には通常、約 12 ~ 14% のクロムが含まれており、少量のニッケルとモリブデンも含まれています。クロム含有量が多いため耐腐食性に優れ、マルテンサイト構造により高い強度が得られます。
腐食挙動:
CO₂腐食: SMSS 13Cr は、主に保護酸化クロム層を形成することにより、CO₂ 腐食に対して中程度の耐性を示します。ただし、CO₂ が存在すると、孔食や隙間腐食などの局部腐食が発生する危険性があります。
H₂S腐食: H₂S は硫化物応力割れ (SSC) と水素脆化のリスクを高めます。SMSS 13Cr はある程度の耐性がありますが、特に高温高圧下ではこれらの腐食に対して耐性がありません。
油水環境: 油は保護バリアとして機能する場合があり、金属表面が腐食剤にさらされるのを軽減します。ただし、水、特に塩水は腐食性が極めて高い場合があります。油相と水相のバランスは、全体的な腐食速度に大きな影響を与える可能性があります。
よくある問題:
硫化物応力割れ(SSC): マルテンサイト構造は強固ですが、H₂S が存在すると SSC の影響を受けやすくなります。
孔食および隙間腐食: これらは、特に塩化物や CO₂ が存在する環境では重大な懸念事項となります。

2. 二相ステンレス鋼(DSS)22Cr:

構成: DSS 22Cr には、約 22% のクロム、約 5% のニッケル、3% のモリブデン、およびバランスのとれたオーステナイト-フェライト微細構造が含まれています。これにより、DSS は優れた耐腐食性と高い強度を備えています。
腐食挙動:
CO₂腐食: DSS 22Cr は、SMSS 13Cr よりも CO₂ 腐食に対する耐性が優れています。クロム含有量が高く、モリブデンが含まれているため、腐食に強い安定した保護酸化層が形成されます。
H₂S腐食: DSS 22Cr は、SSC や水素脆化などの H₂S 誘発腐食に対して高い耐性があります。バランスのとれた微細構造と合金組成により、これらのリスクを軽減できます。
油水環境: DSS 22Cr は、油水混合環境で優れた性能を発揮し、一般的な腐食や局部的な腐食に耐えます。油が存在すると保護膜が形成されて耐腐食性が向上しますが、DSS 22Cr は本来耐腐食性を備えているため、この点はそれほど重要ではありません。
よくある問題:
応力腐食割れ(SCC): DSS 22Cr は SMSS 13Cr よりも耐性が優れていますが、高温での高塩化物濃度など、特定の条件下では SCC の影響を受けやすくなります。
局所腐食: DSS 22Cr は一般に孔食や隙間腐食に対して非常に耐性がありますが、極端な条件下ではこれらが発生する可能性があります。

比較概要:

耐腐食性: DSS 22Cr は、SMSS 13Cr に比べて、特に H₂S および CO₂ が存在する環境において、一般に優れた耐腐食性を発揮します。
強さと強靭さ: SMSS 13Cr はより堅牢ですが、SSC や孔食などの腐食の問題の影響を受けやすくなります。
アプリケーションの適合性: DSS 22Cr は、H₂S や CO₂ レベルが高いなど、腐食リスクが高い環境で好まれることが多い一方、SMSS 13Cr は、中程度の腐食リスクでより高い強度を必要とする用途に選択される場合があります。

結論:

H₂S/CO₂-油-水環境での使用にSMSS 13CrとDSS 22Crのどちらかを選択する場合、特により過酷な環境では、腐食耐性の点でDSS 22Crの方が一般的に優れています。ただし、最終的な決定では、温度、圧力、H₂SとCO₂の相対濃度などの特定の条件を考慮する必要があります。

石油貯蔵タンクの建造用プレートと表面処理

石油貯蔵タンクの建設:プレートの選択とプロセス

導入

石油貯蔵タンクの建設は、石油・ガス業界にとって極めて重要です。これらのタンクは、石油製品の貯蔵における安全性、耐久性、効率性を確保するために、正確に設計および構築する必要があります。これらのタンクの最も重要なコンポーネントの 1 つは、その構築に使用されるプレートの選択と処理です。このブログでは、プレートの選択基準、製造プロセス、および石油貯蔵タンクの構築に関する考慮事項について詳細に説明します。

プレート選択の重要性

プレートは石油貯蔵タンクの主要な構造部品です。適切なプレートの選択は、いくつかの理由から非常に重要です。
安全性適切なプレート材質により、タンクは貯蔵製品の内部圧力、環境条件、および潜在的な化学反応に耐えることができます。
耐久性: 高品質の材料によりタンクの寿命が延び、メンテナンスコストとダウンタイムが削減されます。
コンプライアンス: 業界の標準と規制を遵守することは、合法的な運営と環境保護に不可欠です。
コスト効率適切な材料と処理方法を選択すると、建設コストと運用コストを大幅に削減できます。

石油貯蔵タンクの種類

プレートの選択に入る前に、各タイプに特定の要件があるため、さまざまなタイプの石油貯蔵タンクを理解することが重要です。
固定屋根タンク 石油や石油製品の貯蔵に使用される最も一般的なタイプのタンクです。蒸気圧の低い液体に適しています。
浮き屋根式タンクこれらのタンクには貯蔵液体の表面に浮かぶ屋根があり、蒸発による損失と爆発の危険性を軽減します。
弾丸タンクこれらの円筒形のタンクは液化ガスと揮発性液体を貯蔵します。
球形タンク: 高圧の液体やガスを貯蔵し、均等な応力分散を実現するために使用されます。

プレート選択基準

1. 材料構成
炭素鋼: 強度、手頃な価格、入手しやすさから広く使用されています。ほとんどのオイルおよび石油製品に適しています。
ステンレス鋼: 耐腐食性があるため、腐食性製品や高温製品の保管に適しています。
アルミニウム: 軽量で耐腐食性があり、腐食環境の浮き屋根部品やタンクに最適です。
複合材料: 高い耐腐食性と軽量性が求められる特定の用途に使用されることがあります。
2. 厚さとサイズ
厚さ: タンクの設計圧力、直径、高さによって決まります。一般的には 5 mm から 30 mm の範囲です。
サイズ: プレートは、溶接継ぎ目を最小限に抑えるのに十分な大きさで、取り扱いや輸送がしやすい大きさである必要があります。
3. 機械的性質
抗張力: タンクが内部圧力と外部力に耐えられることを保証します。
延性: 圧力や温度の変化に対応し、破損することなく変形できます。
耐衝撃性特に寒冷な環境では、突然の力に耐えることが重要です。
4. 環境要因
温度変化: 極端な温度における材料の挙動を考慮します。
腐食性環境特に沖合または沿岸の設備向けに、環境腐食に耐性のある材料を選択します。

材料規格と等級

石油貯蔵タンクの材料を選択する際には、品質、性能、業界規制への準拠を保証するために、認められた基準と等級を遵守することが重要です。

炭素鋼

標準:ASTM A36、ASTM A283、JIS G3101
成績:
ASTM A36: 溶接性と機械加工性に優れているため、タンク構造に使用される一般的な構造用鋼種です。
ASTM A283 グレードC: 中程度のストレスがかかる用途に優れた強度と柔軟性を提供します。
JIS G3101 SS400: 優れた機械的性質と溶接性で知られる、一般構造用炭素鋼の日本規格。

ステンレス鋼

標準: ASTM A240
成績:
304/304L: 耐食性に優れており、軽度の腐食性製品をタンクに保管するために使用されます。
モリブデン添加により316/316L 特に海洋環境において優れた耐腐食性を発揮します。
904L (UNS N08904)特に塩化物や硫酸に対して高い耐腐食性があることで知られています。
二相ステンレス鋼 2205 (UNS S32205): 高い強度と優れた耐腐食性を兼ね備え、過酷な環境にも適しています。

アルミニウム

標準: ASTM B209
成績:
5083: 高い強度と優れた耐腐食性で知られており、海洋環境のタンクに最適です。
6061: 優れた機械的特性と溶接性を備え、構造部品に適しています。

複合材料

標準: ASME RTP-1
アプリケーション: 化学的な攻撃に対する耐性と軽量化が求められる特殊な用途に使用されます。

ライニングとコーティングの種類

ライニングとコーティングは、石油貯蔵タンクを腐食や環境による損傷から保護します。ライニングとコーティングの選択は、タンクの場所、内容物、および生態学的条件によって異なります。

外部コーティング

エポキシコーティング:
プロパティ: 優れた接着性と耐腐食性を備えています。過酷な環境にも適しています。
アプリケーション: タンクの外部に使用され、風化や化学物質への曝露から保護します。
おすすめブランド:
ヘンペル: ヘンペルエポキシ35540
アクゾノーベル: インターシール670HS
ヨトゥン: ジョタマスティック90
3M: スコッチコートエポキシコーティング 162PWX
推奨DFT(乾燥膜厚): 200~300ミクロン
ポリウレタンコーティング:
プロパティ: 優れた紫外線耐性と柔軟性を提供します。
アプリケーション: 日光やさまざまな気象条件にさらされる水槽に最適です。
おすすめブランド:
ヘンペル: ヘンペルのポリウレタンエナメル 55300
アクゾノーベル: インターセイン 990
ヨトゥン: ハードトップXP
推奨DFT: 50~100ミクロン
亜鉛リッチプライマー:
プロパティ: 鋼鉄表面に陰極保護を施します。
アプリケーション: 錆び防止のためのベースコートとして使用されます。
おすすめブランド:
ヘンペル: ヘンパデュール亜鉛17360
アクゾノーベル: インタージンク52
ヨトゥン: バリア77
推奨DFT: 120~150ミクロン

内部ライニング

フェノールエポキシライニング:
プロパティ: 石油製品や溶剤に対する耐薬品性に優れています。
アプリケーション: 原油や精製品を貯蔵するタンク内で使用されます。
おすすめブランド:
ヘンペル: ヘンペルフェノール 35610
アクゾノーベル: インターライン984
ヨトゥン: タンクガードストレージ
推奨DFT: 400~600ミクロン
ガラスフレークコーティング:
プロパティ: 耐薬品性、耐摩耗性に優れています。
アプリケーション: 腐食性の高い化学薬品の保管やタンクの底部に適しています。
おすすめブランド:
ヘンペル: ヘンペルグラスフレーク 35620
アクゾノーベル: インターゾーン954
ヨトゥン: バルトフレーク
推奨DFT: 500~800ミクロン
ゴムライニング:
プロパティ: 柔軟性と耐薬品性を提供します。
アプリケーション: 酸などの腐食性物質の保管に使用されます。
おすすめブランド:
3M: スコッチコートポリテック665
推奨DFT: 2~5mm

選択の考慮事項

製品の互換性: 反応を防ぐために、ライニングまたはコーティングが保管されている製品と互換性があることを確認してください。
環境条件ライニングやコーティングを選択する際には、温度、湿度、化学物質への曝露を考慮してください。
メンテナンスと耐久性: 長期的な保護を提供し、メンテナンスが容易なライニングとコーティングを選択してください。

製造プロセス

石油貯蔵タンクの製造には、いくつかの重要なプロセスが含まれます。
1. 切断
機械切断: プレートを成形するために、せん断、鋸引き、フライス加工を行います。
熱切断: 酸素燃料、プラズマ、またはレーザー切断を利用して、正確で効率的な成形を行います。
2. 溶接
溶接はプレートを接合し、構造の完全性を確保するために不可欠です。
シールドメタルアーク溶接(SMAW): シンプルさと汎用性のため、よく使用されます。
ガスタングステンアーク溶接(GTAW): 重要な接合部に高品質の溶接を提供します。
サブマージアーク溶接(SAW): 厚い板や長い継ぎ目に適しており、深い浸透と高い堆積速度を実現します。
3. 形成
圧延: プレートは円筒形のタンクの壁に必要な曲率に丸められます。
プレス成形: タンク端部やその他の複雑な部品の成形に使用されます。
4. 検査とテスト
非破壊検査(NDT)超音波検査や放射線検査などの技術により、材料を損傷することなく溶接品質と構造的完全性を確保します。
圧力テスト: タンクが漏れることなく設計圧力に耐えられることを保証します。
5. 表面処理とコーティング
爆破: 表面を洗浄し、コーティングの準備を整えます。
コーティング腐食を防ぎ、タンクの寿命を延ばすために保護コーティングを施します。
業界標準と規制
業界標準を遵守することで、安全性、品質、コンプライアンスが確保されます。主な標準は次のとおりです。
650 試験: 石油およびガス用の溶接鋼製貯蔵タンクの規格。
620 の大型の低圧貯蔵タンクの設計と建設について説明します。
ASMEセクションVIII: 圧力容器の構築に関するガイドラインを提供します。

結論

石油貯蔵タンクの建設には、特にプレートの選択と処理において、細部にまで細心の注意を払う必要があります。材料の組成、厚さ、機械的特性、環境条件などの要素を考慮することで、建設者はこれらの重要な構造物の安全性、耐久性、および費用対効果を確保できます。業界の標準と規制を順守することで、コンプライアンスと環境保護がさらに保証されます。石油およびガス業界が進化し続けるにつれて、材料と製造技術の進歩により、石油貯蔵タンクの建設が強化され続けます。

ジェット A-1 燃料貯蔵タンクとパイプライン

ジェット A-1 燃料パイプラインに適したエポキシプライマーコーティングの選択

導入

航空燃料輸送の高度に専門化された分野では、 ジェット A-1 燃料パイプライン は重要です。これらのパイプラインは、過酷な化学環境に耐え、腐食を防ぎ、静電気の蓄積のリスクを最小限に抑える必要があります。これらの目標を達成するには、適切なエポキシプライマーコーティングを選択することが不可欠です。このブログでは、Jet A-1 燃料パイプラインのオプションに最適なエポキシプライマーコーティングと、効率的で安全な燃料輸送システムを維持する上での重要性について説明します。

なぜエポキシプライマーコーティングなのか?

エポキシプライマーコーティングは、その優れた保護特性により、燃料業界で広く使用されています。腐食や化学攻撃に対する強力なバリアを提供し、パイプラインの寿命を延ばし、燃料の純度を保証します。Jet A-1 パイプラインにエポキシプライマーを使用する主な利点は次のとおりです。

  • 耐薬品性: エポキシコーティングは炭化水素に対する優れた耐性を備えており、パイプラインがジェット A-1 燃料に長時間さらされても影響を受けません。
  • 腐食防止エポキシプライマーは錆や腐食を防ぎ、パイプラインの構造的完全性を維持し、メンテナンスコストとダウンタイムを削減します。
  • 帯電防止特性: 静電気は、Jet A-1 のような可燃性液体を輸送する場合、重大な安全上の危険となります。帯電防止エポキシコーティングは静電気を消散させ、火花や爆発の危険性を軽減します。
  • 滑らかな表面仕上げエポキシプライマーを塗布すると、内面が滑らかになり、パイプラインの流量効率が向上し、燃料輸送中のエネルギー消費が削減されます。

ジェット A-1 燃料パイプライン用トップエポキシプライマー

Jet A-1 燃料パイプライン用のエポキシ プライマーを選択する場合、業界標準を満たす炭化水素用に特別に配合された製品を選択することが重要です。主な選択肢は次のとおりです。

1. ヘンペルズ ヘンパドゥール 35760

Hempel の Hempadur 35760 は、航空燃料パイプラインおよび貯蔵タンク用に特別に設計された帯電防止エポキシプライマーです。優れた耐薬品性と帯電防止性を備えているため、静電気放電防止が重要な環境に最適です。金属表面への強力な接着により、長期間の保護が保証されます。

2. ヘンペルの876CN

Hempel 876CN は、優れた耐腐食性と化学保護性を備えた 2 成分の高性能エポキシ プライマーで、Jet A-1 燃料パイプラインに適しています。この配合は、航空燃料システムに特有の厳しい条件に対して堅牢なバリアを提供し、安全性と耐久性を高めます。このプライマーは、高流量環境で重要な強力な接着特性と耐摩耗性で特に評価されています。

3. インターナショナルペイントのインターライン850

International Paint (AkzoNobel) の Interline 850 は、高性能の 2 成分エポキシ ライニングです。優れた耐薬品性を備え、Jet A-1 やその他の航空燃料専用に配合されています。帯電防止機能により、燃料パイプラインの信頼性が高まり、安全性と業界標準への準拠が保証されます。

4. シャーウィン・ウィリアムズのデュラプレート 235

Dura-Plate 235 は、耐久性と耐薬品性で知られる多用途エポキシプライマーです。厳しい使用環境に適しており、腐食や炭化水素の浸透に対する強力な保護を提供します。柔軟性と接着性に優れているため、航空燃料パイプラインによく使用されています。

5. ヨトゥンのタンクガード 412

Jotun の Tankguard 412 は、燃料タンクとパイプライン用の特殊なエポキシコーティングです。Jet A-1 を含むさまざまな化学物質に対して優れた耐性を発揮します。滑らかな仕上げと保護特性により、効率的な燃料の流れとパイプラインの完全性が長期間維持されます。

アプリケーションとメンテナンス

エポキシプライマーコーティングの利点を最大限に引き出すには、適切な塗布とメンテナンスが重要です。

  • 表面処理: エポキシプライマーを塗布する前に、パイプラインの表面が十分に洗浄され、準備されていることを確認してください。最適な接着を実現するために、ブラスト処理や脱脂が必要になる場合があります。
  • 応募方法: スプレー、ブラシ、ローラーなどの塗布方法については、製造元の指示に従ってください。
  • 定期検査: パイプラインを定期的に検査して、摩耗や損傷の兆候をすぐに特定し、対処してください。適切なメンテナンスは、コーティングとパイプラインの寿命を延ばすのに役立ちます。

結論

安全性、効率性、耐久性を確保するには、Jet A-1 燃料パイプラインに適したエポキシ プライマー コーティングを選択することが不可欠です。Hempel の Hempadur 35760、Hempel 876CN、International Paint の Interline 850、Sherwin-Williams の Dura-Plate 235、Jotun の Tankguard 412 などのオプションにより、オペレーターは特定のニーズに合わせたソリューションを見つけることができます。燃料輸送システムは、高品質のコーティングに投資し、厳格な塗布および検査プロセスを維持することで、最適なパフォーマンスと信頼性を実現できます。

スーパー13Crシームレスパイプ

石油・ガス田におけるスーパー13Crの応用

導入

厳しい環境と極限状態が当たり前の、常に要求の厳しい石油・ガス探査の世界では、適切な材料を選択することが、作業の成功と安全性にとって極めて重要です。業界で使用されるさまざまな材料の中でも、スーパー 13Cr ステンレス鋼は、優れた耐腐食性と耐久性が求められる用途に最適な選択肢として際立っています。スーパー 13Cr が現代の石油・ガス田用途に最適な材料である理由と、他の選択肢よりも優れている点について見ていきましょう。

スーパー13Crステンレス鋼とは何ですか?

スーパー 13Cr ステンレス鋼は、石油およびガス事業の厳しい条件に耐えられるように設計された高クロム合金です。その組成には、通常、約 13% のクロムと、モリブデンやニッケルなどの追加元素が含まれます。標準の 13Cr グレードと比較して、この合金は耐腐食性と高温性能が向上しています。

なぜ スーパー13Cr?

1. 優れた耐腐食性

石油やガスの井戸は、硫化水素 (H2S)、二酸化炭素 (CO2)、塩化物などの腐食性物質に遭遇することがよくあります。スーパー 13Cr ステンレス鋼は、鋼の表面に保護酸化層を形成する高クロム含有量により、これらの環境に最適です。この層により、腐食速度が大幅に低下し、孔食や応力腐食割れが防止され、機器の寿命と信頼性が確保されます。

2. 高い強度と靭性

耐腐食性に加え、スーパー 13Cr は優れた機械的特性を備えています。この合金は、高圧および高温の条件下でも高い強度と靭性を維持します。そのため、構造的完全性が最優先される油井やガス井で使用されるチューブ、ケーシング、コネクタなどの重要なコンポーネントに最適です。

3. 酸性条件に対する耐性

H2S を特徴とする酸性サービス環境は、石油およびガス抽出材料にとって大きな課題となります。Super 13Cr は、これらの過酷な条件に耐えられるように精密に設計されており、材料破損のリスクを軽減し、安全で効率的な操作を保証します。NACE MR0175 / ISO 15156 規格に準拠しているため、酸性サービス用途への適合性がさらに証明されています。

4. 高温環境でのパフォーマンスの向上

石油・ガス田は高温で稼働することが多く、腐食や材料の劣化が悪化します。スーパー 13Cr ステンレス鋼は、このような環境でも性能が維持されるよう設計されており、高温でも耐腐食性と機械的特性が維持されます。この信頼性は、生産設備の安全で効率的な運用に不可欠です。

石油・ガス産業における応用

スーパー 13Cr ステンレス鋼は、石油およびガス部門のさまざまな重要な用途で利用されています。

  • ケーシングとチューブ: 石油・ガス井の必須コンポーネントであるスーパー 13Cr パイプは、高圧および腐食環境に耐える能力を備えているため選ばれています。
  • ダウンホールツール: スーパー 13Cr は、信頼性と性能が重要となるドリルパイプや生産設備など、さまざまなダウンホール ツールや設備に使用されます。
  • 海底機器: この合金は海水やその他の腐食性物質に対する耐性があるため、ライザー、アンビリカル、コネクタなどの海中用途に最適です。

将来の展望とイノベーション

石油・ガス業界が探査と生産の限界を押し広げ続けるにつれ、Super 13Cr のような先進的な材料の需要は増大します。進行中の研究開発は、この合金の特性をさらに強化し、新しい用途を模索し、業界の進化するニーズを満たすためにその性能を向上させることを目的としています。

結論

スーパー 13Cr ステンレス鋼は、比類のない耐腐食性と高い強度および靭性を兼ね備えた、石油およびガス部門における材料科学の最高峰です。過酷な高圧および高温環境でも確実に機能する能力により、重要な用途に好まれています。業界が進歩するにつれ、スーパー 13Cr は、安全で効率的かつ成功する石油およびガス事業の実現において、今後も重要な役割を果たし続けるでしょう。

Super 13Cr を選択することで、オペレーターとエンジニアは現代の石油およびガス探査の課題に自信を持って対処し、投資を保護し、現場での進歩を促進することができます。