Příspěvky

Manufacturing Process of Drill Pipe - 0

API Specification 5DP Drill Pipe: A Comprehensive Guide

Drill pipes are a crucial component in the oil and gas industry, forming the backbone of drilling operations. These pipes connect the drilling rig to the drill bit, transmitting power and drilling fluid to create boreholes in the earth’s surface. This blog provides a detailed exploration of drill pipes, including their manufacturing process, types, connections, grades, and more. The goal is to equip you with practical knowledge and solutions that can help you navigate the complexities of using drill pipes effectively.

What is a Vrtné trubky?

A drill pipe is a heavy, seamless, hollow tube used to rotate the drill bit and circulate drilling fluid during drilling operations. It is designed to withstand significant stresses, including torsion, tension, and pressure while being lightweight enough to be handled easily on a rig.

Key Functions of Drill Pipes:

  • Transmission of Power: Drill pipes transfer the rotary motion from the drilling rig to the drill bit.
  • Circulation of Drilling Fluid: They allow the circulation of drilling mud, which cools the bit, carries cuttings to the surface, and stabilizes the borehole.
  • Lengthening the Drill String: As drilling progresses, additional drill pipe sections are added to the drill string to reach greater depths.

Manufacturing Process of Drill Pipe

The manufacturing of drill pipes is a highly controlled process designed to ensure the final product meets the stringent standards required for drilling operations.

Manufacturing Process of Drill Pipe

Manufacturing Process of Drill Pipe

1. Výběr materiálu

  • High-Quality Steel: The process begins with the selection of high-grade steel, typically alloy steel such as AISI 4130 or 4140, known for its high strength and toughness.
  • Chemické složení: The steel’s composition is carefully controlled to achieve the desired mechanical properties, including resistance to wear, fatigue, and corrosion.

2. Pipe Forming

  • Seamless Manufacturing: The steel is heated and then pierced to create a hollow tube, which is elongated and rolled to form the drill pipe body.
  • Welding (Optional): For certain types, steel plates may be rolled and welded to create the pipe.

3. Heat Treatment

  • Kalení a temperování: The pipes undergo heat treatment to enhance their mechanical properties, ensuring they can withstand the rigors of drilling.

4. Upsetting

  • End Upsetting: The ends of the pipe are thickened to increase their strength. This process, known as upsetting, is crucial for enhancing the pipe’s durability at the connections.

5. Tool Joint Welding

  • Attachment of Tool Joints: Tool joints are welded to the ends of the pipe, forming the connections that link each section of the drill string.

6. Hardbanding

  • Wear-Resistant Coating: A wear-resistant alloy is applied to the tool joints to protect them from wear and extend the pipe’s service life.

7. Kontrola a testování

  • Non-Destructive Testing: Each drill pipe undergoes rigorous testing, including ultrasonic and magnetic particle inspection, to ensure there are no defects.
  • Dimensional Inspection: The pipes are measured to ensure they meet the required specifications.

8. Marking and Coating

  • Identification: Each pipe is marked with essential information, such as grade, size, and manufacturer.
  • Protective Coating: A corrosion-resistant coating is applied to the pipes to protect them during transportation and storage.

Types of Drill Pipe

There are several types of drill pipes, each designed for specific applications:

1. Standard Drill Pipe

  • Popis: The most common type of drill pipe, used for standard drilling operations.
  • Aplikace: Suitable for conventional drilling in onshore and offshore environments.

2. Heavy Weight Drill Pipe (HWDP)

  • Popis: Thicker and heavier than standard drill pipe, HWDP is designed to add weight to the drill string, reducing buckling and improving stability.
  • Aplikace: Ideal for directional drilling and extended-reach wells.

3. Spiral Drill Pipe

  • Popis: This type features a spiral groove along its length, designed to reduce friction and wear during drilling.
  • Aplikace: Used in operations where friction reduction is critical.

4. Square Drill Pipe

  • Popis: A less common type with a square cross-section, offering increased rigidity.
  • Aplikace: Used in specific drilling scenarios requiring a rigid drill string.

5. Hexagonal Drill Pipe

  • Popis: Similar to the square drill pipe but with a hexagonal cross-section, providing enhanced torsional strength.
  • Aplikace: Suitable for high-torque drilling operations.

What are the Ends Processes of Drill Pipe?

In the context of drill pipes, the terms IU, EU, a IEU refer to different end processes that prepare the ends of the drill pipes for connections. These processes are crucial for ensuring that the drill pipe ends are durable, properly aligned, and suitable for threading and connection to other components in the drill string.

IU EU IEU of Drill Pipe Ends

IU EU IEU of Drill Pipe Ends

1. Internal Upset (IU)

  • Popis: In an Internal Upset (IU) process, the internal diameter of the pipe is reduced, creating a thicker wall at the ends of the pipe.
  • Účel: This thickening increases the strength of the pipe ends, making them more resistant to the stresses and wear encountered during drilling operations.
  • Aplikace: IU pipes are used in situations where the internal diameter of the drill pipe is critical, such as in high-pressure drilling operations where maintaining a consistent bore is essential.

2. External Upset (EU)

  • Popis: External Upset (EU) involves increasing the thickness of the pipe wall at the external diameter of the pipe ends.
  • Účel: This process strengthens the pipe ends and enhances their durability, especially in areas where the drill pipe is most likely to experience wear and impact.
  • Aplikace: EU drill pipes are commonly used in standard drilling operations where external strength and impact resistance are prioritized.

3. Internal-External Upset (IEU)

  • Popis: Internal-External Upset (IEU) is a combination of both internal and external upsets, where the pipe ends are thickened both internally and externally.
  • Účel: This dual-thickening process provides maximum strength and durability at the ends of the drill pipe, offering enhanced resistance to both internal pressure and external forces.
  • Aplikace: IEU pipes are typically used in more demanding drilling environments, such as deep wells, high-pressure scenarios, and directional drilling, where both internal and external reinforcement is needed.

Connections of Drill Pipe Tool Joints

The connections between drill pipe sections are critical for maintaining the integrity of the drill string. API 5DP drill pipes feature various types of connections:

1. Internal Flush (IF) Connection

  • Popis: Designed with a flush internal profile to minimize pressure drops and turbulence.
  • Aplikace: Used in high-pressure drilling environments.

2. Full Hole (FH) Connection

  • Popis: Features a larger bore for improved fluid flow, making it suitable for deep wells.
  • Aplikace: Ideal for deep drilling operations.

3. API Regular (API REG) Connection

  • Popis: A standard connection type, known for its robustness and ease of use.
  • Aplikace: Commonly used in standard drilling operations.

4. Numerical Connection (NC)

  • Popis: A premium connection with high torque capacity, often featuring a double-shoulder design.
  • Aplikace: Suitable for challenging drilling conditions.

What are Pin and Box?

Pin and Box refer to the two complementary ends of a drill pipe connection that allow the pipe sections to be securely joined together in a drilling string. This connection system is critical for maintaining the integrity and stability of the drill string during drilling operations.

Pin

  • Popis: The Pin is the male end of the connection. It is tapered and threaded, allowing it to be screwed into the Box.
  • Design: The external threads of the Pin are precision-cut to match the internal threads of the Box, ensuring a tight, secure fit.
  • Funkce: The Pin is designed to connect securely with the Box, creating a strong, leak-proof joint that can withstand the high pressures, torsional forces, and vibrations experienced during drilling.

Box

  • Popis: The Box is the female end of the connection. It is also threaded internally to accommodate the Pin.
  • Design: The Box’s internal threads are precisely machined to match the Pin’s threads, allowing for a secure and tight connection.
  • Funkce: The Box receives the Pin, creating a sturdy connection that ensures the drill pipe sections remain connected and aligned during drilling operations.

Importance of Pin and Box Connections

  • Strukturální integrita: The Pin and Box connection ensures the drill pipe sections are securely fastened, maintaining the structural integrity of the drill string.
  • Pressure Resistance: These connections are designed to withstand the high internal pressures generated by the circulation of drilling fluid.
  • Ease of Use: Pin and Box connections are designed for easy assembly and disassembly, facilitating quick changes and adjustments to the drill string.

Aplikace

  • Drill Pipes: Pin and Box connections are used in all types of drill pipes, including standard, heavy-weight, and specialized pipes.
  • Tool Joints: These connections are also used in tool joints, which are thicker, heavier sections of drill pipes that provide added strength and durability.

Grades, Diameters, Length Ranges, and Applications

Drill pipes come in various grades, diameters, and lengths, each suited to different drilling environments:

Známky

  • E-75: Commonly used for general drilling operations.
  • X-95: Provides higher strength, suitable for deeper wells.
  • G-105: Offers excellent fatigue resistance, ideal for extended-reach drilling.
  • S-135: The highest strength grade, used in ultra-deep and high-pressure wells.

Diameters and Lengths

  • Diameters: Typically range from 2 3/8″ to 6 5/8″.
  • Lengths: Range from 27 to 31 feet, with custom lengths available based on project needs.

Applications by Grade

  • E-75: Onshore drilling in standard conditions.
  • X-95: Deep wells with moderate pressures.
  • G-105: Extended-reach wells and high-torque drilling.
  • S-135: Ultra-deep, high-pressure, and high-temperature wells.

Packing, Storage, Maintenance, and Transportation

Proper handling of drill pipes is crucial for maintaining their integrity and extending their service life.

Balení

  • Bundling: Drill pipes are typically bundled together for easier handling and transportation.
  • Protective Caps: Both ends of the drill pipe are fitted with protective caps to prevent damage to the threads.

Storage

  • Indoor Storage: Whenever possible, drill pipes should be stored indoors to protect them from the elements.
  • Elevated Storage: Pipes should be stored off the ground on racks to prevent contact with moisture and contaminants.

Maintenance

  • Regular Inspections: Drill pipes should be inspected regularly for signs of wear, corrosion, or damage.
  • Re-threading: Threads should be re-cut if damaged, ensuring a secure connection.

Přeprava

  • Secure Loading: Drill pipes should be securely loaded onto trucks or trailers to prevent movement during transit.
  • Use of Cradles: Pipes should be transported using cradles to prevent bending or damage.

Závěr

Drill pipes are a critical component in drilling operations, designed to withstand the harsh conditions encountered during oil and gas extraction. Understanding the manufacturing process, types, connections, grades, and handling of drill pipes is essential for optimizing their performance and ensuring safe, efficient drilling operations.

By following best practices in selecting, storing, and maintaining drill pipes, operators can extend the life of their equipment, reduce operational costs, and minimize the risk of failures. This comprehensive guide serves as a valuable resource for professionals in the drilling industry, offering practical insights and solutions to the challenges associated with drill pipes.

Zkoumání zásadní role ocelových trubek při průzkumu ropy a zemního plynu

I. Základní znalosti potrubí pro ropný a plynárenský průmysl

1. Vysvětlení terminologie

API: Zkratka pro American Petroleum Institute.
OCTG: Zkratka pro Trubkové zboží ropné země, včetně trubky na olejové pouzdro, olejové trubky, vrtací trubky, vrtací objímky, vrtáků, přísavek, spojů Pup atd.
Olejové potrubí: Potrubí se používá v ropných vrtech pro těžbu ropy, těžbu plynu, vstřikování vody a štěpení kyselin.
Kryt: Potrubí, které je spuštěno z povrchu země do vyvrtaného vrtu jako vložka, aby se zabránilo zhroucení stěny.
Vrtné trubky: Potrubí používané pro vrtání vrtů.
Potrubí: Potrubí používané k přepravě ropy nebo plynu.
Spojky: Válce používané ke spojení dvou závitových trubek s vnitřními závity.
Materiál spojky: Trubka používaná pro výrobu spojek.
Vlákna API: Potrubní závity specifikované standardem API 5B, včetně kulatých závitů pro olejové trubky, krátkých kulatých závitů pláště, dlouhých kulatých závitů pláště, částečných lichoběžníkových závitů pláště, závity potrubí atd.
Prémiové připojení: Non-API závity se speciálními těsnícími vlastnostmi, spojovacími vlastnostmi a dalšími vlastnostmi.
Selhání: deformace, lom, poškození povrchu a ztráta původní funkce za specifických provozních podmínek.
Hlavní formy selhání: rozdrcení, uklouznutí, prasknutí, netěsnost, koroze, lepení, opotřebení a tak dále.

2. Normy související s ropou

API Spec 5B, 17. vydání – Specifikace pro řezání závitů, měření a kontrolu závitů pláště, hadiček a závitů potrubí
API Spec 5L, 46. vydání – Specifikace pro Line Pipe
API Spec 5CT, 11. vydání – Specifikace pro plášť a potrubí
Specifikace API 5DP, 7. vydání – Specifikace pro vrtací trubku
API Spec 7-1, 2. vydání – Specifikace pro rotační prvky stopky vrtáku
API Spec 7-2, 2. vydání – Specifikace pro řezání závitů a měření závitových spojů s otočným osazením
API Spec 11B, 24. vydání – Specifikace pro přísavky, leštěné tyče a vložky, spojky, platinové tyče, leštěné objímky tyčí, ucpávky a pumpovací podložky
ISO 3183:2019 – Ropný a zemní plynárenský průmysl – Ocelové trubky pro potrubní dopravní systémy
ISO 11960:2020 – Ropný a zemní plynárenský průmysl – Ocelové trubky pro použití jako plášť nebo potrubí pro studny
NACE MR0175 / ISO 15156:2020 – Ropný a zemní plynárenský průmysl – Materiály pro použití v prostředích obsahujících H2S při výrobě ropy a zemního plynu

II. Olejové potrubí

1. Klasifikace olejových hadic

Olejové hadičky se dělí na olejové hadičky bez ucpání (NU), vnější pěchované olejové hadičky (EU) a olejové hadičky s integrovaným spojem (IJ). NU olejová hadička znamená, že konec hadičky má normální tloušťku a přímo otáčí závit a přivádí spojky. Pěchovaná trubka znamená, že konce obou trubek jsou zvenčí pěchovány, poté opatřeny závitem a spojeny. Potrubí Integral Joint znamená, že jeden konec trubky je upsetován vnějšími závity a druhý konec je upnut s vnitřními závity a připojen přímo bez spojek.

2. Funkce olejového potrubí

① Těžba ropy a plynu: poté, co jsou ropné a plynové vrty vyvrtány a zacementovány, je potrubí umístěno do olejového pláště, aby se ropa a plyn extrahovaly do země.
② Vstřikování vody: když je tlak ve vrtu nedostatečný, vstříkněte vodu do studny hadičkou.
③ Vstřikování páry: Při regeneraci horkého oleje se má pára přivádět do vrtu pomocí izolovaného olejového potrubí.
④ Acidifikace a štěpení: V pozdní fázi vrtání vrtů nebo pro zlepšení produkce ropných a plynových vrtů je nutné do vrstvy ropy a plynu přivést okyselovací a štěpící médium nebo vytvrzovací materiál a médium a vytvrzovací materiál jsou transportován přes olejové potrubí.

3. Třída oceli olejových trubek

Oceli olejových trubek jsou H40, J55, N80, L80, C90, T95, P110.
N80 se dělí na N80-1 a N80Q, oba mají stejné vlastnosti v tahu, tyto dva rozdíly jsou rozdíl ve stavu dodání a nárazovém výkonu, dodání N80-1 v normalizovaném stavu nebo když je konečná teplota válcování vyšší než kritická teplota Ar3 a snížení tahu po ochlazení vzduchem a lze je použít k nalezení válcování za tepla místo normalizovaného, rázové a nedestruktivní zkoušky nejsou vyžadovány; N80Q musí být temperovaný (kalený a temperovaný) Tepelné zpracování, nárazová funkce by měla být v souladu s ustanoveními API 5CT a mělo by jít o nedestruktivní testování.
L80 se dělí na L80-1, L80-9Cr a L80-13Cr. Jejich mechanické vlastnosti a stav dodávky jsou stejné. Rozdíly v použití, obtížnosti výroby a ceně, L80-1 pro obecný typ, L80-9Cr a L80-13Cr jsou trubky s vysokou odolností proti korozi, výrobní potíže, drahé a obvykle se používají v těžkých korozních vrtech.
C90 a T95 se dělí na 1 a 2 typy, a to C90-1, C90-2 a T95-1, T95-2.

4. Běžně používaná olejová trubka jakost oceli, název oceli a stav dodávky

J55 (37Mn5) NU Olejové trubky: Válcované za tepla místo normalizované
J55 (37Mn5) EU olejové hadičky: Plná délka normalizovaná po pěchování
N80-1 (36Mn2V) NU olejové potrubí: válcované za tepla místo normalizované
N80-1 (36Mn2V) EU olejové potrubí: Normalizované po celé délce po rozrušení
N80-Q (30Mn5) Olejové potrubí: 30Mn5, temperování po celé délce
L80-1 (30Mn5) Olejové potrubí: 30Mn5, temperování po celé délce
P110 (25CrMnMo) Olejové potrubí: 25CrMnMo, temperování po celé délce
J55 (37Mn5) Spojka: Za tepla válcovaná on-line Normalizovaná
N80 (28MnTiB) Spojka: Temperování po celé délce
L80-1 (28MnTiB) Spojka: Celodélková temperovaná
P110 (25CrMnMo) Spojka: Popouštění po celé délce

III. Plášťová trubka

1. Klasifikace a role pouzdra

Pouzdro je ocelová trubka, která podpírá stěnu ropných a plynových vrtů. V každém vrtu je použito několik vrstev pažnice podle různých hloubek vrtů a geologických podmínek. Cement se používá k cementování pláště po jeho spuštění do vrtu a na rozdíl od ropného potrubí a vrtného potrubí jej nelze znovu použít a patří mezi jednorázové spotřební materiály. Spotřeba pažnice proto tvoří více než 70 procent všech trubek ropných vrtů. Pouzdro lze podle použití rozdělit na pouzdro vodiče, mezipouzdro, výrobní pouzdro a pouzdro vložkové a jejich struktury v ropných vrtech jsou znázorněny na obrázku 1.

①Pouzdro vodiče: Typicky používající třídy API K55, J55 nebo H40 pouzdro vodiče stabilizuje ústí vrtu a izoluje mělké kolektory s průměry běžně kolem 20 palců nebo 16 palců.

②Střední pouzdro: Mezilehlé pouzdro, často vyrobené z API jakostí K55, N80, L80 nebo P110, se používá k izolaci nestabilních útvarů a proměnlivých tlakových zón s typickými průměry 13 3/8 palce, 11 3/4 palce nebo 9 5/8 palce. .

③Výrobní pouzdro: Výrobní pouzdro je vyrobeno z vysoce kvalitní oceli, jako jsou třídy API J55, N80, L80, P110 nebo Q125, a je navrženo tak, aby vydrželo výrobní tlaky, běžně o průměrech 9 5/8 palce, 7 palců nebo 5 1/2 palce.

④Pouzdro vložky: Vložky prodlužují vrt do nádrže pomocí materiálů, jako jsou třídy API L80, N80 nebo P110, s typickými průměry 7 palců, 5 palců nebo 4 1/2 palce.

⑤ Hadičky: Potrubí dopravuje uhlovodíky na povrch pomocí tříd API J55, L80 nebo P110 a je k dispozici v průměrech 4 1/2 palce, 3 1/2 palce nebo 2 7/8 palce.

IV. Vrtné trubky

1. Klasifikace a funkce trubek pro vrtací nástroje

Čtvercová vrtná trubka, vrtná trubka, vážená vrtná trubka a vrtací objímka ve vrtacích nástrojích tvoří vrtnou trubku. Vrtná trubka je nástroj pro jádrové vrtání, který pohání vrták ze země na dno studny, a je to také kanál ze země na dno studny. Má tři hlavní role:

① K přenosu točivého momentu k pohonu vrtáku k vrtání;

② Spoléhat se na svou váhu vůči vrtáku, aby přerušil tlak horniny na dně vrtu;

③ K přepravě mycí kapaliny, to znamená vrtání bahna v zemi přes vysokotlaká kalová čerpadla, vrtání sloupu do vrtu toku do dna vrtu, aby se propláchly kamenné úlomky a ochlazovaly vrtnou korunku a přenášely kamenné úlomky přes vnější povrch sloupu a stěnu studny mezi mezikruží k návratu do země, k dosažení účelu vrtání studny.

Vrtná trubka v procesu vrtání odolá různým složitým střídavým zatížením, jako je tah, tlak, kroucení, ohyb a další namáhání, vnitřní povrch je také vystaven vysokotlakému oděru a korozi.
(1) Čtvercová vrtací trubka: čtvercová vrtná trubka má dva druhy čtyřúhelníkového typu a šestihranného typu, čínská ropná vrtná trubka, každá sada vrtných sloupů obvykle používá čtyřúhelníkovou vrtnou trubku. Jeho specifikace jsou 63,5 mm (2-1/2 palce), 88,9 mm (3-1/2 palce), 107,95 mm (4-1/4 palce), 133,35 mm (5-1/4 palce), 152,4 mm ( 6 palců) a tak dále. Obvykle je použitá délka 12~14,5m.
(2) Vrtací trubka: Vrtná trubka je hlavním nástrojem pro vrtání studní, je připojena ke spodnímu konci čtyřhranné vrtné trubky, a jak se vrtná studna stále prohlubuje, vrtná trubka stále prodlužuje vrtný sloup jednu po druhé. Specifikace vrtné trubky jsou: 60,3 mm (2-3/8 palce), 73,03 mm (2-7/8 palce), 88,9 mm (3-1/2 palce), 114,3 mm (4-1/2 palce) , 127 mm (5 palců), 139,7 mm (5-1/2 palce) a tak dále.
(3) Těžká vrtací trubka: Zatížená vrtná trubka je přechodový nástroj spojující vrtnou trubku a vrtací objímku, který může zlepšit silový stav vrtné trubky a zvýšit tlak na vrták. Hlavní specifikace vážené vrtné trubky jsou 88,9 mm (3-1/2 palce) a 127 mm (5 palců).
(4) Vrtací límec: vrtací límec je připojen ke spodní části vrtné trubky, což je speciální silnostěnná trubka s vysokou tuhostí, vyvíjející tlak na vrták, aby rozbíjel horninu, a hraje vodící roli při vrtání rovné studny. Běžné specifikace vrtacích objímek jsou 158,75 mm (6-1/4 palce), 177,85 mm (7 palců), 203,2 mm (8 palců), 228,6 mm (9 palců) a tak dále.

V. Potrubí vedení

1. Klasifikace potrubí

Potrubní potrubí se používá v ropném a plynárenském průmyslu pro přepravu ropy, rafinovaného oleje, zemního plynu a vodních potrubí se zkratkou ocelové potrubí. Dopravní ropovody a plynovody se dělí hlavně na hlavní ropovody, odbočné ropovody a ropovody městské potrubní sítě tři druhy přenosu hlavním potrubím obvyklých specifikací pro ∅406 ~ 1219 mm, tloušťka stěny 10 ~ 25 mm, ocel X42 ~ X80 ; Potrubí odbočky a potrubí městské potrubní sítě jsou obvykle specifikace pro ∅114 ~ 700 mm, tloušťka stěny 6 ~ 20 mm, jakost oceli pro X42 ~ X80. Třída oceli je X42~X80. Potrubí je k dispozici jako svařovaný typ a bezešvý typ. Welded Line Pipe se používá více než Seamless Line Pipe.

2. Standard Line Pipe

API Spec 5L – Specifikace pro potrubí
ISO 3183 – Ropný průmysl a průmysl zemního plynu – Ocelové trubky pro potrubní dopravní systémy

3. PSL1 a PSL2

PSL je zkratka Úroveň specifikace produktu. Úroveň specifikace produktu potrubí je rozdělena na PSL 1 a PSL 2, lze také říci, že úroveň kvality je rozdělena na PSL 1 a PSL 2. PSL 2 je vyšší než PSL 1, 2 úrovně specifikace mají nejen odlišné požadavky na testování, ale požadavky na chemické složení a mechanické vlastnosti se liší, takže podle objednávky API 5L musí podmínky smlouvy kromě specifikací specifikací, třídy oceli a dalších běžných ukazatelů uvádět také úroveň specifikace produktu, to znamená PSL 1 nebo PSL 2. PSL 2 v chemickém složení, tahových vlastnostech, rázové síle, nedestruktivním testování a dalších ukazatelích jsou přísnější než PSL 1.

4. Třída oceli pro potrubí, chemické složení a mechanické vlastnosti

Ocel pro potrubí od nízké po vysokou se dělí na: A25, A, B, X42, X46, X52, X60, X65, X70 a X80. Podrobné chemické složení a mechanické vlastnosti naleznete ve specifikaci API 5L, 46. vydání.

5. Požadavky na hydrostatický test potrubí a nedestruktivní zkoušku

Potrubní potrubí by mělo být provedeno odbočkou hydraulickou zkouškou a norma neumožňuje nedestruktivní vytváření hydraulického tlaku, což je také velký rozdíl mezi normou API a našimi normami. PSL 1 nevyžaduje nedestruktivní testování, PSL 2 by mělo být nedestruktivní testování větev po větvi.

VI. Prémiové připojení

1. Představení prémiových připojení

Premium Connection je trubkový závit se speciální strukturou odlišnou od závitu API. Ačkoli je stávající závitové olejové pouzdro API široce používáno při těžbě ropných vrtů, jeho nedostatky se jasně ukazují ve speciálním prostředí některých ropných polí: sloupec API s kulatým závitem, ačkoli jeho těsnící výkon je lepší, tažná síla nesená závitem část je ekvivalentní pouze 60% až 80% pevnosti těla trubky, a proto ji nelze použít při těžbě hlubinných vrtů; trubkový sloup s lichoběžníkovým závitem s předpětím API, ačkoli jeho pevnost v tahu je mnohem vyšší než u kulatého závitového spoje API, jeho těsnicí výkon není tak dobrý. Přestože je pevnost v tahu kolony mnohem vyšší než u kulatého závitového spoje API, její těsnicí výkon není příliš dobrý, takže jej nelze použít při využívání vysokotlakých plynových vrtů; Kromě toho může závitové mazivo hrát svou roli pouze v prostředí s teplotou pod 95 °C, takže jej nelze použít při těžbě vysokoteplotních vrtů.

Ve srovnání s kulatým závitem API a připojením částečným lichoběžníkovým závitem dosáhlo prémiové připojení průlomového pokroku v následujících aspektech:

(1) Dobré utěsnění díky elasticitě a konstrukci kovové těsnicí konstrukce činí těsnění spoje odolným vůči dosažení limitu tělesa potrubí v rámci průtažného tlaku;

(2) Vysoká pevnost spojení, spojení se speciálním přezkovým spojením olejového pouzdra, jeho pevnost spojení dosahuje nebo překračuje pevnost těla trubky, aby se zásadně vyřešil problém prokluzu;

(3) Zlepšením procesu výběru materiálu a povrchové úpravy se v zásadě vyřešil problém spony s lepením nití;

(4) Optimalizací konstrukce tak, aby rozložení napětí ve spoji bylo rozumnější a přispívalo k odolnosti vůči korozi napětím;

(5) Prostřednictvím ramenní struktury přiměřeného designu, takže operace spony na operaci je snazší.

V současnosti se ropný a plynárenský průmysl může pochlubit více než 100 patentovanými prémiovými spoji, což představuje významný pokrok v technologii potrubí. Tyto specializované konstrukce závitů nabízejí vynikající těsnicí schopnosti, zvýšenou pevnost spojení a zvýšenou odolnost vůči namáhání okolním prostředím. Řešením výzev, jako jsou vysoké tlaky, korozivní prostředí a teplotní extrémy, tyto inovace zajišťují větší spolehlivost a efektivitu při operacích ropných vrtů po celém světě. Neustálý výzkum a vývoj prémiových připojení podtrhuje jejich klíčovou roli při podpoře bezpečnějších a produktivnějších vrtných postupů, což odráží pokračující závazek k technologické dokonalosti v energetickém sektoru.

Připojení VAM®: Spoje VAM® známé svým robustním výkonem v náročných prostředích se vyznačují pokročilou technologií těsnění kov na kov a schopností vysokého točivého momentu, což zajišťuje spolehlivý provoz v hlubokých vrtech a vysokotlakých nádržích.

Řada TenarisHydril Wedge: Tato řada nabízí řadu spojů, jako jsou Blue®, Dopeless® a Wedge 521®, známé svým výjimečným plynotěsným těsněním a odolností vůči kompresním a tahovým silám, což zvyšuje provozní bezpečnost a efektivitu.

TSH® Blue: Spoje TSH® Blue navržené společností Tenaris využívají patentovaný design s dvojitým ramenem a vysoce výkonný profil závitu, který poskytuje vynikající odolnost proti únavě a snadné sestavení v kritických aplikacích vrtání.

Grant Prideco™ XT® připojení: Spoje XT®, vyvinuté společností NOV, obsahují jedinečné těsnění kov na kov a robustní tvar závitu, což zajišťuje vynikající kapacitu točivého momentu a odolnost proti zadření, čímž prodlužuje provozní životnost spoje.

Připojení Hunting Seal-Lock®: Spojka Seal-Lock® od společnosti Hunting, která se vyznačuje těsněním kov na kov a jedinečným profilem závitu, je známá svou vynikající odolností vůči tlaku a spolehlivostí při vrtání na pevnině i na moři.

Závěr

Závěrem lze říci, že složitá síť potrubí, která je pro ropný a plynárenský průmysl klíčová, zahrnuje širokou škálu specializovaných zařízení navržených tak, aby odolala náročným prostředím a složitým provozním požadavkům. Od základních trubek, které podpírají a chrání stěny studní, až po všestranné trubky používané při těžbě a vstřikování, každý typ trubek slouží k odlišnému účelu při průzkumu, výrobě a přepravě uhlovodíků. Normy, jako jsou specifikace API, zajišťují jednotnost a kvalitu napříč těmito potrubími, zatímco inovace, jako jsou prémiová připojení, zvyšují výkon v náročných podmínkách. Jak se technologie vyvíjí, tyto kritické komponenty se neustále vyvíjejí a zvyšují efektivitu a spolehlivost v globálních energetických operacích. Pochopení těchto potrubí a jejich specifikací podtrhuje jejich nepostradatelnou roli v infrastruktuře moderního energetického sektoru.

Tubulární zboží pro ropný průmysl (OCTG)

Trubkové zboží pro ropný průmysl (OCTG) je řada bezešvých válcovaných výrobků sestávající z vrtných trubek, pažnic a trubek vystavených podmínkám zatížení podle jejich specifické aplikace. (viz obrázek 1 pro schéma hluboké studny):

The Vrtné trubky je těžká bezešvá trubka, která otáčí vrtákem a cirkuluje vrtná kapalina. Trubkové segmenty dlouhé 30 stop (9 m) jsou spojeny nástrojovými spoji. Vrtací trubka je současně vystavena vysokému kroutícímu momentu vrtáním, axiálnímu tahu vlastní hmotností a vnitřnímu tlaku proplachováním vrtné kapaliny. Kromě toho mohou být na tyto základní vzory zatížení superponována střídající se ohybová zatížení způsobená nesvislým nebo vychýleným vrtáním.
Plášťová trubka lemuje vrt. Je vystaven axiálnímu tahu svou vlastní tíhou, vnitřnímu tlaku proplachováním kapalinou a vnějšímu tlaku okolních skalních útvarů. Skříň je zvláště vystavena axiálnímu tahu a vnitřnímu tlaku čerpanou emulzí oleje nebo plynu.
Potrubí je potrubí, kterým se ropa nebo plyn dopravuje z vrtu. Segmenty trubek jsou obvykle dlouhé asi 9 m se závitovým připojením na každém konci.

Odolnost proti korozi za kyselých provozních podmínek je velmi důležitou charakteristikou OCTG, zejména pro plášť a potrubí.

Typické výrobní procesy OCTG zahrnují (všechny rozměrové rozsahy jsou přibližné)

Nepřetržitý proces válcování vřetenem a proces tlačné stolice pro velikosti mezi 21 a 178 mm vnějšího průměru.
Válcování na válcovací stolici pro velikosti mezi 140 a 406 mm vnějšího průměru.
Propichování křížovým válcem a poutnické válcování pro velikosti mezi 250 a 660 mm vnějšího průměru.
Tyto procesy typicky neumožňují termomechanické zpracování obvyklé pro pásové a deskové produkty používané pro svařované trubky. Proto musí být vysoce pevné bezešvé trubky vyráběny zvýšením obsahu legování v kombinaci s vhodným tepelným zpracováním, jako je kalení a temperování.

Obrázek 1. Schéma dokončení hlubokého vrtu

Splnění základního požadavku plně martenzitické mikrostruktury i při velké tloušťce stěny trubky vyžaduje dobrou prokalitelnost. Cr a Mn jsou hlavními legujícími prvky používanými k dosažení dobré prokalitelnosti v konvenční tepelně zpracovatelné oceli. Požadavek na dobrou odolnost proti praskání sulfidovým napětím (SSC) však omezuje jejich použití. Mn má tendenci se během kontinuálního lití segregovat a může vytvářet velké inkluze MnS, které snižují odolnost proti praskání způsobenému vodíkem (HIC). Vyšší hladiny Cr mohou vést k tvorbě precipitátů Cr7C3 s hrubou deskovitou morfologií, které působí jako sběrače vodíku a iniciátory trhlin. Legování molybdenem může překonat omezení legování Mn a Cr. Mo je mnohem silnější tvrdidlo než Mn a Cr, takže může snadno obnovit účinek sníženého množství těchto prvků.

Typy OCTG byly tradičně uhlík-manganové oceli (až do úrovně pevnosti 55 ksi) nebo jakosti obsahující Mo až do 0,4% Mo. V posledních letech vytvořily vrtání hlubokých vrtů a nádrže obsahující kontaminanty, které způsobují korozivní útoky, silnou poptávku. pro materiály s vyšší pevností odolné vůči vodíkové křehkosti a SCC. Vysoce temperovaný martenzit je struktura nejodolnější vůči SSC při vyšších úrovních pevnosti a 0,75% je koncentrace Mo, která vytváří optimální kombinaci meze kluzu a odolnosti vůči SSC.