Dokončení vrtu: Aplikace a instalační sekvence OCTG v ropných a plynových vrtech

Zavedení

Průzkum a těžba ropy a zemního plynu zahrnuje složitá zařízení a procesy. Mezi nimi je pro efektivitu a bezpečnost vrtacích operací zásadní správný výběr a použití trubkového zboží – vrtných trubek, vrtacích objímek, vrtáků, pláště, trubek, sacích tyčí a potrubí. Tento blog si klade za cíl poskytnout podrobný přehled těchto komponent, jejich velikostí a jejich postupného použití v ropných a plynových vrtech.

1. Velikosti vrtací trubky, vrtacího límce a vrtáku

Vrtací trubky jsou páteří vrtací operace, přenášející výkon z povrchu na vrták při cirkulaci vrtné kapaliny. Mezi běžné velikosti patří:

  • 3 1/2 palce (88,9 mm)
  • 4 palce (101,6 mm)
  • 4 1/2 palce (114,3 mm)
  • 5 palců (127 mm)
  • 5 1/2 palce (139,7 mm)

Vrtací límce přidat váhu vrtáku a zajistit, že účinně pronikne do skály. Typické velikosti jsou:

  • 3 1/8 palce (79,4 mm)
  • 4 3/4 palce (120,7 mm)
  • 6 1/4 palce (158,8 mm)
  • 8 palců (203,2 mm)

Vrtáky jsou určeny k drcení a prořezávání skalních útvarů. Jejich velikosti se výrazně liší v závislosti na požadovaném průměru vrtu:

  • 3 7/8 palce (98,4 mm) až 26 palců (660,4 mm)

2. Velikosti pouzdra a hadičky

Plášťová trubka stabilizuje vrt, zabraňuje kolapsu a izoluje různé geologické formace. Instaluje se postupně, přičemž každý řetězec má větší průměr než ten uvnitř:

  • Povrchová skříň: 13 3/8 palce (339,7 mm) nebo 16 palců (406,4 mm)
  • Mezilehlé pouzdro: 9 5/8 palce (244,5 mm) nebo 10 3/4 palce (273,1 mm)
  • Výrobní pouzdro: 7 palců (177,8 mm) nebo 5 1/2 palce (139,7 mm)

Olejové potrubí je vložena do pouzdra pro transport ropy a plynu na povrch. Typické velikosti hadic zahrnují:

  • 1,050 palce (26,7 mm)
  • 1,315 palce (33,4 mm)
  • 1,660 palce (42,2 mm)
  • 1900 palců (48,3 mm)
  • 2 3/8 palce (60,3 mm)
  • 2 7/8 palce (73,0 mm)
  • 3 1/2 palce (88,9 mm)
  • 4 palce (101,6 mm)

3. Velikosti přísavek a hadic

Přísavné tyče připojte povrchovou čerpací jednotku k hlubinnému čerpadlu, což umožňuje čerpání kapalin ze studny. Vybírají se podle velikosti hadičky:

  • Pro trubky 2 3/8 palce: 5/8 palce (15,9 mm), 3/4 palce (19,1 mm) nebo 7/8 palce (22,2 mm)
  • Pro 2 7/8 palce potrubí: 3/4 palce (19,1 mm), 7/8 palce (22,2 mm) nebo 1 palec (25,4 mm)

4. Velikosti potrubí

Linkové trubky přepravovat vyrobené uhlovodíky z ústí vrtu do zpracovatelských zařízení nebo potrubí. Vybírají se na základě objemu výroby:

  • Malá pole: 2 palce (60,3 mm), 4 palce (114,3 mm)
  • Střední pole: 6 palců (168,3 mm), 8 palců (219,1 mm)
  • Velká pole: 10 palců (273,1 mm), 12 palců (323,9 mm), 16 palců (406,4 mm)

Sekvenční použití trubic v ropných a plynových vrtech

1. Fáze vrtání

  • Operace vrtání začíná s vrták prolomení geologických útvarů.
  • Vrtací trubky přenášet rotační výkon a vrtnou kapalinu do vrtáku.
  • Vrtací objímky přidejte nástavec na váhu a zajistěte jeho účinné pronikání.

2. Fáze pouzdra

  • Jakmile je dosaženo určité hloubky, a kryt je instalován k ochraně vrtu a izolaci různých formací.
  • Povrchové, střední a produkční pažnicové kolony probíhají postupně, jak vrtání postupuje.

3. Fáze dokončení a výroby

  • Hadice je instalován uvnitř výrobního pouzdra pro usnadnění toku uhlovodíků na povrch.
  • Přísavné tyče se používají ve studních s umělým výtahem, spojujícím hlubinné čerpadlo s povrchovou jednotkou.

4. Fáze povrchové dopravy

  • Potrubí přepravují ropa a plyn produkované z ústí vrtu do zpracovatelských zařízení nebo hlavních potrubí.

Závěr

Pochopení rolí, velikostí a sekvenčního použití tohoto trubkového zboží je zásadní pro efektivní a bezpečné operace v oblasti ropy a zemního plynu. Správný výběr a manipulace s vrtnými trubkami, vrtacími objímkami, vrtacími korunkami, pláštěm, trubkami, sacími tyčemi a potrubím zajišťuje strukturální integritu vrtu a optimalizuje výkon výroby.

Efektivní integrací těchto komponent může ropný a plynárenský průmysl nadále uspokojovat světové energetické potřeby při zachování vysokých standardů bezpečnosti a provozní účinnosti.

13Cr vs Super 13Cr: Srovnávací analýza

V náročném prostředí ropného a plynárenského průmyslu je výběr materiálu klíčový pro zajištění dlouhé životnosti a efektivity operací. Mezi nesčetnými dostupnými materiály vynikají nerezové oceli 13Cr a Super 13Cr svými pozoruhodnými vlastnostmi a vhodností do náročných prostředí. Tyto materiály způsobily revoluci v průmyslu, poskytují výjimečnou odolnost proti korozi a robustní mechanické vlastnosti. Pojďme se ponořit do jedinečných vlastností a aplikací nerezových ocelí 13Cr a Super 13Cr.

Pochopení 13Cr nerezové oceli

Nerezová ocel 13Cr, martenzitická slitina obsahující přibližně 13% chrom, se stala základem v odvětví ropy a zemního plynu. Jeho složení obvykle obsahuje malá množství uhlíku, manganu, křemíku, fosforu, síry a molybdenu, čímž je dosaženo rovnováhy mezi výkonem a cenou.

Kritické vlastnosti 13Cr:

  • Odolnost proti korozi: 13Cr nabízí chvályhodnou odolnost proti korozi, zejména v prostředích obsahujících CO2. Díky tomu je ideální pro použití v potrubí a plášti, kde se očekává vystavení korozivním prvkům.
  • Mechanická síla: Se střední mechanickou pevností poskytuje 13Cr potřebnou odolnost pro různé aplikace.
  • Houževnatost a tvrdost: Materiál vykazuje dobrou houževnatost a tvrdost, která je nezbytná pro odolnost vůči mechanickému namáhání, ke kterému dochází při vrtání a těžbě.
  • Svařitelnost: 13Cr je známý svou poměrně dobrou svařitelností, což umožňuje jeho použití v různých aplikacích bez výrazných komplikací při výrobě.

Aplikace v ropě a zemním plynu: Nerezová ocel 13Cr se široce používá při konstrukci trubek, plášťů a dalších součástí vystavených mírně korozivnímu prostředí. Jeho vyvážené vlastnosti z něj dělají spolehlivou volbu pro zajištění integrity a účinnosti ropných a plynárenských operací.

Představujeme Super 13Cr: Vylepšená slitina

Super 13Cr posouvá výhody 13Cr o krok dále tím, že obsahuje další legující prvky, jako je nikl a molybden. To zlepšuje vlastnosti, takže je vhodný pro agresivnější korozivní prostředí.

Kritické vlastnosti Super 13Cr:

  • Vynikající odolnost proti korozi: Super 13Cr nabízí zlepšenou odolnost proti korozi ve srovnání se standardním 13Cr, zejména v prostředích obsahujících vyšší úrovně CO2 a přítomnost H2S. Díky tomu je skvělou volbou do náročnějších podmínek.
  • Vyšší mechanická pevnost: Slitina se může pochlubit vyšší mechanickou pevností, která zajišťuje, že vydrží výraznější namáhání a tlaky.
  • Zlepšená houževnatost a tvrdost: Díky lepší houževnatosti a tvrdosti poskytuje Super 13Cr zvýšenou odolnost a životnost v náročných aplikacích.
  • Vylepšená svařitelnost: Vylepšené složení Super 13Cr má za následek lepší svařitelnost, což usnadňuje jeho použití ve složitých výrobních procesech.

Aplikace v ropě a zemním plynu: Super 13Cr je přizpůsoben pro použití v agresivnějších korozních prostředích, jako jsou prostředí s vyššími úrovněmi CO2 a přítomností H2S. Jeho vynikající vlastnosti jsou ideální pro potrubí, pláště a další kritické součásti v náročných ropných a plynových polích.

Výběr správné slitiny pro vaše potřeby

Volba mezi nerezavějící ocelí 13Cr a Super 13Cr v konečném důsledku závisí na konkrétních podmínkách prostředí a požadavcích na výkon vašeho provozu v oblasti ropy a zemního plynu. Zatímco 13Cr poskytuje cenově výhodné řešení s dobrou odolností proti korozi a mechanickými vlastnostmi, Super 13Cr nabízí zvýšený výkon pro náročnější prostředí.

Klíčové úvahy:

  • Ekologické předpoklady: Vyhodnoťte CO2, H2S a další korozivní prvky v provozním prostředí.
  • Požadavky na výkon: Určete nezbytnou mechanickou pevnost, houževnatost a tvrdost pro konkrétní aplikaci.
  • Cena vs. přínos: Zvažte cenu materiálu oproti výhodám vylepšených vlastností a delší životnosti.

Závěr

V neustále se vyvíjejícím ropném a plynárenském průmyslu je výběr materiálů, jako jsou nerezové oceli 13Cr a Super 13Cr, zásadní pro zajištění spolehlivosti, účinnosti a bezpečnosti provozu. Pochopení jedinečných vlastností a aplikací těchto slitin umožňuje profesionálům v oboru činit informovaná rozhodnutí, což v konečném důsledku přispívá k úspěchu a udržitelnosti jejich projektů. Ať už se jedná o vyvážený výkon 13Cr nebo vynikající vlastnosti Super 13Cr, tyto materiály nadále hrají klíčovou roli při rozvíjení schopností ropného a plynárenského sektoru.

Tubulární zboží pro ropný průmysl (OCTG)

Trubkové zboží pro ropný průmysl (OCTG) je řada bezešvých válcovaných výrobků sestávající z vrtných trubek, pažnic a trubek vystavených podmínkám zatížení podle jejich specifické aplikace. (viz obrázek 1 pro schéma hluboké studny):

The Vrtné trubky je těžká bezešvá trubka, která otáčí vrtákem a cirkuluje vrtná kapalina. Trubkové segmenty dlouhé 30 stop (9 m) jsou spojeny nástrojovými spoji. Vrtací trubka je současně vystavena vysokému točivému momentu vrtáním, axiálnímu tahu vlastní hmotností a vnitřnímu tlaku proplachováním vrtné kapaliny. Kromě toho mohou být na tyto základní vzory zatížení superponována střídající se ohybová zatížení způsobená nesvislým nebo vychýleným vrtáním.
Plášťová trubka lemuje vrt. Je vystavena axiálnímu tahu od své vlastní hmotnosti, vnitřnímu tlaku z proplachování tekutinou a vnějšímu tlaku z okolních skalních útvarů. Čerpaná olejová nebo plynová emulze vystavuje plášť zejména axiálnímu tahu a vnitřnímu tlaku.
Trubice je potrubí, kterým se dopravuje ropa nebo plyn z vrtu. Segmenty trubek jsou obvykle dlouhé asi 9 m a mají na každém konci závitové spojení.

Odolnost proti korozi za kyselých provozních podmínek je zásadní charakteristikou OCTG, zejména pro plášť a potrubí.

Typické výrobní procesy OCTG zahrnují (všechny rozměrové rozsahy jsou přibližné)

Nepřetržité válcování na trnu a procesy tlačné stolice pro velikosti od 21 do 178 mm vnějšího průměru.
Válcování na válcovací stolici pro velikosti mezi 140 a 406 mm vnějšího průměru.
Propichování křížovým válcem a poutnické válcování pro velikosti mezi 250 a 660 mm vnějšího průměru.
Tyto procesy typicky neumožňují termomechanické zpracování obvyklé pro pásové a deskové produkty používané pro svařované trubky. Vysokopevnostní bezešvé trubky se proto musí vyrábět zvýšením obsahu legování v kombinaci s vhodným tepelným zpracováním, jako je kalení a popouštění.

Obrázek 1. Schéma hlubokého prosperujícího dokončení

Splnění základního požadavku plně martenzitické mikrostruktury i při velké tloušťce stěny trubky vyžaduje dobrou prokalitelnost. Cr a Mn jsou hlavní legující prvky, které zajišťují dobrou prokalitelnost v konvenční tepelně zpracovatelné oceli. Požadavek na dobrou odolnost proti praskání sulfidovým napětím (SSC) však omezuje jejich použití. Mn má tendenci se během kontinuálního lití segregovat a může vytvářet velké inkluze MnS, které snižují odolnost proti praskání způsobenému vodíkem (HIC). Vyšší hladiny Cr mohou vést k tvorbě precipitátů Cr7C3 s hrubou deskovitou morfologií, které působí jako sběrače vodíku a iniciátory trhlin. Legování molybdenem může překonat omezení legování Mn a Cr. Mo je mnohem silnější tvrdidlo než Mn a Cr, takže může rychle obnovit účinek sníženého množství těchto prvků.

Typy OCTG byly tradičně uhlík-manganové oceli (až do úrovně pevnosti 55 ksi) nebo jakosti obsahující Mo až do 0,4% Mo. V posledních letech vytvořily vrtání hlubokých vrtů a nádrže obsahující kontaminanty, které způsobují korozivní útoky, silnou poptávku. pro materiály s vyšší pevností odolné vůči vodíkové křehkosti a SCC. Vysoce temperovaný martenzit je struktura nejodolnější vůči SSC při vyšších úrovních pevnosti a koncentrace 0,75% Mo vytváří optimální kombinaci meze kluzu a odolnosti SSC.

Něco, co potřebujete vědět: Povrchová úprava příruby

The ASME B16.5 kód vyžaduje, aby čelo příruby (vyvýšené čelo a ploché čelo) mělo specifickou drsnost, aby bylo zajištěno, že tento povrch je kompatibilní s těsněním a poskytuje vysoce kvalitní těsnění.

Je vyžadován vroubkovaný povrch, koncentrický nebo spirálový, s 30 až 55 drážkami na palec a výslednou drsností mezi 125 a 500 mikropalci. To umožňuje, aby výrobci přírub poskytovali různé stupně povrchové úpravy pro kontaktní povrch těsnění kovových přírub.

Povrchová úprava příruby

Vroubkovaný povrch

Skladová úprava
Nejpoužívanější ze všech přírubových povrchových úprav, protože je prakticky vhodná pro všechny běžné provozní podmínky. Při stlačení se měkká plocha z těsnění vloží do této povrchové úpravy, což pomáhá vytvořit těsnění a mezi dosedacími plochami vzniká vysoká úroveň tření.

Povrchová úprava těchto přírub je generována nástrojem s kulatou špičkou o poloměru 1,6 mm při rychlosti posuvu 0,8 mm na otáčku až do 12 palců. U velikostí 14 palců a větších se povrchová úprava provádí nástrojem s kulatým hrotem 3,2 mm s posuvem 1,2 mm na otáčku.

Povrchová úprava příruby - Skladová povrchová úpravaPovrchová úprava příruby - Skladová povrchová úprava

Spirála vroubkovaná
Jedná se také o souvislou nebo fonografickou spirálovou drážku, ale od povrchové úpravy polotovaru se liší v tom, že drážka je obvykle generována pomocí 90° nástroje, který vytváří geometrii „V“ s 45° úhlovým zoubkováním.

Čelní úprava příruby - spirálově vroubkovaná

Soustředné zoubkované
Jak název napovídá, tato povrchová úprava se skládá ze soustředných drážek. Použije se 90° nástroj a zoubky jsou rozmístěny rovnoměrně po celé ploše.

Čelní úprava příruby - Soustředně vroubkovaná

Hladký povrch
Tato povrchová úprava nevykazuje žádné vizuálně viditelné značky nástroje. Tyto povrchové úpravy se obvykle používají pro těsnění s kovovým povrchem, jako je dvojitý plášť, plochá ocel a vlnitý kov. Hladké povrchy se spojují, aby vytvořily těsnění, a závisí na rovinnosti protilehlých ploch, aby se dosáhlo těsnění. Toho je typicky dosaženo tím, že kontaktní povrch těsnění je tvořen souvislou (někdy nazývanou fonografickou) spirálovou drážkou generovanou nástrojem s kulatým nosem o poloměru 0,8 mm při rychlosti posuvu 0,3 mm na otáčku s hloubkou 0,05 mm. Výsledkem bude drsnost mezi Ra 3,2 a 6,3 mikrometrů (125 – 250 mikro palců).

Povrchová úprava příruby - Hladký povrch

HLADKÝ POVRCH

Je vhodný pro spirálová těsnění a nekovová těsnění? Pro jaký druh aplikace je tento typ určen?

Příruby s hladkým povrchem jsou běžnější pro nízkotlaká a/nebo velkoprůměrová potrubí a jsou primárně určeny pro použití s pevnými kovovými nebo spirálově vinutými těsněními.

Hladké povrchové úpravy se obvykle nacházejí na strojích nebo na přírubových spojích jiných než příruby potrubí. Při práci s hladkým povrchem je důležité zvážit použití tenčího těsnění, aby se zmírnily účinky tečení a studeného toku. Je však třeba poznamenat, že jak tenčí těsnění, tak hladká povrchová úprava samy o sobě vyžadují vyšší tlakovou sílu (tj. krouticí moment šroubu) k dosažení těsnění.

Opracování těsnicích ploch přírub na hladký povrch Ra = 3,2 – 6,3 mikrometru (= 125 – 250 mikropalců AARH)

AARH je zkratka pro Aritmetická průměrná výška drsnosti. Používá se k měření drsnosti (spíše hladkosti) povrchů. 125 AARH znamená, že 125 mikropalců bude průměrná výška vrcholů a sestupů povrchu.

63 AARH je specifikováno pro kroužkové spoje.

125-250 AARH (nazývá se hladký povrch) je specifikován pro spirálově vinutá těsnění.

250-500 AARH (nazývá se zásobní úprava) je specifikována pro měkká těsnění, jako jsou BEZazbest, grafitové desky, elastomery atd. Pokud použijeme hladkou povrchovou úpravu pro měkká těsnění, nedojde k dostatečnému „kousání“ a tím ke spoji může dojít k úniku.

Někdy se AARH označuje také jako Ra, což znamená průměr drsnosti a znamená totéž.

API 5L Gr.B Seamless Line Pipe with 3LPE Coating in accordance with CAN CSA Z245.21

Successful Delivery of Order CAN/CSA-Z245.21 3LPE Coated Line Pipe

A customer that we have been following up for 8 years has finally placed an order. The order is for a batch of NPS 3“, NPS 4”, NPS 6“ and NPS 8” diameters, thickness SCH40, single length 11.8M, with 2.5mm thick 3-layer polyethylene coating for corrosion protection, which will be buried in the ground for natural gas transportation.

The pipes are manufactured in accordance with API 5L PSL 1 Gr. B seamless pipe standard and the corrosion protection coating are manufactured in accordance with CAN/CSA-Z245.21 standard.

API 5L Gr.B Seamless Line Pipe with 3LPE Coating in accordance with CAN CSA Z245.21

API 5L Gr.B Seamless Line Pipe with 3LPE Coating in accordance with CAN CSA Z245.21

Seamless Pipe Manufacturing Process Chart

Seamless Pipe Manufacturing Process Chart

3LPE Coating Manufacturing Process Chart

3LPE Coating Manufacturing Process Chart

Our seamless tubes are rolled in the world’s most advanced PQF mill, which is manufactured by SMS Group in Germany. Our 3LPE coatings are produced in our most advanced coating line in China, ensuring that the specifications of the pipes and coatings fully meet our customers’ requirements.

If you have any demand for 3LPE/3LPP/FBE/LE coated line pipe, please feel free to contact us for a quotation by email at [email protected]. We will strictly control the quality for you and better support you in terms of price and service!

Poznejte rozdíly: Povlak TPEPE vs povlak 3LPE

TPEPE nerezová ocelová trubka a 3PE antikorozní ocelové trubky jsou modernizační produkty založené na vnějším jednovrstvém polyetylenu a vnitřní ocelové trubce s epoxidovým povlakem, jedná se o nejmodernější antikorozní ocelové potrubí na dlouhé vzdálenosti uložené pod zemí. Víte, jaký je rozdíl mezi TPEPE antikorozní ocelovou trubkou a 3PE antikorozní ocelovou trubkou?

 

 

Struktura povlaku

Vnější stěna trubky z antikorozní oceli TPEPE je vyrobena procesem tavného vinutí 3PE. Skládá se ze tří vrstev, epoxidové pryskyřice (spodní vrstva), lepidla (mezivrstva) a polyethylenu (vnější vrstva). Vnitřní stěna využívá antikorozní způsob tepelného nástřiku epoxidového prášku a prášek je rovnoměrně potažen na povrchu ocelové trubky po zahřátí a roztavení při vysoké teplotě za vzniku kompozitní vrstvy ocel-plast, což výrazně zlepšuje tloušťku povlaku a přilnavost povlaku, zvyšuje schopnost odolnosti proti nárazům a korozi a činí jej široce používaným.

3PE antikorozní nátěrová ocelová trubka se vztahuje na tři vrstvy polyolefinu mimo antikorozní ocelovou trubku, její antikorozní struktura se obecně skládá z třívrstvé struktury, epoxidového prášku, lepidla a PE, v praxi tyto tři materiály smíšené zpracování tavením a ocel trubka pevně u sebe, tvořící vrstvu polyethylenového (PE) antikorozního povlaku, má dobrou odolnost proti korozi, odolnost proti propustnosti vlhkosti a mechanické vlastnosti, je široce používána v průmyslu ropovodů.

Pvýkonnost Ccharakteristika

Na rozdíl od obecné ocelové trubky byla antikorozní ocelová trubka TPEPE vyrobena jako vnitřní a vnější antikorozní, má velmi vysoké těsnění a dlouhodobý provoz může výrazně ušetřit energii, snížit náklady a chránit životní prostředí. Díky silné odolnosti proti korozi a pohodlné konstrukci je jeho životnost až 50 let. Má také dobrou odolnost proti korozi a nárazuvzdornost při nízkých teplotách. Současně má také vysokou epoxidovou pevnost, dobrou měkkost tavného lepidla atd. a má vysokou antikorozní spolehlivost; Kromě toho je naše nerezová ocelová trubka TPEPE vyráběna v přísném souladu s národními standardními specifikacemi, získala certifikát bezpečnosti pitné vody pro trubky z antikorozní oceli, aby byla zajištěna bezpečnost pitné vody.

3PE antikorozní ocelová trubka z polyetylenového materiálu, tento materiál se vyznačuje dobrou odolností proti korozi a přímo prodlužuje životnost antikorozní ocelové trubky.

Antikorozní ocelová trubka 3PE kvůli svým různým specifikacím lze rozdělit na běžnou třídu a třídu zpevnění, tloušťka PE běžné trubky z antikorozní oceli 3PE je asi 2,0 mm a tloušťka PE třídy zpevnění je asi 2,7 mm. Jako běžná vnější antikorozní ochrana plášťové trubky je běžná jakost více než dostačující. Pokud se používá k přímé přepravě kyselin, alkálií, zemního plynu a jiných kapalin, zkuste použít zesílenou nerezovou ocelovou trubku 3PE.

Výše uvedené je o rozdílu mezi TPEPE antikorozní ocelovou trubkou a 3PE antikorozní ocelovou trubkou, která se odráží především ve výkonnostních charakteristikách a použití různých, správný výběr vhodné antikorozní ocelové trubky hraje svou náležitou roli.