ASME SA213 T91: Kolik toho víš?
Pozadí a úvod
ASME SA213 T91, ocelové číslo v ASME SA213/SA213M standard, patří do vylepšené oceli 9Cr-1Mo, která byla vyvíjena od 70. do 80. let minulého století ve spolupráci US Rubber Ridge National Laboratory a Laboratoř metalurgických materiálů americké Combustion Engineering Corporation. Vyvinutý na základě dřívější oceli 9Cr-1Mo, používané v jaderné energetice (lze použít i v jiných oblastech), vysokoteplotních tlakových součástech materiálů, je třetí generací výrobků z oceli pevné za tepla; jeho hlavním rysem je snížení obsahu uhlíku v omezení horní a dolní hranice obsahu uhlíku a přísnější kontrola obsahu zbytkových prvků, jako je P a S, současně přidáním stopy 0,030-0,070% N a stopy pevných karbidotvorných prvků 0,18-0,25% V a 0,06-0,10% Nb, pro zjemnění požadavků na zrnitost, a tím zlepšení plastické houževnatosti a svařitelnosti oceli, zlepšení stability oceli při vysokých teplotách, po tomto vícekompozitním vyztužení, vznik nového typu martenzitické vysokochromové žáruvzdorné legované oceli.
ASME SA213 T91, obvykle vyrábějící výrobky pro trubky malého průměru, se používá hlavně v kotlích, přehřívácích a výměnících tepla.
Mezinárodní odpovídající třídy oceli T91
Země |
USA | Německo | Japonsko | Francie | Čína |
Ekvivalentní jakost oceli | SA-213 T91 | X10CrMoVNNb91 | HCM95 | TUZ10CDVNb0901 | 10Cr9Mo1VNbN |
Tuto ocel zde poznáme z několika hledisek.
I. Chemické složení ASME SA213 T91
Živel | C | Mn | P | S | Si | Cr | Mo | Ni | PROTI | Nb | N | Al |
Obsah | 0.07-0.14 | 0.30-0.60 | ≤0,020 | ≤0,010 | 0.20-0.50 | 8.00-9.50 | 0.85-1.05 | ≤0,40 | 0.18-0.25 | 0.06-0.10 | 0.030-0.070 | ≤0,020 |
II. Analýza výkonu
2.1 Úloha legujících prvků na vlastnosti materiálu: Legující prvky oceli T91 hrají roli zpevňování pevného roztoku a zpevňování difúze a zlepšují odolnost oceli vůči oxidaci a korozi, jak je explicitně analyzováno následovně.
2.1.1 Uhlík je nejviditelnějším zpevňovacím účinkem ocelových prvků v pevném roztoku; s nárůstem obsahu uhlíku, krátkodobou pevností oceli, plasticitou a houževnatostí klesá, u takové oceli T91, nárůst obsahu uhlíku zrychlí rychlost sféroidizace karbidů a rychlost agregace, urychlí redistribuci legujících prvků a sníží svařitelnost, odolnost proti korozi a oxidační odolnost oceli, takže žáruvzdorná ocel obecně chce snížit množství obsahu uhlíku. Pevnost oceli se však sníží, pokud je obsah uhlíku příliš nízký. Ocel T91 má ve srovnání s ocelí 12Cr1MoV snížený obsah uhlíku 20%, což je pečlivé zvážení vlivu výše uvedených faktorů.
2.1.2 Ocel T91 obsahuje stopy dusíku; role dusíku se odráží ve dvou aspektech. Na jedné straně je role zpevnění tuhého roztoku, dusíku při pokojové teplotě v rozpustnosti oceli minimální, ocel T91 svařovaná tepelně ovlivněná zóna v procesu ohřevu svařování a tepelného zpracování po svařování, dojde k posloupnosti pevných látek proces řešení a srážení VN: V rámci austenitické organizace se vytvořila tepelně ovlivněná zóna svařování díky rozpustnosti VN, zvyšuje se obsah dusíku a poté se zvyšuje stupeň přesycení v organizaci teploty v místnosti. následným tepelným zpracováním svaru dochází k mírnému vysrážení VN, což zvyšuje stabilitu organizace a zlepšuje hodnotu trvalé pevnosti tepelně ovlivněné zóny. Na druhé straně ocel T91 obsahuje také malé množství A1; dusík se může tvořit s jeho A1N, A1N při více než 1 100 ℃, pouze velké množství se rozpustí v matrici a poté znovu vysráží při nižších teplotách, což může mít lepší účinek zpevňování difúze.
2.1.3 přidat chrom hlavně pro zlepšení oxidační odolnosti žáruvzdorné oceli, odolnost proti korozi, obsah chrómu nižší než 5%, 600 ℃ začal prudce oxidovat, zatímco množství obsahu chrómu až do 5% má vynikající odolnost proti oxidaci. Ocel 12Cr1MoV v následujících 580 ℃ má dobrou odolnost proti oxidaci, hloubka koroze 0,05 mm/a, 600 ℃, když se výkon začal zhoršovat, hloubka koroze 0,13 mm/a. T91 s obsahem chrómu 1 100 ℃ předtím, než se velké množství rozpustí do matrice, a při nižších teplotách a opětovném vysrážení může mít účinek zesílení difúze zvuku. /T91 obsah chrómu zvýšen na asi 9%, použití teploty může dosáhnout 650 ℃, primárním opatřením je, aby se matrice rozpustila ve větším množství chrómu.
2.1.4 vanad a niob jsou životně důležité prvky tvořící karbidy. Když se přidá k vytvoření jemného a stabilního karbidu slitiny s uhlíkem, dojde k pevnému difúznímu zesílení.
2.1.5 Přídavek molybdenu zlepšuje především tepelnou pevnost oceli a zpevňuje tuhé roztoky.
2.2 Mechanické vlastnosti
Sochor T91 po konečném tepelném zpracování pro normalizaci + vysokoteplotní popouštění má pevnost v tahu při pokojové teplotě ≥ 585 MPa, mez kluzu při pokojové teplotě ≥ 415 MPa, tvrdost ≤ 250 HB, tažnost (rozteč standardního kruhového vzorku 50 mm) ≥ 20%, hodnota dovoleného napětí [σ] 650 ℃ = 30 MPa.
Proces tepelného zpracování: normalizační teplota 1040 ℃, doba výdrže ne méně než 10 minut, teplota temperování 730 ~ 780 ℃, doba výdrže ne méně než jedna h.
2.3 Výkon svařování
V souladu se vzorcem uhlíkového ekvivalentu doporučeným International Welding Institute je uhlíkový ekvivalent oceli T91 vypočítán na 2,43% a viditelná svařitelnost T91 je špatná.
Ocel nemá tendenci se znovu zahřívat Praskání.
2.3.1 Problémy se svařováním T91
2.3.1.1 Praskání ztvrdlé organizace v tepelně ovlivněné zóně
Kritická rychlost chlazení T91 je nízká, austenit je velmi stabilní a během standardní transformace perlitu nedochází k ochlazení rychle. Musí se ochladit na nižší teplotu (asi 400 ℃), aby se přeměnil na martenzit a hrubou organizaci.
Svařování produkované tepelně ovlivněnou zónou různých organizací má různé hustoty, koeficienty roztažnosti a různé formy mřížky v procesu ohřevu a chlazení budou nevyhnutelně doprovázeny rozdílnou objemovou expanzí a kontrakcí; na druhé straně má ohřev vlivem sváření nerovnoměrné a vysokoteplotní charakteristiky, takže svarové spoje T91 jsou enormní vnitřní pnutí. Tvrzené hrubé martenzitické organizační spoje, které jsou ve stavu komplexního napětí, současně proces ochlazování svaru, difúze vodíku ze svaru do oblasti blízkého švu, přítomnost vodíku přispěla ke křehnutí martenzitu, tato kombinace účinků, je snadné vytvořit studené trhliny v kalené oblasti.
2.3.1.2 Růst zrn tepelně ovlivněné zóny
Tepelné cyklování svařování významně ovlivňuje růst zrn v tepelně ovlivněné zóně svarových spojů, zejména v zóně tavení bezprostředně sousedící s maximální teplotou ohřevu. Když je rychlost ochlazování malá, svařená tepelně ovlivněná zóna se bude jevit jako hrubá masivní feritová a karbidová organizace, takže plasticita oceli výrazně klesá; rychlost ochlazování je značná díky produkci hrubé martenzitické organizace, ale také se sníží plasticita svarových spojů.
2.3.1.3 Generování změkčené vrstvy
Ocel T91 svařovaná v temperovaném stavu, tepelně ovlivněná zóna vytváří nevyhnutelnou měkčící vrstvu, která je přísnější než měknutí perlitové žáruvzdorné oceli. Změkčení je pozoruhodnější při použití specifikací s pomalejšími rychlostmi ohřevu a chlazení. Kromě toho šířka změkčené vrstvy a její vzdálenost od tavné linie souvisí s podmínkami ohřevu a charakteristikami svařování, předehřívání a tepelného zpracování po svařování.
2.3.1.4 Korozní praskání pod napětím
Ocel T91 v tepelném zpracování po svařování před chlazením není obecně nižší než 100 ℃. Pokud je chlazení při pokojové teplotě a prostředí je relativně vlhké, je snadné namáhat korozní praskání. Německé předpisy: Před tepelným zpracováním po svařování musí být ochlazen pod 150 ℃. V případě silnějších obrobků, koutových svarů a špatné geometrie není teplota chlazení nižší než 100 ℃. Pokud je chlazení při pokojové teplotě a vlhkosti přísně zakázáno, v opačném případě je snadné vytvořit korozní trhliny pod napětím.
2.3.2 Proces svařování
2.3.2.1 Metoda svařování: Lze použít ruční svařování, svařování wolframovým pólem v ochranné atmosféře nebo automatické svařování tavným pólem.
2.3.2.2 Svařovací materiál: můžete si vybrat svařovací drát WE690 nebo svařovací drát.
Výběr svařovacího materiálu:
(1) Svařování stejného druhu oceli – pokud lze k výrobě ruční svařovací tyče CM-9Cb použít ruční svařování, lze k výrobě TGS-9Cb použít svařování v ochranné atmosféře wolframu, k výrobě MGS- lze použít automatické svařování tavných tyčí 9Cb drát;
(2) svařování odlišných ocelí – např. svařování s austenitickou nerezovou ocelí dostupnými svařovacími materiály ERNiCr-3.
2.3.2.3 Body procesu svařování:
(1) volba teploty předehřívání před svařováním
Bod Ms oceli T91 je asi 400 ℃; teplota předehřívání se obecně volí na 200 ~ 250 ℃. Teplota předehřívání nesmí být příliš vysoká. V opačném případě se rychlost ochlazování spoje sníží, což může být způsobeno ve svarových spojích na hranicích zrn precipitací karbidů a tvorbou feritové organizace, čímž se výrazně snižuje rázová houževnatost ocelových svarových spojů při pokojové teplotě. Německo poskytuje teplotu předehřívání 180 ~ 250 ℃; USCE poskytuje teplotu předehřívání 120 ~ 205 ℃.
(2) volba teploty svařovacího kanálu / mezivrstvy
Teplota mezivrstvy nesmí být nižší než spodní mez teploty předehřívání. Stejně jako při výběru teploty předehřívání nemůže být teplota mezivrstvy příliš vysoká. Teplota mezivrstvy T91 je obecně řízena na 200 ~ 300 ℃. Francouzské předpisy: teplota mezivrstvy nepřesahuje 300 ℃. Předpisy USA: teplota mezivrstvy může být mezi 170 ~ 230 ℃.
(3) volba počáteční teploty tepelného zpracování po svařování
T91 vyžaduje ochlazení po svaření pod bod Ms a držení po určitou dobu před zpracováním temperováním, s rychlostí ochlazování po svařování 80 ~ 100 ℃/h. Pokud není izolována, společná austenitická organizace nemusí být plně transformována; temperovací ohřev podpoří precipitaci karbidu podél hranic austenitických zrn, čímž se organizace stane velmi křehkou. T91 však nelze před temperováním po svařování ochladit na pokojovou teplotu, protože praskání za studena je nebezpečné, když se jeho svarové spoje ochladí na pokojovou teplotu. Pro T91 může nejlepší počáteční teplota tepelného zpracování po svařování 100 ~ 150 ℃ a udržování po dobu jedné hodiny zajistit úplnou transformaci organizace.
(4) teplota popouštění tepelného zpracování po svařování, doba výdrže, výběr rychlosti chlazení popouštění
Teplota popouštění: Ocel T91 má větší tendenci k praskání za studena a za určitých podmínek je náchylná k opožděnému praskání, takže svarové spoje musí být temperovány do 24 hodin po svařování. T91 posvarový stav organizace lištového martenzitu, po temperování lze změnit na temperovaný martenzit; jeho výkon je lepší než u lištového martenzitu. Teplota temperování je nízká; temperovací efekt není patrný; svarový kov snadno stárne a křehne; teplota popouštění je příliš vysoká (více než čára AC1), spoj může být znovu austenitizován a v následném ochlazovacím procesu znovu kalit. Současně, jak je popsáno dříve v tomto článku, by při stanovení teploty popouštění měl být také zohledněn vliv vrstvy změkčování spoje. Obecně platí, že teplota popouštění T91 je 730 ~ 780 ℃.
Doba zdržení: T91 vyžaduje dobu zdržení po svaření alespoň jednu hodinu, aby se zajistilo, že se jeho organizace zcela přemění na temperovaný martenzit.
Rychlost ochlazování: Pro snížení zbytkového napětí ocelových svarových spojů T91 musí být rychlost ochlazování nižší než 5 ℃ / min.
Celkově lze proces svařování oceli T91 v procesu regulace teploty stručně vyjádřit na obrázku níže:
III. Pochopení ASME SA213 T91
3.1 Ocel T91 principem legování, zejména přidáním malého množství niobu, vanadu a dalších stopových prvků, výrazně zlepšuje pevnost při vysokých teplotách a odolnost proti oxidaci ve srovnání s ocelí 12 Cr1MoV, ale její svařovací výkon je špatný.
3.2 Ocel T91 má větší tendenci k chladu Praskání během svařování a je třeba ji před svařováním předehřát na 200 ~ 250 ℃, přičemž teplota mezivrstvy se udržuje na 200 ~ 300 ℃, což může účinně zabránit vzniku trhlin za studena.
3.3 Tepelné zpracování oceli T91 po svařování musí být ochlazeno na 100 ~ 150 ℃, izolace jedna hodina, teplota zahřívání a temperování na 730 ~ 780 ℃, doba izolace ne kratší než jedna h a nakonec ne více než 5 ℃ / min rychlost chlazení na pokojovou teplotu.
IV. Výrobní proces ASME SA213 T91
Výrobní proces SA213 T91 vyžaduje několik metod, včetně tavení, děrování a válcování. Proces tavení musí řídit chemické složení, aby bylo zajištěno, že ocelová trubka má vynikající odolnost proti korozi. Procesy děrování a válcování vyžadují přesné řízení teploty a tlaku, aby se získaly požadované mechanické vlastnosti a rozměrová přesnost. Ocelové trubky je navíc potřeba tepelně zpracovat, aby se odstranilo vnitřní pnutí a zlepšila se odolnost proti korozi.
V. Aplikace ASME SA213 T91
ASME SA213 T91 je žáruvzdorná ocel s vysokým obsahem chrómu, která se používá hlavně při výrobě vysokoteplotních přehříváků a přihříváků a dalších tlakových částí kotlů podkritických a nadkritických elektráren s teplotami kovových stěn nepřesahujícími 625 °C a lze ji také použít jako vysoké -teplotně tlakové části tlakových nádob a jaderné energetiky. SA213 T91 má vynikající odolnost proti tečení a dokáže si udržet stabilní velikost a tvar při vysokých teplotách a při dlouhodobém zatížení. Mezi jeho hlavní aplikace patří kotle, přehříváky, výměníky tepla a další zařízení v energetickém, chemickém a naftovém průmyslu. Je široce používán ve vodou chlazených stěnách vysokotlakých kotlů, ekonomizérů, přehřívačů, přihřívačů a trubek v petrochemickém průmyslu.