13Cr ve Süper 13Cr: Karşılaştırmalı Bir Analiz

Petrol ve gaz endüstrisinin zorlu ortamında, operasyonların uzun ömürlülüğünü ve verimliliğini sağlamak için malzeme seçimi çok önemlidir. Mevcut sayısız malzeme arasında 13Cr ve Süper 13Cr paslanmaz çelikler, dikkat çekici özellikleri ve zorlu ortamlara uygunluklarıyla öne çıkıyor. Bu malzemeler, korozyona karşı olağanüstü direnç ve sağlam mekanik performans sağlayarak endüstride devrim yarattı. 13Cr ve Süper 13Cr paslanmaz çeliklerin benzersiz özelliklerini ve uygulamalarını inceleyelim.

13Cr Paslanmaz Çeliği Anlamak

Yaklaşık 13% krom içeren martensitik bir alaşım olan 13Cr paslanmaz çelik, petrol ve gaz sektöründe temel malzeme haline gelmiştir. Bileşimi tipik olarak az miktarda karbon, manganez, silikon, fosfor, kükürt ve molibden içerir ve performans ile maliyet arasında bir denge sağlar.

13Cr'nin Kritik Özellikleri:

  • Korozyon Direnci: 13Cr, özellikle CO2 içeren ortamlarda korozyona karşı övgüye değer bir direnç sunar. Bu, aşındırıcı elementlere maruz kalmanın beklendiği sondaj borusu ve muhafazasında kullanım için idealdir.
  • Mekanik Dayanım: Orta düzeyde mekanik mukavemete sahip 13Cr, çeşitli uygulamalar için gerekli dayanıklılığı sağlar.
  • Tokluk ve Sertlik:Malzeme, delme ve çıkarma işlemlerinde karşılaşılan mekanik gerilimlere dayanmak için gerekli olan iyi tokluk ve sertliğe sahiptir.
  • Kaynaklanabilirlik: 13Cr, oldukça iyi kaynaklanabilirliği ile bilinir ve bu sayede imalat sırasında önemli komplikasyonlara yol açmadan çeşitli uygulamalarda kullanılabilir.

Petrol ve Gaz Uygulamaları: 13Cr paslanmaz çelik, hafif aşındırıcı ortamlara maruz kalan boru, muhafaza ve diğer bileşenlerin yapımında yaygın olarak kullanılır. Dengeli özellikleri, onu petrol ve gaz operasyonlarının bütünlüğünü ve verimliliğini sağlamak için güvenilir bir seçim haline getirir.

Tanıtımı Süper 13Cr: Geliştirilmiş Alaşım

Super 13Cr, nikel ve molibden gibi ek alaşım elementlerini bünyesine katarak 13Cr'nin avantajlarını bir adım daha ileriye taşıyor. Bu, özellikleri geliştirerek daha agresif aşındırıcı ortamlar için uygun hale getirir.

Süper 13Cr'nin Kritik Özellikleri:

  • Üstün Korozyon Direnci: Super 13Cr, özellikle yüksek CO2 seviyeleri ve H2S varlığı içeren ortamlarda standart 13Cr'ye kıyasla gelişmiş korozyon direnci sunar. Bu, onu daha zorlu koşullar için mükemmel bir seçim haline getirir.
  • Daha Yüksek Mekanik Mukavemet: Alaşım daha yüksek mekanik mukavemete sahip olduğundan, daha önemli gerilimlere ve basınçlara dayanabilir.
  • Geliştirilmiş Dayanıklılık ve Sertlik: Daha iyi dayanıklılık ve sertliğe sahip Super 13Cr, zorlu uygulamalarda daha fazla dayanıklılık ve uzun ömür sağlar.
  • Gelişmiş Kaynaklanabilirlik:Süper 13Cr'nin geliştirilmiş bileşimi daha iyi kaynaklanabilirlik sağlayarak, karmaşık üretim süreçlerinde kullanımını kolaylaştırmaktadır.

Petrol ve Gaz Uygulamaları: Super 13Cr, daha yüksek CO2 seviyeleri ve H2S varlığı gibi daha agresif aşındırıcı ortamlarda kullanım için tasarlanmıştır. Üstün özellikleri, zorlu petrol ve gaz sahalarındaki sondaj boruları, muhafaza boruları ve diğer kritik bileşenler için idealdir.

İhtiyaçlarınıza Göre Doğru Alaşımı Seçmek

13Cr ve Süper 13Cr paslanmaz çelikler arasındaki seçim nihayetinde petrol ve gaz operasyonlarınızın özel çevre koşullarına ve performans gereksinimlerine bağlıdır. 13Cr iyi korozyon direnci ve mekanik özelliklere sahip uygun maliyetli bir çözüm sunarken, Süper 13Cr daha zorlu ortamlar için gelişmiş performans sunar.

Kilit hususlar:

  • Çevre koşulları:Çalışma ortamındaki CO2, H2S ve diğer aşındırıcı unsurları değerlendirin.
  • Performans gereklilikleri: Belirli bir uygulama için gerekli mekanik mukavemeti, tokluğu ve sertliği belirleyin.
  • Maliyet ve Fayda: Malzemenin maliyetini, geliştirilmiş özelliklerin ve daha uzun servis ömrünün faydalarıyla karşılaştırın.

Çözüm

Sürekli gelişen petrol ve gaz endüstrisinde, 13Cr ve Süper 13Cr paslanmaz çelikler gibi malzemelerin seçilmesi, operasyonların güvenilirliğini, verimliliğini ve emniyetini sağlamak için kritik öneme sahiptir. Bu alaşımların benzersiz özelliklerini ve uygulamalarını anlamak, endüstri profesyonellerinin bilinçli kararlar almasını ve nihayetinde projelerinin başarısına ve sürdürülebilirliğine katkıda bulunmasını sağlar. İster 13Cr'nin dengeli performansı, ister Süper 13Cr'nin üstün nitelikleri olsun, bu malzemeler petrol ve gaz sektörünün yeteneklerini ilerletmede önemli bir rol oynamaya devam ediyor.

Petrol Ülkesi Borulu Ürünler (OCTG)

Petrol ülkesi boru ürünleri (OCTG) özel uygulamalarına göre yükleme koşullarına tabi tutulan sondaj borusu, muhafaza borusu ve borulardan oluşan dikişsiz haddelenmiş ürün ailesidir. (Derin bir kuyunun şeması için Şekil 1'e bakın):

The Sondaj Borusu matkap ucunu döndüren ve sondaj sıvısını dolaştıran ağır, dikişsiz bir borudur. 30 ft (9 m) uzunluğundaki boru segmentleri alet bağlantılarıyla birleştirilmiştir. Matkap borusu aynı anda delmeyle yüksek torka, ölü ağırlığıyla eksenel gerilime ve sondaj sıvısını temizleyerek iç basınca maruz kalır. Ek olarak, dikey olmayan veya saptırılmış delme nedeniyle değişen eğilme yükleri bu temel yükleme kalıplarına bindirilebilir.
Muhafaza borusu sondaj deliğini kaplar. Ölü ağırlığından kaynaklanan eksenel gerilime, sıvının temizlenmesinden kaynaklanan iç basınca ve çevredeki kaya oluşumlarından kaynaklanan dış basınca maruz kalır. Pompalanan petrol veya gaz emülsiyonu, özellikle muhafazayı eksenel gerilime ve iç basınca maruz bırakır.
Borulama, petrol veya gazın kuyudan taşındığı bir borudur. Borulama segmentleri genellikle yaklaşık 30 ft [9 m] uzunluğundadır ve her iki ucunda dişli bir bağlantı bulunur.

Ekşi servis koşullarında korozyon direnci, özellikle muhafaza ve borular için önemli bir OCTG özelliğidir.

Tipik OCTG üretim süreçleri şunları içerir (tüm boyut aralıkları yaklaşıktır)

21 ile 178 mm OD arasındaki boyutlar için sürekli mandrel haddeleme ve itme tezgahı işlemleri.
140 ila 406 mm dış çap arasındaki boyutlar için tıpalı haddeleme.
250 ila 660 mm dış çap arasındaki boyutlar için çapraz haddeleme delme ve pilger haddeleme.
Bu işlemler genellikle kaynaklı boru için kullanılan şerit ve levha ürünler için geleneksel termomekanik işleme izin vermez. Bu nedenle, yüksek dayanımlı dikişsiz boru, uygun bir ısıl işlemle, örneğin söndürme ve temperlemeyle birlikte alaşım içeriğini artırarak üretilmelidir.

Şekil 1. Derin gelişen bir tamamlamanın şeması

Büyük boru duvarı kalınlığında bile tamamen martensitik bir mikro yapının temel gereksinimini karşılamak, iyi sertleştirilebilirlik gerektirir. Cr ve Mn, geleneksel ısıl işlem uygulanabilir çelikte iyi sertleştirilebilirlik üreten ana alaşım elementleridir. Ancak, iyi sülfür gerilim çatlağı (SSC) direnci gereksinimi kullanımlarını sınırlar. Mn, sürekli döküm sırasında ayrışma eğilimindedir ve hidrojen kaynaklı çatlama (HIC) direncini azaltan büyük MnS kapanımları oluşturabilir. Daha yüksek Cr seviyeleri, hidrojen toplayıcıları ve çatlak başlatıcıları olarak hareket eden, kaba plaka şeklindeki morfolojiye sahip Cr7C3 çökeltilerinin oluşumuna yol açabilir. Molibden ile alaşımlama, Mn ve Cr alaşımlamasının sınırlamalarının üstesinden gelebilir. Mo, Mn ve Cr'den çok daha güçlü bir sertleştiricidir, bu nedenle bu elementlerin azaltılmış miktarının etkisini hızla geri kazanabilir.

Geleneksel olarak, OCTG sınıfları karbon-manganez çelikleri (55-ksi mukavemet seviyesine kadar) veya 0.4% Mo'ya kadar Mo içeren sınıflardı. Son yıllarda, derin kuyu delme ve aşındırıcı ataklara neden olan kirleticiler içeren rezervuarlar, hidrojen gevrekleşmesine ve SCC'ye dayanıklı daha yüksek mukavemetli malzemeler için güçlü bir talep yarattı. Yüksek temperlenmiş martensit, daha yüksek mukavemet seviyelerinde SSC'ye en dirençli yapıdır ve 0.75% Mo konsantrasyonu, akma mukavemeti ve SSC direncinin optimum kombinasyonunu üretir.

Bilmeniz Gereken Bir Şey: Flanşlı Yüzey Kaplaması

The ASME B16.5 kodu Flanş yüzünün (yükseltilmiş yüz ve düz yüz), bu yüzeyin contayla uyumlu olmasını ve yüksek kaliteli bir sızdırmazlık sağlamasını sağlamak için belirli bir pürüzlülüğe sahip olmasını gerektirir.

İnç başına 30 ila 55 oluk ve bunun sonucunda 125 ila 500 mikro inç arasında bir pürüzlülüğe sahip eşmerkezli veya spiral tırtıklı bir yüzey gereklidir. Bu, metal flanşların conta temas yüzeyi için flanş üreticileri tarafından çeşitli yüzey bitirme derecelerinin sunulmasına olanak tanır.

Flanş yüz kaplaması

Tırtıklı Kaplama

Stok Bitişi
Herhangi bir flanş yüzey kaplaması arasında en yaygın olarak kullanılanıdır, çünkü pratik olarak tüm sıradan servis koşullarına uygundur. Sıkıştırma altında, bir contanın yumuşak yüzü bu cilaya gömülecek, bu da bir sızdırmazlık oluşturulmasına yardımcı olacak ve eşleşen yüzeyler arasında yüksek düzeyde sürtünme oluşturulacaktır.

Bu flanşların cilası, 12 inçe kadar devir başına 0,8 mm ilerleme hızında 1,6 mm yarıçaplı yuvarlak uçlu bir aletle üretilir. 14 inç ve daha büyük boyutlar için son işlem, devir başına 1,2 mm ilerlemeyle 3,2 mm'lik yuvarlak uçlu bir aletle yapılır.

Flanş yüzey kaplaması - Hazır KaplamaFlanş yüzey kaplaması - Hazır Kaplama

Spiral Tırtıklı
Bu aynı zamanda sürekli veya fonografik bir spiral oyuktur, ancak oluğun tipik olarak 45° açılı çentikli bir "V" geometrisi oluşturan 90°'lik bir alet kullanılarak oluşturulması açısından stok kaplamadan farklıdır.

Flanş yüzeyi - Spiral Tırtıklı

Konsantrik Tırtıklı
Adından da anlaşılacağı gibi bu yüzey eşmerkezli oluklardan oluşur. 90°'lik bir alet kullanılır ve çentikler yüz boyunca eşit aralıklarla yerleştirilir.

Flanş yüzeyi - Eşmerkezli Tırtıklı

Pürüzsüz Son İşlem
Bu kaplama görsel olarak belirgin hiçbir alet işareti göstermez. Bu yüzeyler tipik olarak çift ceketli, yassı çelik ve oluklu metal gibi metal kaplamalı contalar için kullanılır. Pürüzsüz yüzeyler bir sızdırmazlık oluşturmak için birleşir ve bir sızdırmazlık sağlamak için karşıt yüzlerin düzlüğüne bağlıdır. Bu, tipik olarak, conta temas yüzeyinin, 0,05 mm derinlikte devir başına 0,3 mm ilerleme hızında 0,8 mm yarıçaplı yuvarlak uçlu bir alet tarafından oluşturulan sürekli (bazen fonografik olarak da adlandırılan) spiral oluk tarafından oluşturulmasıyla elde edilir. Bu, Ra 3,2 ile 6,3 mikrometre (125 – 250 mikro inç) arasında bir pürüzlülükle sonuçlanacaktır.

Flanş yüzey kaplaması - Pürüzsüz Kaplama

Pürüzsüz Bitirme

Spiral contalar ve metalik olmayan contalar için uygun mudur? Bu tür ne tür bir uygulama için?

Pürüzsüz yüzeyli flanşlar, düşük basınçlı ve/veya geniş çaplı boru hatlarında daha yaygındır ve öncelikle katı metal veya spiral sarımlı contalarla kullanılmak üzere tasarlanmıştır.

Pürüzsüz yüzeyler genellikle makinelerde veya boru flanşları dışındaki flanşlı bağlantılarda bulunur. Pürüzsüz bir yüzeyle çalışırken, sürünme ve soğuk akışın etkilerini azaltmak için daha ince bir conta kullanmayı düşünmek önemlidir. Bununla birlikte, hem daha ince bir contanın hem de pürüzsüz yüzeyin, sızdırmazlığı sağlamak için kendi başlarına daha yüksek bir sıkıştırma kuvveti (yani cıvata torku) gerektirdiğine dikkat edilmelidir.

Flanşların conta yüzeylerinin Ra = 3,2 – 6,3 mikrometre (= 125 – 250 mikro inç AARH) pürüzsüz yüzey elde edilecek şekilde işlenmesi

AARH, Aritmetik Ortalama Pürüzlülük Yüksekliği anlamına gelir. Yüzeylerin pürüzlülüğünü (daha doğrusu düzgünlüğünü) ölçmek için kullanılır. 125 AARH, 125 mikro inç'in yüzeydeki iniş ve çıkışların ortalama yüksekliği olacağı anlamına gelir.

63 AARH Halka Tipi Bağlantılar için belirtilmiştir.

Spiral Yara Contaları için 125-250 AARH (pürüzsüz yüzey denir) belirtilmiştir.

Asbest OLMAYAN, Grafit levhalar, Elastomerler vb. yumuşak contalar için 250-500 AARH (stok kaplama denir) belirtilir. Yumuşak contalar için pürüzsüz bir yüzey kullanırsak yeterli "ısırma etkisi" oluşmaz ve dolayısıyla bağlantı bir sızıntı gelişebilir.

Bazen AARH, Pürüzlülük Ortalaması anlamına gelen ve aynı anlama gelen Ra olarak da anılır.

Farkları Bilin: TPEPE Kaplama vs 3LPE Kaplama

TPEPE antikorozif çelik boru ve 3PE antikorozif çelik boru, dış tek katmanlı polietilen ve dahili epoksi kaplı çelik boruya dayanan ürünleri yükseltiyor, yeraltına gömülü en gelişmiş antikorozif uzun mesafe çelik boru hattıdır. TPEPE antikorozif çelik boru ile 3PE antikorozif çelik boru arasındaki farkın ne olduğunu biliyor musunuz?

 

 

Kaplama Yapısı

TPEPE antikorozif çelik borunun dış duvarı 3PE sıcakta eriyen bağlantı sarım işleminden yapılmıştır. Epoksi reçine (alt katman), yapıştırıcı (ara katman) ve polietilen (dış katman) olmak üzere üç katmandan oluşur. İç duvar, termal püskürtme epoksi tozunun korozyon önleyici yolunu benimser ve toz, çelik-plastik kompozit bir katman oluşturmak için ısıtıldıktan ve yüksek sıcaklıkta kaynaştırıldıktan sonra çelik borunun yüzeyine eşit şekilde kaplanır, bu da kalınlığı büyük ölçüde artırır Kaplamanın ve kaplamanın yapışmasının, çarpma direnci ve korozyon direnci yeteneğini arttırır ve yaygın olarak kullanılmasını sağlar.

3PE antikorozif kaplama çelik boru, korozyon önleyici çelik borunun dışındaki üç poliolefin katmanını ifade eder, korozyon önleyici yapısı genellikle üç katmanlı bir yapıdan, epoksi tozu, yapıştırıcı ve PE'den oluşur, pratikte bu üç malzeme karışık eritme işlemi ve çelik boru sıkıca bir araya gelerek, bir polietilen (PE) korozyon önleyici kaplama tabakası oluşturur, iyi korozyon direncine, nem geçirgenliğine ve mekanik özelliklere karşı dirence sahiptir, petrol boru hattı endüstrisinde yaygın olarak kullanılmaktadır.

Pperformans Cözellikler

Genel çelik borudan farklı olarak, TPEPE antikorozif çelik boru iç ve dış antikorozif hale getirilmiştir, çok yüksek bir sızdırmazlığa sahiptir ve uzun süreli çalışma, büyük ölçüde enerji tasarrufu sağlayabilir, maliyetleri azaltabilir ve çevreyi koruyabilir. Güçlü korozyon direnci ve kullanışlı yapısıyla servis ömrü 50 yıla kadardır. Ayrıca düşük sıcaklıklarda iyi korozyon direncine ve darbe direncine sahiptir. Aynı zamanda yüksek epoksi mukavemetine, sıcakta eriyen yapıştırıcının iyi yumuşaklığına vb. Sahiptir ve yüksek korozyon önleyici güvenilirliğe sahiptir; Ayrıca, TPEPE antikorozif çelik borumuz, içme suyunun güvenliğini sağlamak için ulusal standart spesifikasyonlara sıkı sıkıya bağlı olarak üretilir ve antikorozif çelik boru içme suyu güvenlik sertifikası alınır.

Polietilen malzemeden yapılmış 3PE antikorozif çelik boru, bu malzeme iyi korozyon direncine sahiptir ve antikorozif çelik borunun servis ömrünü doğrudan uzatır.

3PE antikorozif çelik boru, farklı özellikleri nedeniyle sıradan sınıf ve güçlendirme sınıfına ayrılabilir, sıradan 3PE antikorozif çelik borunun PE kalınlığı yaklaşık 2,0 mm'dir ve güçlendirme sınıfının PE kalınlığı yaklaşık 2,7 mm'dir. Muhafaza borusunda sıradan bir dış korozyon önleyici olarak sıradan kalite fazlasıyla yeterlidir. Asit, alkali, doğal gaz ve diğer sıvıları doğrudan taşımak için kullanılıyorsa, güçlendirilmiş 3PE kalite korozyon önleyici çelik boru kullanmayı deneyin.

Yukarıdakiler, TPEPE antikorozif çelik boru ile 3PE antikorozif çelik boru arasındaki farkla ilgilidir; esas olarak performans özelliklerine ve farklı uygulamalara yansıyan, uygun antikorozif çelik borunun doğru seçimi, gereken rolü oynar.

Petrol Sondaj Projelerinde Kullanılan Muhafaza Boruları için Diş Göstergeleri

Petrol Sondaj Projelerinde Kullanılan Muhafaza Boruları için Diş Göstergeleri

Petrol ve gaz endüstrisinde, sondaj operasyonları sırasında kuyuların yapısal bütünlüğünün korunmasında muhafaza boruları kritik bir rol oynar. Bu kuyuların güvenli ve verimli bir şekilde çalışmasını sağlamak için muhafaza borularındaki dişler hassas bir şekilde üretilmeli ve kapsamlı bir şekilde incelenmelidir. İşte bu noktada diş göstergeleri vazgeçilmez hale gelir.

Muhafaza boruları için diş göstergeleri, petrol kuyularının performansını ve güvenliğini doğrudan etkileyen doğru diş açma işleminin sağlanmasına yardımcı olur. Bu blogda, diş göstergelerinin önemini, petrol sondajı projelerinde nasıl kullanıldıklarını ve yaygın endüstri endişelerini gidermeye nasıl yardımcı olduklarını inceleyeceğiz.

1. Diş Ölçüleri Nelerdir?

Diş göstergeleri, dişli bileşenlerin boyutsal doğruluğunu ve uyumunu doğrulamak için kullanılan hassas ölçüm araçlarıdır. Petrol sondajı bağlamında, endüstri standartlarını karşıladıklarından ve kuyuda güvenli, sızdırmaz bağlantılar oluşturacaklarından emin olmak için muhafaza borularındaki dişleri incelemek için önemlidirler.

Diş Ölçer Çeşitleri:

  • Halka Ölçüleri: Bir borunun dış dişlerini kontrol etmek için kullanılır.
  • Tapa Ölçerler: Bir boru veya bağlantı parçasının iç dişlerini incelemek için kullanılır.
  • Kumpas Tipi Ölçüm Cihazları: Bu ölçüm aletleri, dişin çapını ölçerek doğru ebat ve uyumu garanti eder.
  • API İş Parçacığı Ölçerleri: Özellikle Amerikan Petrol Enstitüsü (API) tarafından petrol ve gaz uygulamaları için belirlenen standartları karşılamak üzere tasarlanmıştır.

2. Petrol Sondajında Muhafaza Borularının Rolü

Muhafaza boruları, sondaj işlemi sırasında ve sonrasında kuyu deliğini kaplamak için kullanılır. Kuyuya yapısal bütünlük sağlar ve yeraltı suyunun kirlenmesini önler, ayrıca petrol veya gazın rezervuardan güvenli bir şekilde çıkarılmasını sağlar.

Petrol kuyuları, her biri farklı boyutta muhafaza borusu gerektiren birden fazla aşamada delinir. Bu borular, dişli bağlantı parçaları kullanılarak uçtan uca bağlanır ve güvenli ve sürekli bir muhafaza dizisi oluşturur. Bu dişli bağlantıların doğru ve güvenli olduğundan emin olmak, sızıntıları, patlamaları ve diğer arızaları önlemek için kritik öneme sahiptir.

3. Petrol Sondajında Diş Ölçerler Neden Önemlidir?

Petrol sondajında karşılaşılan zorlu koşullar (yüksek basınçlar, aşırı sıcaklıklar ve aşındırıcı ortamlar) her bileşende hassasiyet gerektirir. Diş göstergeleri, muhafaza borularındaki dişlerin tolerans dahilinde olmasını sağlayarak şunlara yardımcı olur:

  • Güvenli Bir Uyum Sağlayın: Doğru şekilde ayarlanmış dişler, boruların ve bağlantı parçalarının birbirine sıkıca oturmasını sağlayarak, maliyetli arızalara veya çevresel hasara yol açabilecek sızıntıları önler.
  • Kuyu Arızasını Önleyin: Kötü dişli bağlantılar, kuyu bütünlüğü sorunlarının önde gelen nedenlerinden biridir. Dişli göstergeleri, üretim hatalarını erken tespit etmeye yardımcı olarak sondaj operasyonları sırasında felaketle sonuçlanacak arızaları önler.
  • Güvenliğinizi Koruyun: Petrol sondajında güvenlik en önemli unsurdur. Dişli göstergeleri, muhafaza bağlantılarının yeraltında karşılaşılan yüksek basınçlara dayanacak kadar sağlam olmasını sağlayarak, çalışanları ve ekipmanı potansiyel olarak tehlikeli durumlardan korur.

4. Petrol Sondaj Projelerinde Diş Ölçerler Nasıl Kullanılır?

Dişli ölçerler, bir petrol sondaj projesinin çeşitli aşamalarında, muhafaza borularının üretiminden saha denetimlerine kadar kullanılır. Aşağıda bunların nasıl uygulandığına dair adım adım bir genel bakış verilmiştir:

1. Üretim Denetimi:

Üretim sırasında, muhafaza boruları ve kaplinler güvenli bir uyum sağlamak için hassas diş açma ile üretilir. Bu süreç boyunca dişlerin gerekli standartları karşıladığını doğrulamak için diş göstergeleri kullanılır. Herhangi bir diş tolerans dışına çıkarsa, gelecekteki sorunları önlemek için yeniden işlenir veya atılır.

2. Saha Denetimi:

Muhafaza boruları kuyuya indirilmeden önce, saha mühendisleri hem boruları hem de kaplinleri incelemek için diş ölçerler kullanır. Bu, dişlerin hala tolerans dahilinde olduğundan ve taşıma veya elleçleme sırasında hasar görmediğinden emin olur.

3. Yeniden Kalibrasyon ve Bakım:

Sürekli doğruluğu garantilemek için diş göstergelerinin kendileri düzenli olarak kalibre edilmelidir. Bu, diş açmada küçük bir tutarsızlığın bile maliyetli arızalara yol açabileceği petrol endüstrisinde özellikle önemlidir.

5. Petrol ve Gaz Endüstrisinde Temel Diş Açma Standartları

Dişli göstergeleri, petrol ve gaz operasyonlarında uyumluluk ve güvenliği sağlamak için sıkı endüstri standartlarına uymalıdır. Muhafaza boruları için en yaygın kullanılan standartlar, Amerikan Petrol Enstitüsü (API), muhafaza, boru ve hat borusu dişleri için teknik özellikleri yönetir. Bunlar şunları içerir:

  • API5B: Muhafaza, boru ve hat borularının diş muayenesi için boyutları, toleransları ve gereklilikleri belirtir.
  • API 5CT: Petrol kuyuları için muhafaza ve boruların malzemelerini, imalatını ve testini düzenler.
  • API Destek Konuları (BTC):Genellikle muhafaza borularında kullanılan bu dişler, geniş yük taşıma yüzeyine sahip olup, yüksek gerilimli ortamlar için idealdir.

Bu standartlara uyumun sağlanması kritik önem taşıyor çünkü bunlar, aşırı işletme koşulları altında petrol ve doğalgaz kuyularının bütünlüğünü korumak için tasarlandı.

6. Kılıf Boruları İçin Diş Açmada Genel Zorluklar ve Diş Ölçerlerin Nasıl Yardımcı Olduğu

1. Taşıma Sırasında İplik Hasarı:

Muhafaza boruları genellikle uzak yerlere taşınır ve taşıma sırasında hasar meydana gelebilir. Diş göstergeleri, sahada incelemeye olanak tanır ve borular kuyuya indirilmeden önce hasarlı dişlerin tespit edilip onarılmasını sağlar.

2. Zamanla İplik Aşınması:

Bazı durumlarda, muhafaza borularının çıkarılıp yeniden kullanılması gerekebilir. Zamanla, dişler aşınabilir ve bağlantının bütünlüğünü tehlikeye atabilir. Diş göstergeleri aşınmayı tespit edebilir ve mühendislerin muhafaza borusunun yeniden kullanılıp kullanılamayacağına veya yeni boruların gerekli olup olmadığına karar vermesini sağlar.

3. Uyumsuz Konular:

Farklı muhafaza üreticilerinin dişlerinde ufak farklılıklar olabilir ve bu da aynı kuyuda farklı kaynaklardan gelen borular kullanıldığında olası sorunlara yol açabilir. Diş göstergeleri uyumsuzlukları belirlemeye ve kullanılan tüm boruların birbirleriyle uyumlu olmasını sağlamaya yardımcı olabilir.

4. Kalite Güvencesi:

Diş göstergeleri, hem üretim sürecinde hem de saha operasyonlarında kalite kontrollerini gerçekleştirmenin güvenilir bir yolunu sunarak, bir projede kullanılan tüm muhafaza borularında tutarlılığı garanti eder.

7. Petrol Sondajında Diş Ölçerlerin Kullanımına Yönelik En İyi Uygulamalar

İplik göstergelerinin etkinliğini en üst düzeye çıkarmak ve kuyu bütünlüğü sorunları riskini en aza indirmek için operatörler şu en iyi uygulamaları izlemelidir:

  • Ölçüm Cihazlarının Düzenli Kalibrasyonu: Diş ölçüm cihazlarının doğru ölçümler sağladığından emin olmak için düzenli olarak kalibre edilmesi gerekir.
  • Teknisyenler İçin Eğitim: Saha ve üretim teknisyenlerinin diş ölçüm aletlerinin kullanımı konusunda uygun şekilde eğitildiğinden ve sonuçları doğru bir şekilde yorumlayabildiğinden emin olun.
  • Görsel ve Ölçüm Bazlı Denetimler: Diş göstergeleri hassasiyet sağlasa da, ezik, korozyon veya aşınma gibi hasarlara karşı görsel inceleme de kritik öneme sahiptir.
  • Veri Takibi: Zaman içinde aşınma veya hasar modellerini izlemek ve öngörücü bakım sağlamak için tüm diş denetimlerinin kayıtlarını tutun.

Çözüm

Muhafaza boruları için diş göstergeleri, petrol sondaj operasyonlarının önemli bir bileşenidir ve muhafaza borularının doğru şekilde dişlenmesini ve endüstrinin sıkı taleplerini karşılamasını sağlamaya yardımcı olur. Üretim, taşıma ve sondaj aşamalarında diş göstergeleri kullanarak, petrol ve gaz operatörleri projelerinin güvenliğini, güvenilirliğini ve verimliliğini artırabilir.

Her bağlantının önemli olduğu petrol sondajında, dişli göstergelerinin sunduğu hassasiyet, başarılı bir operasyon ile maliyetli bir başarısızlık arasındaki fark anlamına gelebilir. Bu araçların düzenli kullanımı, endüstri standartlarına uyumla birlikte, kuyu muhafazalarının uzun vadeli bütünlüğünü ve sondaj projesinin genel güvenliğini sağlar.

Plastik kaplı çelik borular ile plastik kaplı çelik borular arasındaki farklar

Plastik kaplı Çelik Borular ve Plastik kaplı Çelik Borular

  1. Plastik kaplı çelik boru:
  • Tanım: Plastik kaplı çelik boru, taban borusu olarak çelik borudan yapılmış, iç ve dış yüzeyleri işlenmiş, dış tarafı çinko kaplama ve fırın boyası veya sprey boya ile kaplanmış ve polietilen plastik veya diğer malzemelerle kaplanmış çelik-plastik kompozit bir üründür. korozyon önleyici katmanlar.
  • Sınıflandırma: Plastik kaplı çelik boru, soğuk su plastik kaplı çelik boruya, sıcak su kaplı plastik çelik boruya ve plastik haddeleme plastik kaplı çelik boruya ayrılmıştır.
  • Astar plastiği: polietilen (PE), ısıya dayanıklı polietilen (PE-RT), çapraz bağlı polietilen (PE-X), polipropilen (PP-R) sert polivinil klorür (PVC-U), klorlu polivinil klorür (PVC-C) ).
  1. Plastik kaplı çelik boru:
  • Tanım: Plastik kaplı çelik boru, taban borusu çelik boru ve kaplama malzemesi plastikten oluşan çelik-plastik kompozit bir üründür. İç ve dış yüzeyler eritilir ve plastik bir tabaka veya başka bir korozyon önleyici tabaka ile kaplanır.
  • Sınıflandırma: Plastik kaplı çelik boru, farklı kaplama malzemelerine göre polietilen kaplı çelik boru ve epoksi reçine kaplı çelik boruya ayrılmıştır.
  • Plastik kaplama malzemesi: polietilen tozu, polietilen bant ve epoksi reçine tozu.
  1. Ürün etiketlemesi:
  • Soğuk su için plastik kaplamalı çelik borunun kod numarası SP-C'dir.
  • Sıcak su için plastik kaplamalı çelik borunun kod numarası SP-CR'dir.
  • Polietilen kaplı çelik borunun kodu SP-T-PE'dir.
  • Epoksi kaplı çelik borunun kodu SP-T-EP'dir.
  1. Üretim süreci:
  • Plastik astar: Çelik boru ön işlemden geçirildikten sonra, plastik borunun dış duvarı eşit şekilde yapıştırıcı ile kaplanır ve daha sonra genişlemesini ve çelik-plastik kompozit bir ürün oluşturmasını sağlamak için çelik boruya yerleştirilir.
  • Plastik kaplama: ısıtmadan sonra çelik boru ön işlemi, yüksek hızlı plastik kaplama işlemi ve ardından çelik-plastik kompozit ürünlerin oluşumu.
  1. Plastik kaplı çelik boruların ve plastik kaplı çelik boruların performansı:
  • Plastik kaplı çelik boruların plastik tabakasının özelliği:

Yapışma mukavemeti: Soğuk su için plastik kaplı borunun çelik ile astar plastiği arasındaki bağlanma mukavemeti 0,3Mpa'dan (30N/cm2) az olmamalıdır: çelik ile plastik astarlı borunun astar plastiği arasındaki yapışma mukavemeti sıcak su borusu 1,0Mpa'dan (100N/cm2) az olmamalıdır.

Dış korozyon önleme performansı: galvanizli pişirme boyası veya sprey boyadan sonra ürün, oda sıcaklığında 3% (ağırlık, hacim oranı) sodyum klorür sulu çözeltisinde 24 saat bekletilir, görünüm korozyon beyazı, soyulma, kabarma veya kırışıklık olmamalıdır. .

Düzleştirme testi: Plastik kaplı çelik boru, düzleştirilmiş borunun dış çapının 1/3'ünden sonra çatlamaz ve çelik ile plastik arasında hiçbir ayrım yoktur.

  • Plastik kaplı çelik borunun kaplama performansı:

İğne deliği testi: Plastik kaplı çelik borunun iç yüzeyi bir elektrikli kıvılcım detektörü tarafından tespit edildi ve hiçbir elektrik kıvılcımı oluşmadı.

Yapışma: Polietilen kaplamanın yapışması 30N/10mm'den az olmamalıdır. Epoksi reçine kaplamanın yapışma kuvveti 1 ~ 3 derecedir.

Düzleşme testi: Polietilen kaplı çelik borunun dış çapının 2/3'ü düzleştirildikten sonra herhangi bir çatlak oluşmadı. Epoksi reçine kaplı çelik borunun dış çapının 4/5'inden sonra çelik boru ile kaplama arasında soyulma meydana gelmedi düzleştirildi.