Söndürülmüş SAE 4140 Dikişsiz Çelik Borulardaki Halka Şeklindeki Çatlakların Nedenlerinin Analizi
SAE 4140 dikişsiz çelik borunun boru ucundaki halka şeklindeki çatlağın nedeni, kimyasal bileşim sınavı, sertlik testi, metalografik gözlem, taramalı elektron mikroskobu ve enerji spektrum analizi ile incelenmiştir. Sonuçlar, SAE 4140 dikişsiz çelik borunun halka şeklindeki çatlağının genellikle borunun ucunda oluşan bir söndürme çatlağı olduğunu göstermektedir. Söndürme çatlağının nedeni, iç ve dış duvarlar arasındaki farklı soğuma hızlarıdır ve dış duvar soğuma hızı iç duvardan çok daha yüksektir, bu da iç duvar pozisyonuna yakın gerilim yoğunlaşmasından kaynaklanan çatlama arızasına neden olur. Halka şeklindeki çatlak, söndürme sırasında çelik borunun iç duvarının soğuma hızını artırarak, iç ve dış duvar arasındaki soğuma hızının düzgünlüğünü iyileştirerek ve söndürme gerilimini kendiliğinden tavlayarak azaltmak için söndürmeden sonra sıcaklığı 150 ~ 200 ℃ içinde kontrol ederek ortadan kaldırılabilir.
SAE 4140, CrMo düşük alaşımlı yapısal çeliktir, Amerikan ASTM A519 standart sınıfıdır, Mn içeriğindeki artışa bağlı olarak ulusal standart 42CrMo'dur; bu nedenle, SAE 4140 sertleştirilebilirliği daha da geliştirilmiştir. SAE 4140 dikişsiz çelik boru, katı dövme yerine, çeşitli tipte içi boş millerin, silindirlerin, kovanların ve diğer parçaların haddelenmiş kütük üretimi, üretim verimliliğini önemli ölçüde artırabilir ve çelikten tasarruf sağlayabilir; SAE 4140 çelik boru, petrol ve gaz sahası madencilik vida delme aletlerinde ve diğer sondaj ekipmanlarında yaygın olarak kullanılmaktadır. SAE 4140 dikişsiz çelik boru tavlama işlemi, ısıl işlem sürecini optimize ederek farklı çelik mukavemetleri ve tokluk eşleştirme gereksinimlerini karşılayabilir. Yine de, üretim sürecinde ürün teslimat kusurlarını etkilediği sıklıkla görülmektedir. Bu makale esas olarak borunun ucunun duvar kalınlığının ortasında söndürme işleminde SAE 4140 çelik boruya odaklanmakta, halka şeklinde bir çatlak kusur analizi üretmekte ve iyileştirme önlemleri ortaya koymaktadır.
1. Test Malzemeleri ve Yöntemleri
Bir şirket ∅ 139,7 × 31,75 mm SAE 4140 çelik sınıfı dikişsiz çelik boru için üretim süreci olan kütük ısıtma → delme → haddeleme → boyutlandırma → tavlama (850 ℃ 70 dakikalık söndürme süresi + borunun dışarıda su duşu soğutma + 735 ℃ 2 saatlik tavlama süresi) → Kusur Tespiti ve Muayenesi için özellikler üretti. Tavlama işleminden sonra, kusur tespit muayenesi, Şekil 1'de gösterildiği gibi, boru ucundaki duvar kalınlığının ortasında halka şeklinde bir çatlak olduğunu ortaya koydu; halka şeklinde çatlak, dışarıdan yaklaşık 21~24 mm uzaklıkta belirdi, borunun çevresini çevreledi ve kısmen süreksizdi, boru gövdesinde ise böyle bir kusur bulunamadı.
Çelik boru söndürme numunelerinin partisini söndürme analizi ve söndürme organizasyonunun gözlemlenmesi ve çelik borunun bileşiminin spektral analizi için alın, aynı zamanda, temperlenmiş çelik boru çatlaklarında çatlak mikro morfolojisini, tane boyutu seviyesini gözlemlemek için yüksek güçlü numuneler alın ve çatlakların iç bileşimi için bir spektrometre ile taramalı elektron mikroskobunda mikro alan analizi yapın.
2. Test Sonuçları
2.1 Kimyasal bileşim
Tablo 1'de kimyasal bileşim spektral analiz sonuçları gösterilmektedir ve elementlerin bileşimi ASTM A519 standardının gereklerine uygundur.
Tablo 1 Kimyasal bileşim analiz sonuçları (kütle kesri, %)
Öğe | C | Si | Mn | P | S | CR | Ay | Cu | Ni |
İçerik | 0.39 | 0.20 | 0.82 | 0.01 | 0.005 | 0.94 | 0.18 | 0.05 | 0.02 |
ASTM A519 Gereksinimi | 0.38-0.43 | 0.15-0.35 | 0.75-1.00 | ≤ 0,04 | ≤ 0,04 | 0.8-1.1 | 0.15-0.25 | ≤ 0,35 | ≤ 0,25 |
2.2 Boru Sertleştirilebilirlik Testi
Toplam duvar kalınlığı söndürme sertlik testinin söndürülmüş numunelerinde, toplam duvar kalınlığı sertlik sonuçları, Şekil 2'de gösterildiği gibi, Şekil 2'de görülebilir, söndürme sertliğinin dışından 21 ~ 24 mm'de önemli ölçüde düşmeye başladığı ve 21 ~ 24 mm'nin dışından borunun yüksek sıcaklıkta temperlendiği halka çatlak bölgesinde, duvar kalınlığının altında ve üstündeki alanların sertliğinin duvar kalınlığının konumu arasındaki aşırı farkın 5'e (HRC) veya buna yakın bir değere ulaştığı. Bu alanın alt ve üst duvar kalınlıkları arasındaki sertlik farkı yaklaşık 5 (HRC)'dir. Söndürülmüş durumdaki metalografik organizasyon Şekil 3'te gösterilmiştir. Şekil 3'teki metalografik organizasyondan; Borunun dış bölgesindeki organizasyonun az miktarda ferrit + martensit olduğu, iç yüzeye yakın organizasyonun ise az miktarda ferrit ve bainit ile söndürülmediği, bunun da borunun dış yüzeyinden borunun iç yüzeyine 21 mm mesafede düşük söndürme sertliğine yol açtığı görülmektedir. Boru cidarındaki halka çatlaklarının yüksek derecede tutarlılığı ve söndürme sertliğindeki aşırı farkın konumu, halka çatlaklarının söndürme işlemi sırasında oluşma olasılığının yüksek olduğunu düşündürmektedir. Halka çatlaklarının yeri ile düşük söndürme sertliği arasındaki yüksek tutarlılık, halka çatlaklarının söndürme işlemi sırasında oluşmuş olabileceğini göstermektedir.
2.3 Çelik borunun metalografik sonuçları sırasıyla Şekil 4 ve Şekil 5’te gösterilmektedir.
Çelik borunun matris organizasyonu, tane boyutu 8 olan temperlenmiş ostenit + az miktarda ferrit + az miktarda bainittir, bu ortalama bir temperlenmiş organizasyondur; çatlaklar, kristalin çatlama boyunca olan uzunlamasına yön boyunca uzanır ve çatlakların iki tarafı tipik olarak birbirine geçme özelliğine sahiptir; her iki tarafta da dekarbürizasyon olayı vardır ve çatlakların yüzeyinde yüksek sıcaklıkta gri oksit tabakası görülebilir. Her iki tarafta da dekarbürizasyon vardır ve çatlak yüzeyinde yüksek sıcaklıkta gri oksit tabakası görülebilir ve çatlağın yakınında metalik olmayan kapanımlar görülemez.
2.4 Çatlak kırılma morfolojisi ve enerji spektrumu analiz sonuçları
Kırık açıldıktan sonra, Şekil 6'da gösterildiği gibi, taramalı elektron mikroskobu altında kırığın mikro morfolojisi incelenir ve kırığın yüksek sıcaklıklara maruz kaldığı ve yüzeyde yüksek sıcaklıkta oksidasyon meydana geldiği görülür. Kırık esas olarak kristal kırığı boyunca olup, tane boyutu 20 ila 30 μm arasındadır ve kaba taneler ve anormal organizasyon kusurları bulunmaz; enerji spektrumu analizi, kırık yüzeyinin esas olarak demir ve oksitlerinden oluştuğunu ve anormal yabancı elementlerin görülmediğini gösterir. Spektral analiz, kırık yüzeyinin esas olarak demir ve oksitlerinden oluştuğunu ve anormal yabancı elementlerin bulunmadığını gösterir.
3 Analiz ve Tartışma
3.1 Çatlak kusurlarının analizi
Çatlak mikro morfolojisi açısından bakıldığında, çatlak açıklığı düzdür; kuyruk kavisli ve keskindir; çatlak uzama yolu kristal boyunca çatlamanın özelliklerini gösterir ve çatlağın iki tarafı, söndürme çatlaklarının olağan özellikleri olan tipik iç içe geçme özelliklerine sahiptir. Yine de, metalografik inceleme, çatlağın her iki tarafında, çelik borunun temperleme sıcaklığının 735 ℃ ve Ac1'in SAE 4140'ta 738 ℃ olması gerçeğini hesaba katarak, geleneksel söndürme çatlaklarının özellikleriyle uyumlu olmayan dekarbürizasyon fenomeni olduğunu bulmuştur; bu, söndürme çatlaklarının geleneksel özellikleriyle uyumlu değildir. Boru için kullanılan temperleme sıcaklığının 735 °C, SAE 4140'ın Ac1 sıcaklığının ise 738 °C olduğu ve bu değerlerin birbirine çok yakın olduğu göz önüne alındığında, çatlağın her iki tarafındaki dekarbürizasyonun, temperleme sırasındaki yüksek sıcaklıktaki temperlemeden (735 °C) kaynaklandığı ve borunun ısıl işleminden önce var olan bir çatlak olmadığı varsayılmaktadır.
3.2 Çatlama nedenleri
Söndürme çatlaklarının nedenleri genellikle söndürme ısıtma sıcaklığı, söndürme soğutma hızı, metalurjik kusurlar ve söndürme gerilmeleri ile ilgilidir. Kompozisyon analizi sonuçlarına göre, borunun kimyasal bileşimi ASTM A519 standardında SAE 4140 çelik sınıfının gereksinimlerini karşılamaktadır ve aşan elementler bulunmamıştır; çatlakların yakınında metalik olmayan kapanımlar bulunmamıştır ve çatlak kırığındaki enerji spektrumu analizi, çatlaklardaki gri oksidasyon ürünlerinin Fe ve oksitleri olduğunu ve anormal yabancı elementler görülmediğini göstermiştir, bu nedenle halka çatlaklarına metalurjik kusurların neden olduğu ihtimali göz ardı edilebilir; borunun tane boyutu derecesi Sınıf 8, tane boyutu derecesi Sınıf 7, tane boyutu derecesi Sınıf 8 ve tane boyutu derecesi Sınıf 8'dir. Borunun tane boyutu seviyesi 8'dir; tane rafine edilmiş ve kaba değildir, bu da söndürme çatlağının söndürme ısıtma sıcaklığı ile ilgisi olmadığını gösterir.
Söndürme çatlaklarının oluşumu, termal ve organizasyonel gerilimlere ayrılan söndürme gerilmeleriyle yakından ilgilidir. Termal gerilim, çelik borunun soğuma sürecinden kaynaklanır; çelik borunun yüzey tabakası ve kalbi soğuma hızı tutarlı değildir, bunun sonucunda malzemenin eşit olmayan büzülmesi ve iç gerilimler oluşur; sonuç olarak çelik borunun yüzey tabakası basınç gerilimlerine ve kalbi çekme gerilimlerine maruz kalır; doku gerilimleri, çelik boru organizasyonunun martensit dönüşümüne söndürülmesidir, iç gerilimlerin oluşumunda tutarsızlık hacminin genişlemesiyle birlikte, sonuçta oluşan gerilimlerin organizasyonu, çekme gerilimlerinin yüzey tabakası, çekme gerilimlerinin merkezidir. Çelik borudaki bu iki tür gerilim aynı parçada bulunur, ancak yön rolü zıttır; sonucun birleşik etkisi, iki gerilimden birinin baskın faktörü, termal gerilimin baskın rolü, iş parçasının kalp çekme, yüzey basıncının sonucudur; Doku stresinin baskın rolü, iş parçasının kalp çekme basıncı yüzey çekme basıncıdır.
SAE 4140 çelik boru söndürme, döner dış duş soğutma üretimi kullanılarak, dış yüzeyin soğutma hızı iç yüzeyden çok daha büyüktür, çelik borunun dış metali tamamen söndürülürken, iç metal tamamen söndürülmediğinden ferrit ve bainit organizasyonunun bir kısmını üretir, iç metal nedeniyle iç metal tamamen martensitik organizasyona dönüştürülemez, çelik borunun iç metali kaçınılmaz olarak martensitin dış duvarının genişlemesiyle oluşan çekme gerilimine maruz kalır ve aynı zamanda, farklı organizasyon türleri nedeniyle, özgül hacmi iç ve dış metal arasında farklıdır Aynı zamanda, çeşitli organizasyon türleri nedeniyle, metalin iç ve dış katmanlarının belirli hacmi farklıdır ve soğutma sırasında büzülme oranı aynı değildir, çekme gerilimi de iki organizasyon türünün arayüzünde üretilecektir ve gerilimin dağılımına termal gerilimler hakimdir ve borunun içindeki iki organizasyon türünün arayüzünde oluşan çekme gerilimi en büyüğü, borunun iç yüzeyine yakın duvar kalınlığı alanında (dış yüzeyden 21~24 mm uzaklıkta) oluşan halka söndürme çatlaklarıyla sonuçlanır; ayrıca, çelik borunun ucu, tüm borunun geometri açısından hassas bir parçasıdır ve stres üretmeye eğilimlidir. Ayrıca, borunun ucu, tüm borunun geometrik açıdan hassas bir parçasıdır ve stres yoğunlaşmasına eğilimlidir. Bu halka çatlağı genellikle sadece borunun ucunda oluşur ve bu tür çatlaklar boru gövdesinde bulunmamıştır.
Özetle, söndürülmüş SAE 4140 kalın duvarlı çelik boru halka şeklindeki çatlaklar, iç ve dış duvarların eşit olmayan şekilde soğutulmasından kaynaklanır; dış duvarın soğuma hızı iç duvarınkinden çok daha yüksektir; SAE 4140 kalın duvarlı çelik boru üretimi mevcut soğutma yöntemini değiştirmek için, sadece soğutma işleminin dışında kullanılamaz, çelik borunun iç duvarının soğumasını güçlendirme, kalın duvarlı çelik borunun iç ve dış duvarlarının soğutma hızının tekdüzeliğini iyileştirme, stres konsantrasyonunu azaltma, halka çatlaklarını ortadan kaldırma ihtiyacı. Halka çatlakları.
3.3 İyileştirme önlemleri
Söndürme çatlaklarını önlemek için, söndürme işlemi tasarımında, söndürme çekme gerilmelerinin gelişimine katkıda bulunan tüm koşullar, ısıtma sıcaklığı, soğutma işlemi ve boşaltma sıcaklığı dahil olmak üzere çatlakların oluşumu için faktörlerdir. Önerilen iyileştirilmiş işlem önlemleri şunları içerir: 830-850 ℃'lik söndürme sıcaklığı; borunun merkez hattıyla eşleşen bir iç nozulun kullanılması, uygun iç püskürtme akışının kontrolü, kalın duvarlı çelik borunun iç ve dış duvarlarının soğutma hızının tekdüzeliğini sağlamak için iç deliğin soğutma hızının iyileştirilmesi; 150-200 ℃'lik söndürme sonrası sıcaklığın kontrolü, kendiliğinden temperlenen çelik borunun artık sıcaklığının kullanılması, çelik borudaki söndürme gerilimlerini azaltır.
Geliştirilmiş teknolojinin kullanımı, düzinelerce çelik boru spesifikasyonuna göre ∅158,75 × 34,93 mm, ∅139,7 × 31,75 mm, ∅254 × 38,1 mm, ∅224 × 26 mm vb. üretir. Ultrasonik kusur muayenesinden sonra, ürünler halka söndürme çatlakları olmadan kalifiye edilir.
4. Sonuç
(1) Boru çatlaklarının makroskobik ve mikroskobik özelliklerine göre, SAE 4140 çelik boruların boru uçlarındaki halka çatlakları, genellikle boru uçlarında oluşan söndürme geriliminden kaynaklanan çatlama hasarına aittir.
(2) Söndürülmüş SAE 4140 kalın duvarlı çelik boru halka şeklindeki çatlaklar, iç ve dış duvarların eşit olmayan şekilde soğutulmasından kaynaklanır. Dış duvarın soğuma hızı, iç duvarınkinden çok daha yüksektir. Kalın duvarlı çelik borunun iç ve dış duvarlarının soğuma hızının düzgünlüğünü iyileştirmek için, SAE 4140 kalın duvarlı çelik boru üretiminin iç duvarın soğumasını güçlendirmesi gerekir.