13Cr vs Super 13Cr: En jämförande analys

I olje- och gasindustrins utmanande landskap är materialval avgörande för att säkerställa driftens livslängd och effektivitet. Bland de mängder av material som finns tillgängliga utmärker sig 13Cr och Super 13Cr rostfria stål för sina anmärkningsvärda egenskaper och lämplighet i krävande miljöer. Dessa material har revolutionerat branschen och ger exceptionell motståndskraft mot korrosion och robust mekanisk prestanda. Låt oss fördjupa oss i de unika egenskaperna och tillämpningarna av 13Cr och Super 13Cr rostfria stål.

Förstå 13Cr rostfritt stål

13Cr rostfritt stål, en martensitisk legering som innehåller cirka 13% krom, har blivit en stapelvara i olje- och gassektorn. Dess sammansättning innehåller vanligtvis små mängder kol, mangan, kisel, fosfor, svavel och molybden, vilket ger en balans mellan prestanda och kostnad.

Kritiska egenskaper för 13Cr:

  • Korrosionsbeständighet: 13Cr erbjuder berömvärd motståndskraft mot korrosion, särskilt i miljöer som innehåller CO2. Detta gör den idealisk för användning i borrhålsrör och hölje, där exponering för korrosiva element förväntas.
  • Mekanisk styrka: Med måttlig mekanisk styrka ger 13Cr den nödvändiga hållbarheten för olika applikationer.
  • Seghet och hårdhetMaterialet uppvisar god seghet och hårdhet, väsentligt för att motstå de mekaniska påfrestningar som uppstår vid borr- och extraktionsprocesser.
  • Svetsbarhet: 13Cr är känt för sin relativt goda svetsbarhet, vilket underlättar dess användning i olika applikationer utan betydande komplikationer under tillverkningen.

Tillämpningar inom olja och gas: 13Cr rostfritt stål används i stor utsträckning vid konstruktion av rör, hölje och andra komponenter som utsätts för milt korrosiva miljöer. Dess balanserade egenskaper gör den till ett pålitligt val för att säkerställa integriteten och effektiviteten i olje- och gasverksamheten.

Introducerar Super 13Cr: Den förbättrade legeringen

Super 13Cr tar fördelarna med 13Cr ett steg längre genom att inkludera ytterligare legeringselement som nickel och molybden. Detta förbättrar egenskaperna, vilket gör den lämplig för mer aggressiva korrosiva miljöer.

Kritiska egenskaper hos Super 13Cr:

  • Överlägsen korrosionsbeständighet: Super 13Cr erbjuder förbättrad korrosionsbeständighet jämfört med standard 13Cr, särskilt i miljöer som innehåller högre halter av CO2 och närvaron av H2S. Detta gör den till ett utmärkt val för mer utmanande förhållanden.
  • Högre mekanisk styrka: Legeringen har högre mekanisk hållfasthet, vilket säkerställer att den tål större påfrestningar och tryck.
  • Förbättrad seghet och hårdhet: Med bättre seghet och hårdhet ger Super 13Cr förbättrad hållbarhet och livslängd i krävande applikationer.
  • Förbättrad svetsbarhet: Super 13Crs förbättrade sammansättning resulterar i bättre svetsbarhet, vilket underlättar dess användning i komplexa tillverkningsprocesser.

Tillämpningar inom olja och gas: Super 13Cr är skräddarsydd för användning i mer aggressiva korrosiva miljöer, såsom de med högre halter av CO2 och närvaron av H2S. Dess överlägsna egenskaper är idealiska för borrhålsrör, hölje och andra kritiska komponenter i utmanande olje- och gasfält.

Att välja rätt legering för dina behov

Valet mellan 13Cr och Super 13Cr rostfritt stål beror ytterst på din olje- och gasverksamhets specifika miljöförhållanden och prestandakrav. Medan 13Cr ger en kostnadseffektiv lösning med bra korrosionsbeständighet och mekaniska egenskaper, erbjuder Super 13Cr förbättrad prestanda för mer krävande miljöer.

Viktiga överväganden:

  • Miljöförhållanden: Bedöm CO2, H2S och andra frätande element i driftsmiljön.
  • Prestationskrav: Bestäm nödvändig mekanisk hållfasthet, seghet och hårdhet för den specifika applikationen.
  • Kostnad vs. nytta: Väg kostnaden för materialet mot fördelarna med förbättrade egenskaper och längre livslängd.

Slutsats

I den ständigt utvecklande olje- och gasindustrin är valet av material som 13Cr och Super 13Cr rostfritt stål avgörande för att säkerställa driftens tillförlitlighet, effektivitet och säkerhet. Genom att förstå de unika egenskaperna och tillämpningarna av dessa legeringar kan branschfolk fatta välgrundade beslut, vilket i slutändan bidrar till framgång och hållbarhet för deras projekt. Oavsett om det är den balanserade prestandan hos 13Cr eller de överlägsna egenskaperna hos Super 13Cr, fortsätter dessa material att spela en avgörande roll för att utveckla kapaciteten inom olje- och gassektorn.

Oil Country Tubular Goods (OCTG)

Oljeland rörformiga varor (OCTG) är en familj av sömlösa valsade produkter som består av borrrör, hölje och rör som utsätts för belastningsförhållanden enligt deras specifika tillämpning. (se figur 1 för en schematisk bild av en djup brunn):

De Borrör är ett tungt sömlöst rör som roterar borrkronan och cirkulerar borrvätska. Rörsegment 30 fot (9m) långa är kopplade med verktygsskarvar. Borröret utsätts samtidigt för högt vridmoment genom borrning, axiell spänning genom sin egenvikt och inre tryck genom att tömma borrvätska. Dessutom kan alternerande böjbelastningar på grund av icke-vertikal eller avböjd borrning läggas över dessa grundläggande belastningsmönster.
Höljesrör fodrar borrhålet. Den utsätts för axiell spänning från dess dödvikt, inre tryck från vätskespolning och yttre tryck från omgivande stenformationer. Den pumpade olje- eller gasemulsionen utsätter särskilt höljet för axiell spänning och inre tryck.
Rör är ett rör genom vilket olja eller gas transporteras från borrhålet. Slangsegment är vanligtvis cirka 9 meter långa och har en gängad anslutning i varje ände.

Korrosionsbeständighet under sura driftsförhållanden är en avgörande OCTG-egenskap, speciellt för hölje och rör.

Typiska OCTG-tillverkningsprocesser inkluderar (alla dimensionsområden är ungefärliga)

Kontinuerlig dornrullning och tryckbänksprocesser för storlekar mellan 21 och 178 mm OD.
Pluggvalsning för storlekar mellan 140 och 406 mm OD.
Cross-roll piercing och pilger rolling för storlekar mellan 250 och 660 mm OD.
Dessa processer tillåter vanligtvis inte den termomekaniska bearbetningen som är vanliga för band- och plåtprodukterna som används för det svetsade röret. Därför måste höghållfasta sömlösa rör framställas genom att öka legeringshalten i kombination med en lämplig värmebehandling, såsom härdning och härdning.

Figur 1. Schematisk över en djupt blomstrande avslutning

Att uppfylla de grundläggande kraven på en helt martensitisk mikrostruktur, även vid stor rörväggtjocklek, kräver god härdbarhet. Cr och Mn är de viktigaste legeringselementen som ger god härdbarhet i konventionellt värmebehandlat stål. Kravet på god beständighet mot sulfidspänningssprickbildning (SSC) begränsar emellertid deras användning. Mn tenderar att segregera under kontinuerlig gjutning och kan bilda stora MnS-inneslutningar som minskar väte-inducerad sprickbildning (HIC) motstånd. Högre halter av Cr kan leda till bildning av Cr7C3-fällningar med grov plattaformad morfologi, som fungerar som väteuppsamlare och sprickinitiatorer. Legering med molybden kan övervinna begränsningarna med Mn- och Cr-legering. Mo är en mycket starkare härdare än Mn och Cr, så den kan snabbt återställa effekten av en minskad mängd av dessa element.

Traditionellt var OCTG-kvaliteter kol-manganstål (upp till hållfasthetsnivån 55 ksi) eller Mo-innehållande kvaliteter upp till 0,4% Mo. Under de senaste åren har djupa brunnsborrningar och reservoarer som innehåller föroreningar som orsakar korrosiva angrepp skapat en stark efterfrågan för material med högre hållfasthet som är resistenta mot väteförsprödning och SCC. Höghärdad martensit är den struktur som är mest resistent mot SSC vid högre hållfasthetsnivåer, och 0,75% Mo-koncentration ger den optimala kombinationen av sträckgräns och SSC-beständighet.

Något du behöver veta: Flänsfinish

De ASME B16.5-kod kräver att flänsytan (upphöjd yta och plan yta) har en specifik grovhet för att säkerställa att denna yta är kompatibel med packningen och ger en tätning av hög kvalitet.

En tandad yta, antingen koncentrisk eller spiral, krävs med 30 till 55 spår per tum och en resulterande grovhet mellan 125 och 500 mikrotum. Detta gör att olika kvaliteter av ytfinish kan göras tillgängliga av flänstillverkare för packningskontaktytan på metallflänsar.

Flänsyta

Tandad finish

Lagerfinish
Den mest använda av alla flänsytor, eftersom praktiskt taget är lämplig för alla vanliga serviceförhållanden. Under kompression kommer den mjuka ytan från en packning att bäddas in i denna finish, vilket hjälper till att skapa en tätning och en hög nivå av friktion genereras mellan de matchande ytorna.

Finishen för dessa flänsar genereras av ett verktyg med 1,6 mm radie med rund nos med en matningshastighet på 0,8 mm per varv upp till 12 tum. För storlekar 14 tum och större är finishen gjord med ett 3,2 mm rundnosverktyg med en matning på 1,2 mm per varv.

Flänsyta - Stock FinishFlänsyta - Stock Finish

Spiral tandad
Detta är också ett kontinuerligt eller fonografiskt spiralspår, men det skiljer sig från lagerfinishen genom att spåret vanligtvis genereras med ett 90°-verktyg som skapar en "V"-geometri med 45° vinklad tandning.

Flänsyta - Spiraltandad

Koncentriskt tandad
Som namnet antyder består denna finish av koncentriska spår. Ett 90° verktyg används och tandningarna är jämnt fördelade över ansiktet.

Flänsyta - koncentriskt tandad

Smidig avslutning
Denna finish visar inga visuellt synliga verktygsmarkeringar. Dessa ytbehandlingar används vanligtvis för packningar med metallbeklädnader såsom dubbelmantlad, platt stål och korrugerad metall. De släta ytorna passar ihop för att skapa en tätning och beror på de motstående ytornas planhet för att åstadkomma en tätning. Detta uppnås typiskt genom att packningskontaktytan bildas av ett kontinuerligt (ibland kallat fonografiskt) spiralspår som genereras av ett 0,8 mm-radius rundnosverktyg med en matningshastighet av 0,3 mm per varv med ett djup av 0,05 mm. Detta kommer att resultera i en grovhet mellan Ra 3,2 och 6,3 mikrometer (125 – 250 mikrotum).

Flänsyta - Smidig finish

SMIDIG AVSLUTNING

Är den lämplig för spiralpackningar och icke-metalliska packningar? För vilken typ av applikation är denna typ?

Släta flänsar är vanligare för lågtrycks- och/eller rörledningar med stor diameter och är främst avsedda för användning med solida metall- eller spirallindade packningar.

Släta ytbehandlingar finns vanligtvis på maskiner eller andra flänsförband än rörflänsar. När du arbetar med en slät finish är det viktigt att överväga att använda en tunnare packning för att minska effekterna av krypning och kallflöde. Det bör dock noteras att både en tunnare packning och den släta finishen, i och för sig, kräver en högre tryckkraft (dvs bultmoment) för att uppnå tätningen.

Bearbetning av packningsytor på flänsar till en slät finish på Ra = 3,2 – 6,3 mikrometer (= 125 – 250 mikrotum AARH)

AARH står för Arithmetic Average Roughness Height. Den används för att mäta ytornas grovhet (ganska jämnhet). 125 AARH betyder att 125 mikrotum är den genomsnittliga höjden för ytans upp- och nedgångar.

63 AARH är specificerad för ringtypskarvar.

125-250 AARH (det kallas slät finish) specificeras för spirallindade packningar.

250-500 AARH (det kallas lagerfinish) specificeras för mjuka packningar som icke-asbest, grafitplåtar, elastomerer etc. Om vi använder en slät finish för mjuka packningar kommer inte tillräckligt med "biteffekt" att uppstå och därav fogen kan utveckla en läcka.

Ibland kallas AARH också för Ra som står för Roughness Average och betyder detsamma.

Lär dig skillnaderna: TPEPE-beläggning vs 3LPE-beläggning

TPEPE rostskyddande stålrör och 3PE rostskyddande stålrör är uppgraderingsprodukter baserade på det yttre enkelskiktspolyeten och inre epoxibelagda stålrör, det är den mest avancerade korrosionsskyddande långväga stålrörledningen begravd under jord. Vet du vad som är skillnaden mellan TPEPE rostskyddande stålrör och 3PE rostskyddande stålrör?

 

 

Beläggningsstruktur

Ytterväggen på TPEPE korrosionsskyddande stålrör är gjord av 3PE varmsmältningsövergångslindningsprocess. Den består av tre skikt, epoxiharts (bottenskikt), lim (mellanskikt) och polyeten (yttre skikt). Den inre väggen antar korrosionsskyddet för termisk sprutning av epoxipulver, och pulvret är jämnt belagt på ytan av stålröret efter att ha värmts upp och smälts vid hög temperatur för att bilda ett stål-plastkompositskikt, vilket avsevärt förbättrar tjockleken av beläggningen och vidhäftningen av beläggningen, förbättrar förmågan till stötbeständighet och korrosionsbeständighet och gör den allmänt använd.

3PE rostskyddsbeläggning stålrör hänvisar till de tre skikten av polyolefin utanför korrosionsskyddande stålrör, dess korrosionsskyddande struktur består i allmänhet av en treskiktsstruktur, epoxipulver, lim och PE, i praktiken, dessa tre material blandad smältbearbetning och stål rör stadigt samman, bildar ett lager av polyeten (PE) rostskyddande beläggning, har god korrosionsbeständighet, motståndskraft mot fuktgenomsläpplighet och mekaniska egenskaper, används ofta i oljeledningsindustrin.

Pprestanda Cegenskaper

Till skillnad från det allmänna stålröret har TPEPE rostskyddande stålrör gjorts inre och yttre korrosionsskyddande, har en mycket hög tätning och långvarig drift kan avsevärt spara energi, minska kostnaderna och skydda miljön. Med stark korrosionsbeständighet och bekväm konstruktion är dess livslängd upp till 50 år. Den har också god korrosionsbeständighet och slagtålighet vid låga temperaturer. Samtidigt har den också hög epoxihållfasthet, god mjukhet hos smältlim, etc., och har hög korrosionspålitlighet; Dessutom är vår TPEPE rostskyddande stålrör produceras i strikt enlighet med nationella standardspecifikationer, erhålls korrosionsskyddande stålrör dricksvatten säkerhetscertifikat, för att säkerställa säkerheten för dricksvatten.

3PE rostskyddande stålrör tillverkat av polyetenmaterial, detta material är märkt av god korrosionsbeständighet och förlänger direkt livslängden för korrosionsskyddande stålrör.

3PE rostskyddande stålrör på grund av dess olika specifikationer, kan delas in i vanlig kvalitet och förstärkningskvalitet, PE-tjockleken på vanligt rostskyddande stålrör av 3PE är cirka 2,0 mm och PE-tjockleken på förstärkningsgraden är cirka 2,7 mm. Som ett vanligt externt korrosionsskydd på höljesrör är den vanliga kvaliteten mer än tillräckligt. Om den används för att direkt transportera syra, alkali, naturgas och andra vätskor, försök att använda det förstärkta rostskyddsstålröret 3PE.

Ovanstående handlar om skillnaden mellan TPEPE rostskyddande stålrör och 3PE rostskyddande stålrör, främst återspeglas i prestandaegenskaperna och tillämpningen av olika, det korrekta valet av lämpligt korrosionsskyddande stålrör, spelar sin roll.

Gängmätare för foderrör som används i oljeborrningsprojekt

Gängmätare för foderrör som används i oljeborrningsprojekt

Inom olje- och gasindustrin spelar foderrör en avgörande roll för att upprätthålla brunnars strukturella integritet under borrning. För att säkerställa säker och effektiv drift av dessa brunnar måste gängorna på höljesrören vara exakt tillverkade och noggrant inspekterade. Det är här gängmätare blir oumbärliga.

Gängmätare för höljesrör hjälper till att säkerställa korrekt gängning, vilket direkt påverkar oljekällornas prestanda och säkerhet. I den här bloggen kommer vi att utforska vikten av gängmätare, hur de används i oljeborrningsprojekt och hur de hjälper till att hantera vanliga industriproblem.

1. Vad är gängmätare?

Gängmätare är precisionsmätverktyg som används för att verifiera dimensionsnoggrannheten och passningen av gängade komponenter. I samband med oljeborrning är de väsentliga för att inspektera gängorna på höljesrören för att säkerställa att de uppfyller industristandarder och kommer att bilda säkra, läckagesäkra anslutningar i brunnen.

Typer av gängmätare:

  • Ringmätare: Används för att kontrollera de yttre gängorna på ett rör.
  • Pluggmätare: Används för att inspektera invändiga gängor på ett rör eller en koppling.
  • Mätare av tjocklek: Dessa mätare mäter diametern på gängan, vilket säkerställer rätt storlek och passform.
  • API-gängmätare: Speciellt utformad för att möta standarder som satts av American Petroleum Institute (API) för olje- och gastillämpningar.

2. Rollen av foderrör vid oljeborrning

Höljesrör används för att fodra borrhålet under och efter borrningsprocessen. De ger brunnens strukturella integritet och förhindrar förorening av grundvatten, samt säkerställer att oljan eller gasen på ett säkert sätt utvinns från reservoaren.

Oljekällor borras i flera steg, var och en kräver olika storlek på höljesröret. Dessa rör är anslutna ände till ände med hjälp av gängade kopplingar, vilket bildar en säker och kontinuerlig höljessträng. Att säkerställa att dessa gängade anslutningar är korrekta och säkra är avgörande för att förhindra läckor, utblåsningar och andra fel.

3. Varför är gängmätare viktiga vid oljeborrning?

De tuffa förhållanden som uppstår vid oljeborrning – höga tryck, extrema temperaturer och korrosiva miljöer – kräver precision i varje komponent. Gängmätare ser till att gängorna på höljesrören ligger inom toleransen, vilket hjälper till att:

  • Säkerställ en säker passform: Rätt mätta gängor säkerställer att rör och kopplingar passar tätt ihop, vilket förhindrar läckor som kan leda till kostsamma stillestånd eller miljöskador.
  • Förhindra brunnsfel: Dåligt gängade anslutningar är en av de främsta orsakerna till problem med brunnsintegritet. Gängmätare hjälper till att identifiera tillverkningsfel tidigt, vilket förhindrar katastrofala fel under borrning.
  • Upprätthålla säkerheten: Vid oljeborrning är säkerheten av största vikt. Gängmätare säkerställer att höljesanslutningar är tillräckligt robusta för att motstå de höga tryck som uppstår djupt under jord, och skyddar därigenom arbetare och utrustning från potentiellt farliga situationer.

4. Hur används gängmätare i oljeborrningsprojekt?

Gängmätare används i olika skeden av ett oljeborrningsprojekt, från tillverkning av foderrör till fältinspektioner. Nedan följer en steg-för-steg-översikt över hur de tillämpas:

1. Tillverkningsinspektion:

Under tillverkningen tillverkas höljesrör och kopplingar med exakt gängning för att säkerställa en säker passning. Gängmätare används under hela denna process för att verifiera att gängorna uppfyller de erforderliga standarderna. Om någon tråd faller utanför toleransen, bearbetas den antingen om eller kasseras för att förhindra framtida problem.

2. Fältinspektion:

Innan höljesrören sänks ner i borrhålet använder fältingenjörer gängmätare för att inspektera både rören och kopplingarna. Detta säkerställer att gängorna fortfarande är inom toleransen och inte har skadats under transport eller hantering.

3. Omkalibrering och underhåll:

Själva gängmätarna måste kalibreras regelbundet för att säkerställa kontinuerlig noggrannhet. Detta är särskilt viktigt inom oljeindustrin, där även en liten skillnad i gängning kan leda till kostsamma fel.

5. Viktiga gängningsstandarder inom olje- och gasindustrin

Gängmätare måste följa strikta industristandarder för att säkerställa kompatibilitet och säkerhet vid olje- och gasverksamhet. De vanligaste standarderna för höljerör definieras av American Petroleum Institute (API), som styr specifikationer för hölje, rör och ledningsrörsgängor. Dessa inkluderar:

  • API 5B: Specificerar dimensioner, toleranser och krav för gänginspektion av hölje, rör och ledningsrör.
  • API 5CT: Styr material, tillverkning och testning av hölje och slangar för oljekällor.
  • API Buttress Threads (BTC): Dessa gängor används ofta i höljesrör och har en stor bärande yta och är idealiska för miljöer med hög belastning.

Att säkerställa efterlevnad av dessa standarder är avgörande, eftersom de är utformade för att skydda integriteten hos olje- och gaskällor under extrema driftsförhållanden.

6. Vanliga utmaningar vid gängning av höljesrör och hur gängmätare hjälper

1. Gängskador under transport:

Höljesrör transporteras ofta till avlägsna platser och skador kan uppstå under hanteringen. Gängmätare möjliggör fältinspektion, vilket säkerställer att eventuella skadade gängor identifieras och repareras innan rören sänks ner i brunnen.

2. Trådslitage över tid:

I vissa fall kan höljessträngar behöva tas bort och återanvändas. Med tiden kan trådarna slitas ner, vilket äventyrar anslutningens integritet. Gängmätare kan upptäcka slitage, vilket gör att ingenjörer kan bestämma om höljesröret kan återanvändas eller om nya rör behövs.

3. Felaktiga trådar:

Olika höljestillverkare kan ha små variationer i sin gängning, vilket leder till potentiella problem när rör från olika källor används i samma brunn. Gängmätare kan hjälpa till att identifiera felaktigheter och säkerställa att alla rör som används är kompatibla med varandra.

4. Kvalitetssäkring:

Gängmätare erbjuder ett tillförlitligt sätt att utföra kvalitetskontroller under både tillverkningsprocessen och fältarbetet, vilket säkerställer konsistens över alla höljesrör som används i ett projekt.

7. Bästa metoder för att använda gängmätare vid oljeborrning

För att maximera effektiviteten hos gängmätare och minimera risken för brunnsintegritetsproblem bör operatörer följa dessa bästa praxis:

  • Regelbunden kalibrering av mätare: Gängmätare bör kalibreras regelbundet för att säkerställa att de ger korrekta mått.
  • Utbildning för tekniker: Se till att fält- och tillverkningstekniker är ordentligt utbildade i användningen av gängmätare och kan tolka resultaten korrekt.
  • Visuella och mätarebaserade inspektioner: Medan gängmätare ger precision, är visuell inspektion för skador som bucklor, korrosion eller slitage också kritisk.
  • Dataspårning: Håll register över alla gänginspektioner för att övervaka slitage eller skador över tid, vilket möjliggör förutsägande underhåll.

Slutsats

Gängmätare för höljesrör är en avgörande komponent i oljeborrningsoperationer, som hjälper till att säkerställa att höljesrören är korrekt gängade och uppfyller de stränga kraven från industrin. Genom att använda gängmätare under hela tillverknings-, transport- och borrskedet kan olje- och gasoperatörer förbättra säkerheten, tillförlitligheten och effektiviteten i sina projekt.

Vid oljeborrning, där varje anslutning spelar roll, kan den precision som gängmätarna erbjuder betyda skillnaden mellan en framgångsrik operation och ett kostsamt misslyckande. Regelbunden användning av dessa verktyg, tillsammans med efterlevnad av industristandarder, säkerställer den långsiktiga integriteten hos brunnshöljen och den övergripande säkerheten för borrprojektet.

Skillnader mellan plastfodrade stålrör och plastbelagda stålrör

Plastfodrade stålrör vs plastbelagda stålrör

  1. Plastfodrat stålrör:
  • Definition: Plastfodrat stålrör är en stål-plastkompositprodukt gjord av stålrör som basrör, med sina inre och yttre ytor behandlade, zinkplätering och bakfärg eller sprayfärg på utsidan, och fodrad med polyetenplast eller annat anti-korrosionsskikt.
  • Klassificering: Plastfodrat stålrör är uppdelat i kallvatten plastfodrat stålrör, varmvattenfodrat plaststålrör och plastrullande plastfodrat stålrör.
  • Foderplast: polyeten (PE), värmebeständig polyeten (PE-RT), tvärbunden polyeten (PE-X), polypropen (PP-R) hård polyvinylklorid (PVC-U), klorerad polyvinylklorid (PVC-C) ).
  1. Plastbelagt stålrör:
  • Definition: Plastbelagt stålrör är en stål-plastkompositprodukt som är gjord av stålrör som basrör och plast som beläggningsmaterial. De inre och yttre ytorna är smälta och belagda med ett plastskikt eller annat korrosionsskyddande skikt.
  • Klassificering: Plastbelagt stålrör är uppdelat i polyetenbelagt stålrör och epoxihartsbelagt stålrör enligt de olika beläggningsmaterialen.
  • Plastbeläggningsmaterial: polyetenpulver, polyetentejp och epoxihartspulver.
  1. Produktmärkning:
  • Kodnumret för plastbeklädnaden stålrör för kallvatten är SP-C.
  • Kodnumret för plastbeklädnaden stålrör för varmvatten är SP-CR.
  • Den polyetenbelagda stålrörskoden är SP-T-PE.
  • Epoxibelagt stålrörskod är SP-T-EP.
  1. Produktionsprocess:
  • Plastfoder: efter att stålröret har förbehandlats, beläggs plaströrets yttervägg jämnt med lim och placeras sedan i stålröret för att få det att expandera och bilda en stål-plastkompositprodukt.
  • Plastbeläggning: förbehandling av stålrör efter uppvärmning, höghastighetsbehandling av plastbeläggning, och sedan bildandet av stål-plastkompositprodukter.
  1. Prestanda för plastfodrade stålrör och plastbelagda stålrör:
  • Egenskaper hos plastskikt av plastfodrade stålrör:

Vidhäftningsstyrka: vidhäftningshållfastheten mellan stålet och foderplasten på det plastfodrade röret för kallt vatten bör inte vara mindre än 0,3Mpa (30N/cm2): bindningshållfastheten mellan stålet och foderplasten hos det plastfodrade rör för varmvatten bör inte vara mindre än 1,0Mpa (100N/cm2).

Extern rostskyddsprestanda: produkten efter galvaniserad bakfärg eller sprayfärg, vid rumstemperatur i 3% (vikt, volymförhållande) vattenlösning av natriumklorid blötlagd i 24 timmar, utseendet ska inte vara korrosionsvitt, skalar, stiger eller skrynklas .

Tillplattad test: det plastfodrade stålröret spricker inte efter 1/3 av det tillplattade rörets ytterdiameter, och det finns ingen separation mellan stålet och plasten.

  • Beläggningsprestanda för plastbelagt stålrör:

Pinhole-test: den inre ytan av det plastbelagda stålröret detekterades av en elektrisk gnistdetektor och ingen elektrisk gnista genererades.

Vidhäftning: vidhäftningen av polyetenbeläggning bör inte vara mindre än 30N/10 mm. Den vidhäftande kraften hos epoxihartsbeläggningen är 1-3 grader.

Tillplattad test: inga sprickor uppstod efter att 2/3 av ytterdiametern på det polyetenbelagda stålröret hade tillplattats. Ingen flagning inträffade mellan stålröret och beläggningen efter 4/5 av ytterdiametern på det epoxihartsbelagda stålröret var tillplattad.