Artigos

Manufacturing Process of Drill Pipe - 0

API Specification 5DP Drill Pipe: A Comprehensive Guide

Drill pipes are a crucial component in the oil and gas industry, forming the backbone of drilling operations. These pipes connect the drilling rig to the drill bit, transmitting power and drilling fluid to create boreholes in the earth’s surface. This blog provides a detailed exploration of drill pipes, including their manufacturing process, types, connections, grades, and more. The goal is to equip you with practical knowledge and solutions that can help you navigate the complexities of using drill pipes effectively.

What is a Tubo de perfuração?

A drill pipe is a heavy, seamless, hollow tube used to rotate the drill bit and circulate drilling fluid during drilling operations. It is designed to withstand significant stresses, including torsion, tension, and pressure while being lightweight enough to be handled easily on a rig.

Key Functions of Drill Pipes:

  • Transmission of Power: Drill pipes transfer the rotary motion from the drilling rig to the drill bit.
  • Circulation of Drilling Fluid: They allow the circulation of drilling mud, which cools the bit, carries cuttings to the surface, and stabilizes the borehole.
  • Lengthening the Drill String: As drilling progresses, additional drill pipe sections are added to the drill string to reach greater depths.

Manufacturing Process of Drill Pipe

The manufacturing of drill pipes is a highly controlled process designed to ensure the final product meets the stringent standards required for drilling operations.

Manufacturing Process of Drill Pipe

Manufacturing Process of Drill Pipe

1. Seleção de Materiais

  • High-Quality Steel: The process begins with the selection of high-grade steel, typically alloy steel such as AISI 4130 or 4140, known for its high strength and toughness.
  • Composição química: The steel’s composition is carefully controlled to achieve the desired mechanical properties, including resistance to wear, fatigue, and corrosion.

2. Pipe Forming

  • Seamless Manufacturing: The steel is heated and then pierced to create a hollow tube, which is elongated and rolled to form the drill pipe body.
  • Welding (Optional): For certain types, steel plates may be rolled and welded to create the pipe.

3. Heat Treatment

  • Têmpera e revenimento: The pipes undergo heat treatment to enhance their mechanical properties, ensuring they can withstand the rigors of drilling.

4. Upsetting

  • End Upsetting: The ends of the pipe are thickened to increase their strength. This process, known as upsetting, is crucial for enhancing the pipe’s durability at the connections.

5. Tool Joint Welding

  • Attachment of Tool Joints: Tool joints are welded to the ends of the pipe, forming the connections that link each section of the drill string.

6. Hardbanding

  • Wear-Resistant Coating: A wear-resistant alloy is applied to the tool joints to protect them from wear and extend the pipe’s service life.

7. Inspeção e Teste

  • Non-Destructive Testing: Each drill pipe undergoes rigorous testing, including ultrasonic and magnetic particle inspection, to ensure there are no defects.
  • Dimensional Inspection: The pipes are measured to ensure they meet the required specifications.

8. Marking and Coating

  • Identification: Each pipe is marked with essential information, such as grade, size, and manufacturer.
  • Protective Coating: A corrosion-resistant coating is applied to the pipes to protect them during transportation and storage.

Types of Drill Pipe

There are several types of drill pipes, each designed for specific applications:

1. Standard Drill Pipe

  • Descrição: The most common type of drill pipe, used for standard drilling operations.
  • Aplicativo: Suitable for conventional drilling in onshore and offshore environments.

2. Heavy Weight Drill Pipe (HWDP)

  • Descrição: Thicker and heavier than standard drill pipe, HWDP is designed to add weight to the drill string, reducing buckling and improving stability.
  • Aplicativo: Ideal for directional drilling and extended-reach wells.

3. Spiral Drill Pipe

  • Descrição: This type features a spiral groove along its length, designed to reduce friction and wear during drilling.
  • Aplicativo: Used in operations where friction reduction is critical.

4. Square Drill Pipe

  • Descrição: A less common type with a square cross-section, offering increased rigidity.
  • Aplicativo: Used in specific drilling scenarios requiring a rigid drill string.

5. Hexagonal Drill Pipe

  • Descrição: Similar to the square drill pipe but with a hexagonal cross-section, providing enhanced torsional strength.
  • Aplicativo: Suitable for high-torque drilling operations.

What are the Ends Processes of Drill Pipe?

In the context of drill pipes, the terms UI, UE, e UEI refer to different end processes that prepare the ends of the drill pipes for connections. These processes are crucial for ensuring that the drill pipe ends are durable, properly aligned, and suitable for threading and connection to other components in the drill string.

IU EU IEU of Drill Pipe Ends

IU EU IEU of Drill Pipe Ends

1. Internal Upset (IU)

  • Descrição: In an Internal Upset (IU) process, the internal diameter of the pipe is reduced, creating a thicker wall at the ends of the pipe.
  • Propósito: This thickening increases the strength of the pipe ends, making them more resistant to the stresses and wear encountered during drilling operations.
  • Aplicativo: IU pipes are used in situations where the internal diameter of the drill pipe is critical, such as in high-pressure drilling operations where maintaining a consistent bore is essential.

2. External Upset (EU)

  • Descrição: External Upset (EU) involves increasing the thickness of the pipe wall at the external diameter of the pipe ends.
  • Propósito: This process strengthens the pipe ends and enhances their durability, especially in areas where the drill pipe is most likely to experience wear and impact.
  • Aplicativo: EU drill pipes are commonly used in standard drilling operations where external strength and impact resistance are prioritized.

3. Internal-External Upset (IEU)

  • Descrição: Internal-External Upset (IEU) is a combination of both internal and external upsets, where the pipe ends are thickened both internally and externally.
  • Propósito: This dual-thickening process provides maximum strength and durability at the ends of the drill pipe, offering enhanced resistance to both internal pressure and external forces.
  • Aplicativo: IEU pipes are typically used in more demanding drilling environments, such as deep wells, high-pressure scenarios, and directional drilling, where both internal and external reinforcement is needed.

Connections of Drill Pipe Tool Joints

The connections between drill pipe sections are critical for maintaining the integrity of the drill string. API 5DP drill pipes feature various types of connections:

1. Internal Flush (IF) Connection

  • Descrição: Designed with a flush internal profile to minimize pressure drops and turbulence.
  • Aplicativo: Used in high-pressure drilling environments.

2. Full Hole (FH) Connection

  • Descrição: Features a larger bore for improved fluid flow, making it suitable for deep wells.
  • Aplicativo: Ideal for deep drilling operations.

3. API Regular (API REG) Connection

  • Descrição: A standard connection type, known for its robustness and ease of use.
  • Aplicativo: Commonly used in standard drilling operations.

4. Numerical Connection (NC)

  • Descrição: A premium connection with high torque capacity, often featuring a double-shoulder design.
  • Aplicativo: Suitable for challenging drilling conditions.

What are Pin and Box?

Pin and Box refer to the two complementary ends of a drill pipe connection that allow the pipe sections to be securely joined together in a drilling string. This connection system is critical for maintaining the integrity and stability of the drill string during drilling operations.

Pin

  • Descrição: The Pin is the male end of the connection. It is tapered and threaded, allowing it to be screwed into the Box.
  • Projeto: The external threads of the Pin are precision-cut to match the internal threads of the Box, ensuring a tight, secure fit.
  • Função: The Pin is designed to connect securely with the Box, creating a strong, leak-proof joint that can withstand the high pressures, torsional forces, and vibrations experienced during drilling.

Box

  • Descrição: The Box is the female end of the connection. It is also threaded internally to accommodate the Pin.
  • Projeto: The Box’s internal threads are precisely machined to match the Pin’s threads, allowing for a secure and tight connection.
  • Função: The Box receives the Pin, creating a sturdy connection that ensures the drill pipe sections remain connected and aligned during drilling operations.

Importance of Pin and Box Connections

  • Integridade Estrutural: The Pin and Box connection ensures the drill pipe sections are securely fastened, maintaining the structural integrity of the drill string.
  • Pressure Resistance: These connections are designed to withstand the high internal pressures generated by the circulation of drilling fluid.
  • Ease of Use: Pin and Box connections are designed for easy assembly and disassembly, facilitating quick changes and adjustments to the drill string.

Formulários

  • Drill Pipes: Pin and Box connections are used in all types of drill pipes, including standard, heavy-weight, and specialized pipes.
  • Tool Joints: These connections are also used in tool joints, which are thicker, heavier sections of drill pipes that provide added strength and durability.

Grades, Diameters, Length Ranges, and Applications

Drill pipes come in various grades, diameters, and lengths, each suited to different drilling environments:

Notas

  • E-75: Commonly used for general drilling operations.
  • X-95: Provides higher strength, suitable for deeper wells.
  • G-105: Offers excellent fatigue resistance, ideal for extended-reach drilling.
  • S-135: The highest strength grade, used in ultra-deep and high-pressure wells.

Diameters and Lengths

  • Diameters: Typically range from 2 3/8″ to 6 5/8″.
  • Lengths: Range from 27 to 31 feet, with custom lengths available based on project needs.

Applications by Grade

  • E-75: Onshore drilling in standard conditions.
  • X-95: Deep wells with moderate pressures.
  • G-105: Extended-reach wells and high-torque drilling.
  • S-135: Ultra-deep, high-pressure, and high-temperature wells.

Packing, Storage, Maintenance, and Transportation

Proper handling of drill pipes is crucial for maintaining their integrity and extending their service life.

Embalagem

  • Bundling: Drill pipes are typically bundled together for easier handling and transportation.
  • Protective Caps: Both ends of the drill pipe are fitted with protective caps to prevent damage to the threads.

Storage

  • Indoor Storage: Whenever possible, drill pipes should be stored indoors to protect them from the elements.
  • Elevated Storage: Pipes should be stored off the ground on racks to prevent contact with moisture and contaminants.

Maintenance

  • Regular Inspections: Drill pipes should be inspected regularly for signs of wear, corrosion, or damage.
  • Re-threading: Threads should be re-cut if damaged, ensuring a secure connection.

Transporte

  • Secure Loading: Drill pipes should be securely loaded onto trucks or trailers to prevent movement during transit.
  • Use of Cradles: Pipes should be transported using cradles to prevent bending or damage.

Conclusão

Drill pipes are a critical component in drilling operations, designed to withstand the harsh conditions encountered during oil and gas extraction. Understanding the manufacturing process, types, connections, grades, and handling of drill pipes is essential for optimizing their performance and ensuring safe, efficient drilling operations.

By following best practices in selecting, storing, and maintaining drill pipes, operators can extend the life of their equipment, reduce operational costs, and minimize the risk of failures. This comprehensive guide serves as a valuable resource for professionals in the drilling industry, offering practical insights and solutions to the challenges associated with drill pipes.

Explorando o papel vital dos tubos de aço na exploração de petróleo e gás

I. O conhecimento básico do tubo para a indústria de petróleo e gás

1. Explicação da Terminologia

API: Abreviatura de Instituto Americano de petroleo.
OCTG: Abreviatura de Produtos tubulares para países petrolíferos, incluindo tubo de revestimento de óleo, tubo de óleo, tubo de perfuração, colar de perfuração, brocas, haste de sucção, juntas de filhote, etc.
Tubulação de óleo: A tubulação é usada em poços de petróleo para extração de petróleo, extração de gás, injeção de água e fraturamento ácido.
Invólucro: Tubulação que é baixada da superfície do solo até um furo perfurado como revestimento para evitar o colapso da parede.
Tubo de perfuração: Tubo utilizado para perfuração de poços.
Tubo de Linha: Tubo usado para transportar petróleo ou gás.
Acoplamentos: Cilindros usados para conectar dois tubos roscados com roscas internas.
Material de acoplamento: Tubo utilizado para fabricação de acoplamentos.
Tópicos de API: Roscas de tubos especificadas pelo padrão API 5B, incluindo roscas redondas de tubos de óleo, roscas redondas curtas de revestimento, roscas redondas longas de revestimento, roscas trapezoidais parciais de revestimento, roscas de tubos de linha e assim por diante.
Conexão Premium: Threads não API com propriedades especiais de vedação, propriedades de conexão e outras propriedades.
Falhas: deformação, fratura, danos superficiais e perda da função original sob condições de serviço específicas.
Principais formas de falha: esmagamento, escorregamento, ruptura, vazamento, corrosão, colagem, desgaste e assim por diante.

2. Normas Relacionadas ao Petróleo

Especificação API 5B, 17ª Edição – Especificação para Rosqueamento, Medição e Inspeção de Roscas de Revestimento, Tubulação e Roscas de Tubos de Linha
Especificação API 5L, 46ª edição – Especificação para tubo de linha
Especificação API 5CT, 11ª Edição – Especificação para Revestimento e Tubulação
Especificação API 5DP, 7ª Edição – Especificação para tubo de perfuração
Especificação API 7-1, 2ª edição – Especificação para elementos de haste de perfuração rotativa
Especificação API 7-2, 2ª edição – Especificação para Rosqueamento e Medição de Conexões de Rosca com Ressalto Rotativo
Especificação API 11B, 24ª edição – Especificação para hastes de sucção, hastes e revestimentos polidos, acoplamentos, barras de chumbada, braçadeiras de haste polida, caixas de empanque e tês de bombeamento
ISO 3183:2019 – Indústrias de Petróleo e Gás Natural – Tubos de Aço para Sistemas de Transporte por Dutos
ISO 11960:2020 – Indústrias de Petróleo e Gás Natural – Tubos de Aço para Uso como Revestimento ou Tubulação para Poços
NACEMR0175/ISO 15156:2020 – Indústrias de Petróleo e Gás Natural — Materiais para Uso em Ambientes Contendo H2S na Produção de Petróleo e Gás

II. Tubulação de óleo

1. Classificação de tubos de óleo

A tubulação de óleo é dividida em tubulação de óleo não perturbada (NU), tubulação de óleo perturbada externa (EU) e tubulação de óleo de junta integral (IJ). A tubulação de óleo NU significa que a extremidade da tubulação tem espessura normal e gira diretamente a rosca e traz os acoplamentos. Tubo virado significa que as extremidades de ambos os tubos são viradas externamente, depois rosqueadas e acopladas. Tubulação de junta integral significa que uma extremidade do tubo é virada com roscas externas e a outra extremidade é virada com roscas internas e conectada diretamente sem acoplamentos.

2. Função da tubulação de óleo

① Extração de petróleo e gás: após os poços de petróleo e gás serem perfurados e cimentados, a tubulação é colocada no invólucro de petróleo para extrair petróleo e gás para o solo.
② Injeção de água: quando a pressão no fundo do poço for insuficiente, injete água no poço através da tubulação.
③ Injeção de vapor: Na recuperação a quente de óleo espesso, o vapor deve ser introduzido no poço com tubulação de óleo isolada.
④ Acidificação e fraturamento: Na fase final da perfuração de poços ou para melhorar a produção de poços de petróleo e gás, é necessário inserir meio de acidificação e fraturamento ou material de cura na camada de petróleo e gás, e o meio e o material de cura são transportado através da tubulação de óleo.

3. Grau de aço da tubulação de óleo

Os tipos de aço dos tubos de óleo são H40, J55, N80, L80, C90, T95, P110.
N80 é dividido em N80-1 e N80Q, os dois têm as mesmas propriedades de tração do mesmo, as duas diferenças são o status de entrega e as diferenças de desempenho de impacto, entrega N80-1 por estado normalizado ou quando a temperatura final de laminação é maior que o temperatura crítica Ar3 e redução de tensão após resfriamento a ar e pode ser usada para encontrar laminação a quente em vez de testes normalizados, de impacto e não destrutivos não são necessários; N80Q deve ser temperado (extinguido e revenido). Tratamento térmico, função de impacto deve estar em conformidade com as disposições da API 5CT e deve ser submetido a testes não destrutivos.
L80 é dividido em L80-1, L80-9Cr e L80-13Cr. Suas propriedades mecânicas e status de entrega são os mesmos. Diferenças de uso, dificuldade de produção e preço, L80-1 para o tipo geral, L80-9Cr e L80-13Cr são tubos de alta resistência à corrosão, dificuldade de produção, caros e geralmente usados em poços de corrosão pesada.
C90 e T95 são divididos em 1 e 2 tipos, nomeadamente C90-1, C90-2 e T95-1, T95-2.

4. O tipo de aço comumente usado da tubulação de óleo, o nome do aço e o status de entrega

J55 (37Mn5) Tubo de óleo NU: laminado a quente em vez de normalizado
J55 (37Mn5) Tubo de óleo UE: Comprimento total normalizado após perturbação
Tubo de óleo NU N80-1 (36Mn2V): laminado a quente em vez de normalizado
Tubulação de óleo UE N80-1 (36Mn2V): Comprimento total normalizado após perturbação
Tubulação de óleo N80-Q (30Mn5): 30Mn5, têmpera completa
Tubulação de óleo L80-1 (30Mn5): 30Mn5, têmpera completa
Tubulação de óleo P110 (25CrMnMo): 25CrMnMo, têmpera completa
Acoplamento J55 (37Mn5): Laminado a quente on-line normalizado
Acoplamento N80 (28MnTiB): Revenimento completo
Acoplamento L80-1 (28MnTiB): Temperado em todo o comprimento
Acoplamento P110 (25CrMnMo): Revenimento completo

III. Tubo de Revestimento

1. Classificação e função do invólucro

O revestimento é o tubo de aço que sustenta a parede dos poços de petróleo e gás. Várias camadas de revestimento são utilizadas em cada poço de acordo com diferentes profundidades de perfuração e condições geológicas. O cimento é usado para cimentar o revestimento depois de baixado no poço e, diferentemente do tubo de petróleo e do tubo de perfuração, não pode ser reutilizado e pertence a materiais consumíveis descartáveis. Portanto, o consumo de revestimento é responsável por mais de 70% de todas as tubulações de poços de petróleo. O revestimento pode ser dividido em revestimento condutor, revestimento intermediário, revestimento de produção e revestimento de revestimento de acordo com seu uso, e suas estruturas em poços de petróleo são mostradas na Figura 1.

①Caixa do condutor: Normalmente usando graus API K55, J55 ou H40, o revestimento condutor estabiliza a cabeça do poço e isola aquíferos rasos com diâmetros geralmente em torno de 20 polegadas ou 16 polegadas.

②Invólucro intermediário: O revestimento intermediário, geralmente feito de graus API K55, N80, L80 ou P110, é usado para isolar formações instáveis e zonas de pressão variadas, com diâmetros típicos de 13 3/8 polegadas, 11 3/4 polegadas ou 9 5/8 polegadas .

③Invólucro de produção: Construída em aço de alta qualidade, como graus API J55, N80, L80, P110 ou Q125, a carcaça de produção é projetada para suportar pressões de produção, geralmente com diâmetros de 9 5/8 polegadas, 7 polegadas ou 5 1/2 polegadas.

④Invólucro do forro: Os revestimentos estendem o poço até o reservatório, usando materiais como graus API L80, N80 ou P110, com diâmetros típicos de 7 polegadas, 5 polegadas ou 4 1/2 polegadas.

⑤Tubulação: A tubulação transporta hidrocarbonetos para a superfície, usando graus API J55, L80 ou P110, e está disponível em diâmetros de 4 1/2 polegadas, 3 1/2 polegadas ou 2 7/8 polegadas.

4. Tubo de perfuração

1. Classificação e Função de Tubo para Ferramentas de Perfuração

O tubo de perfuração quadrado, o tubo de perfuração, o tubo de perfuração ponderado e o colar de perfuração nas ferramentas de perfuração formam o tubo de perfuração. O tubo de perfuração é a ferramenta de perfuração que conduz a broca do solo até o fundo do poço e também é um canal do solo até o fundo do poço. Tem três funções principais:

① Para transmitir torque para conduzir a broca para perfurar;

② Contar com seu peso na broca para quebrar a pressão da rocha no fundo do poço;

③ Para transportar fluido de lavagem, isto é, perfurar lama através do solo através das bombas de lama de alta pressão, perfurar a coluna no fluxo do poço até o fundo do poço para lavar os detritos rochosos e resfriar a broca, e transportar os detritos rochosos através da superfície externa da coluna e da parede do poço entre o anel para retornar ao solo, para atingir o objetivo de perfurar o poço.

O tubo de perfuração no processo de perfuração para suportar uma variedade de cargas alternadas complexas, como tração, compressão, torção, flexão e outras tensões, a superfície interna também está sujeita a desgaste e corrosão por lama de alta pressão.
(1) Tubo de perfuração quadrado: O tubo de perfuração quadrado tem dois tipos de tipo quadrilátero e tipo hexagonal. O tubo de perfuração de petróleo da China, cada conjunto de colunas de perfuração geralmente usa um tubo de perfuração do tipo quadrilátero. Suas especificações são 63,5 mm (2-1/2 polegadas), 88,9 mm (3-1/2 polegadas), 107,95 mm (4-1/4 polegadas), 133,35 mm (5-1/4 polegadas), 152,4 mm ( 6 polegadas) e assim por diante. Normalmente, o comprimento usado é de 12 ~ 14,5 m.
(2) Tubo de perfuração: O tubo de perfuração é a principal ferramenta para perfuração de poços, conectado à extremidade inferior do tubo de perfuração quadrado, e à medida que o poço de perfuração continua a se aprofundar, o tubo de perfuração continua alongando a coluna de perfuração um após o outro. As especificações do tubo de perfuração são: 60,3 mm (2-3/8 polegadas), 73,03 mm (2-7/8 polegadas), 88,9 mm (3-1/2 polegadas), 114,3 mm (4-1/2 polegadas) , 127 mm (5 polegadas), 139,7 mm (5-1/2 polegadas) e assim por diante.
(3) Tubo de perfuração para serviços pesados: Um tubo de perfuração ponderado é uma ferramenta de transição que conecta o tubo de perfuração e o colar de perfuração, o que pode melhorar a condição de força do tubo de perfuração e aumentar a pressão na broca. As principais especificações do tubo de perfuração ponderado são 88,9 mm (3-1/2 polegadas) e 127 mm (5 polegadas).
(4) Colar de perfuração: o colar de perfuração é conectado à parte inferior do tubo de perfuração, que é um tubo especial de parede espessa e alta rigidez, exercendo pressão sobre a broca para quebrar a rocha e desempenhando um papel de orientação na perfuração de um poço reto. As especificações comuns dos colares de perfuração são 158,75 mm (6-1/4 polegadas), 177,85 mm (7 polegadas), 203,2 mm (8 polegadas), 228,6 mm (9 polegadas) e assim por diante.

V. Tubo de linha

1. Classificação do tubo de linha

O tubo de linha é usado na indústria de petróleo e gás para a transmissão de petróleo, óleo refinado, gás natural e dutos de água com a abreviatura de tubo de aço. O transporte de oleodutos e gasodutos é dividido principalmente em oleodutos principais, oleodutos ramais e oleodutos de rede de oleodutos urbanos, três tipos de transmissão de oleodutos principais com as especificações usuais para ∅406 ~ 1219 mm, espessura de parede de 10 ~ 25 mm, grau de aço X42 ~ X80 ; Oleodutos de ramal e dutos de rede de dutos urbanos geralmente são especificados para ∅114 ~ 700 mm, espessura de parede de 6 ~ 20 mm, o tipo de aço para X42 ~ X80. A classe do aço é X42~X80. O tubo de linha está disponível como tipo soldado e sem costura. O tubo de linha soldado é mais usado do que o tubo de linha sem costura.

2. Padrão de tubo de linha

API Spec 5L – Especificação para tubulação de linha
ISO 3183 – Indústrias de Petróleo e Gás Natural – Tubos de Aço para Sistemas de Transporte por Dutos

3. PSL1 e PSL2

PSL é a abreviatura de Nível de especificação do produto. O nível de especificação do produto de tubo de linha é dividido em PSL 1 e PSL 2, também pode ser dito que o nível de qualidade é dividido em PSL 1 e PSL 2. PSL 2 é superior a PSL 1, os 2 níveis de especificação não têm apenas requisitos de teste diferentes, mas os requisitos de composição química e propriedades mecânicas são diferentes, portanto de acordo com o pedido API 5L, os termos do contrato além de especificar as especificações, classe do aço e outros indicadores comuns, mas também devem indicar o nível de especificação do produto, ou seja, PSL 1 ou PSL 2. PSL 2 na composição química, propriedades de tração, poder de impacto, testes não destrutivos e outros indicadores são mais rigorosos que PSL 1.

4. Classe de aço do tubo de linha, composição química e propriedades mecânicas

O grau de aço para tubos de linha de baixo a alto é dividido em: A25, A, B, X42, X46, X52, X60, X65, X70 e X80. Para obter a composição química e propriedades mecânicas detalhadas, consulte a especificação API 5L, livro da 46ª edição.

5. Teste hidrostático de tubo de linha e requisitos de exame não destrutivo

O tubo de linha deve ser feito teste hidráulico ramal a ramal, e a norma não permite a geração não destrutiva de pressão hidráulica, o que também é uma grande diferença entre o padrão API e nossos padrões. PSL 1 não requer testes não destrutivos, PSL 2 deve ser teste não destrutivo ramo por ramo.

VI. Conexões Premium

1. Introdução de Conexões Premium

Premium Connection é um encadeamento de tubo com uma estrutura especial diferente do encadeamento API. Embora o invólucro de óleo roscado API existente seja amplamente utilizado na exploração de poços de petróleo, suas deficiências são claramente mostradas no ambiente especial de alguns campos de petróleo: a coluna de tubo roscado redondo API, embora seu desempenho de vedação seja melhor, a força de tração suportada pelo tubo roscado parte equivale apenas a 60% a 80% da resistência do corpo do tubo e, portanto, não pode ser utilizada na exploração de poços profundos; a coluna de tubo com rosca trapezoidal polarizada API, embora seu desempenho de tração seja muito superior ao da conexão roscada redonda API, seu desempenho de vedação não é tão bom. Embora o desempenho de tração da coluna seja muito superior ao da conexão de rosca redonda API, seu desempenho de vedação não é muito bom, por isso não pode ser utilizado na exploração de poços de gás de alta pressão; além disso, a graxa roscada só pode desempenhar seu papel no ambiente com temperatura abaixo de 95 ℃, portanto não pode ser utilizada na exploração de poços de alta temperatura.

Em comparação com a rosca redonda API e a conexão de rosca trapezoidal parcial, a conexão premium fez progressos inovadores nos seguintes aspectos:

(1) Uma boa vedação, através da elasticidade e do projeto da estrutura de vedação metálica, torna a vedação do gás da junta resistente a atingir o limite do corpo da tubulação dentro da pressão de escoamento;

(2) Alta resistência da conexão, conectando-se com conexão de fivela especial do invólucro de óleo, sua resistência de conexão atinge ou excede a resistência do corpo da tubulação, para resolver fundamentalmente o problema de deslizamento;

(3) Pela seleção de materiais e melhoria do processo de tratamento de superfície, basicamente resolveu o problema da fivela presa na linha;

(4) Através da otimização da estrutura, para que a distribuição das tensões nas juntas seja mais razoável e mais propícia à resistência à corrosão sob tensão;

(5) Através da estrutura do ombro de desenho razoável, para que a operação da fivela na operação seja mais fácil de realizar.

Atualmente, a indústria de petróleo e gás possui mais de 100 conexões premium patenteadas, representando avanços significativos na tecnologia de tubos. Esses designs de rosca especializados oferecem capacidades de vedação superiores, maior resistência de conexão e maior resistência a tensões ambientais. Ao enfrentar desafios como altas pressões, ambientes corrosivos e temperaturas extremas, essas inovações garantem maior confiabilidade e eficiência nas operações de poços de petróleo em todo o mundo. A investigação e o desenvolvimento contínuos em ligações premium sublinham o seu papel fundamental no apoio a práticas de perfuração mais seguras e produtivas, reflectindo um compromisso contínuo com a excelência tecnológica no sector da energia.

Conexão VAM®: Conhecidas por seu desempenho robusto em ambientes desafiadores, as conexões VAM® apresentam tecnologia avançada de vedação metal-metal e capacidade de alto torque, garantindo operações confiáveis em poços profundos e reservatórios de alta pressão.

Série de cunha TenarisHydril: Esta série oferece uma variedade de conexões como Blue®, Dopeless® e Wedge 521®, conhecidas por sua excepcional vedação estanque a gases e resistência a forças de compressão e tensão, aumentando a segurança e a eficiência operacionais.

TSH® Azul: Projetadas pela Tenaris, as conexões TSH® Blue utilizam um design exclusivo de ombro duplo e um perfil de rosca de alto desempenho, proporcionando excelente resistência à fadiga e facilidade de montagem em aplicações críticas de perfuração.

Conceda conexão Prideco ™ XT®: Projetadas pela NOV, as conexões XT® incorporam uma vedação metal-metal exclusiva e um formato de rosca robusto, garantindo capacidade de torque superior e resistência a escoriações, prolongando assim a vida útil operacional da conexão.

Conexão Hunting Seal-Lock®: Apresentando uma vedação metal-metal e um perfil de rosca exclusivo, a conexão Seal-Lock® da Hunting é conhecida por sua superior resistência à pressão e confiabilidade em operações de perfuração onshore e offshore.

Conclusão

Concluindo, a intrincada rede de tubulações crucial para a indústria de petróleo e gás abrange uma ampla gama de equipamentos especializados projetados para resistir a ambientes rigorosos e demandas operacionais complexas. Desde os tubos de revestimento de base que suportam e protegem as paredes dos poços até as versáteis tubulações usadas nos processos de extração e injeção, cada tipo de tubo atende a uma finalidade distinta na exploração, produção e transporte de hidrocarbonetos. Padrões como as especificações API garantem uniformidade e qualidade em todos esses tubos, enquanto inovações como conexões premium melhoram o desempenho em condições desafiadoras. À medida que a tecnologia evolui, estes componentes críticos continuam a avançar, impulsionando a eficiência e a fiabilidade nas operações globais de energia. A compreensão destes tubos e das suas especificações sublinha o seu papel indispensável na infra-estrutura do sector energético moderno.

Produtos tubulares petrolíferos (OCTG)

Produtos tubulares para países petrolíferos (OCTG) é uma família de produtos laminados sem costura que consiste em tubos de perfuração, revestimento e tubulações sujeitos a condições de carregamento de acordo com sua aplicação específica. (veja a Figura 1 para um esquema de um poço profundo):

O Tubo de perfuração é um tubo pesado sem costura que gira a broca e circula o fluido de perfuração. Segmentos de tubos de 9 m (30 pés) de comprimento são acoplados a juntas de ferramentas. O tubo de perfuração é simultaneamente submetido a alto torque pela perfuração, tensão axial pelo seu peso morto e pressão interna pela purga do fluido de perfuração. Além disso, cargas de flexão alternadas devido à perfuração não vertical ou desviada podem ser sobrepostas a estes padrões de carga básicos.
Tubo de revestimento reveste o poço. Está sujeito à tensão axial pelo seu peso morto, à pressão interna pela purga do fluido e à pressão externa pelas formações rochosas circundantes. O invólucro é particularmente exposto à tensão axial e à pressão interna pela emulsão de óleo ou gás bombeada.
Tubulação é um tubo através do qual o petróleo ou gás é transportado do poço. Os segmentos de tubulação geralmente têm cerca de 9 m de comprimento e uma conexão roscada em cada extremidade.

A resistência à corrosão sob condições de serviço ácidas é uma característica muito importante do OCTG, especialmente para revestimentos e tubulações.

Os processos típicos de fabricação de OCTG incluem (todas as faixas dimensionais são aproximadas)

Processo contínuo de laminação com mandril e processo de bancada para tamanhos entre 21 e 178 mm de diâmetro externo.
Laminação de plugues para tamanhos entre 140 e 406 mm de diâmetro externo.
Perfuração cruzada e laminação pilger para tamanhos entre 250 e 660 mm de diâmetro externo.
Estes processos normalmente não permitem o processamento termomecânico habitual para os produtos de tiras e placas utilizados para o tubo soldado. Portanto, tubos sem costura de alta resistência devem ser produzidos aumentando o teor de liga em combinação com um tratamento térmico adequado, como têmpera e revenido.

Figura 1. Esquema de completação de poço profundo

Atender ao requisito fundamental de uma microestrutura totalmente martensítica, mesmo em tubos com grandes espessuras de parede, requer boa temperabilidade. Cr e Mn são os principais elementos de liga utilizados para produzir boa temperabilidade em aços tratáveis termicamente convencionais. No entanto, o requisito de boa resistência à fissuração sob tensão por sulfureto (SSC) limita a sua utilização. O Mn tende a segregar durante o lingotamento contínuo e pode formar grandes inclusões de MnS que reduzem a resistência à fissuração induzida por hidrogênio (HIC). Níveis mais elevados de Cr podem levar à formação de precipitados de Cr7C3 com morfologia grosseira em forma de placa, que atuam como coletores de hidrogênio e iniciadores de trincas. A liga com molibdênio pode superar as limitações da liga de Mn e Cr. O Mo é um endurecedor muito mais forte que o Mn e o Cr, pelo que pode facilmente recuperar o efeito de uma quantidade reduzida destes elementos.

Tradicionalmente, os tipos OCTG eram aços carbono-manganês (até o nível de resistência de 55 ksi) ou tipos contendo Mo até 0,4% Mo. Nos últimos anos, a perfuração de poços profundos e reservatórios contendo contaminantes que causam ataques corrosivos criaram uma forte demanda. para materiais de maior resistência, resistentes à fragilização por hidrogênio e SCC. A martensita altamente revenida é a estrutura mais resistente ao SSC em níveis de resistência mais elevados, e 0,75% é a concentração de Mo que produz a combinação ideal de limite de escoamento e resistência ao SSC.