ASME SA213 T91: O quanto você sabe?
Histórico e Introdução
ASME SA213 T91, o número do aço no Norma ASME SA213/SA213M padrão, pertence ao aço 9Cr-1Mo aprimorado, que foi desenvolvido da década de 1970 à década de 1980 pelo US Rubber Ridge National Laboratory e pelo Metallurgical Materials Laboratory da US Combustion Engineering Corporation em cooperação. Desenvolvido com base no aço 9Cr-1Mo anterior, usado em energia nuclear (também pode ser usado em outras áreas) materiais de peças pressurizadas de alta temperatura, é a terceira geração de produtos de aço de resistência a quente; sua principal característica é reduzir o teor de carbono, na limitação dos limites superior e inferior do teor de carbono, e controle mais rigoroso do teor de elementos residuais, como P e S, ao mesmo tempo, adicionando um traço de 0,030-0,070% do N, e traços dos elementos formadores de carboneto sólido 0,18-0,25% de V e 0,06-0,10% de Nb, para refinar os requisitos de grãos, melhorando assim a tenacidade plástica e a soldabilidade do aço, melhorar a estabilidade do aço em altas temperaturas, após este reforço multicomposto, a formação de um novo tipo de aço de liga resistente ao calor de alto cromo martensítico.
A norma ASME SA213 T91, que geralmente produz produtos para tubos de pequeno diâmetro, é usada principalmente em caldeiras, superaquecedores e trocadores de calor.
Graus internacionais correspondentes de aço T91
País |
EUA | Alemanha | Japão | França | China |
Grau de aço equivalente | SA-213 T91 | X10CrMoVNNb91 | HCM95 | TUZ10CDVNb0901 | 10Cr9Mo1VNbN |
Aqui reconheceremos esse aço por vários aspectos.
I. Composição química da norma ASME SA213 T91
Elemento | C | Mn | P | S | Si | Cr | Mo | Não | V | N.º | N | Al |
Contente | 0.07-0.14 | 0.30-0.60 | ≤0,020 | ≤0,010 | 0.20-0.50 | 8.00-9.50 | 0.85-1.05 | ≤0,40 | 0.18-0.25 | 0.06-0.10 | 0.030-0.070 | ≤0,020 |
II. Análise de desempenho
2.1 O papel dos elementos de liga nas propriedades do material: Os elementos de liga de aço T91 desempenham um papel de reforço de solução sólida e de difusão e melhoram a resistência à oxidação e corrosão do aço, analisados explicitamente como segue.
2.1.1 O carbono é o efeito de fortalecimento de solução sólida mais aparente dos elementos de aço; com o aumento do teor de carbono, a resistência de curto prazo do aço, a plasticidade e a tenacidade diminuem, o aço T91, o aumento do teor de carbono acelerará a velocidade de esferoidização de carboneto e a velocidade de agregação, acelerará a redistribuição de elementos de liga, reduzindo a soldabilidade, a resistência à corrosão e a resistência à oxidação do aço, então o aço resistente ao calor geralmente quer reduzir a quantidade de teor de carbono. Ainda assim, a resistência do aço será diminuída se o teor de carbono for muito baixo. O aço T91, comparado ao aço 12Cr1MoV, tem um teor de carbono reduzido de 20%, o que é uma consideração cuidadosa do impacto dos fatores acima.
2.1.2 O aço T91 contém traços de nitrogênio; o papel do nitrogênio é refletido em dois aspectos. Por um lado, o papel do fortalecimento da solução sólida, o nitrogênio à temperatura ambiente na solubilidade do aço é mínimo, a zona afetada pelo calor soldada do aço T91 no processo de aquecimento de soldagem e tratamento térmico pós-soldagem, haverá uma sucessão de solução sólida e processo de precipitação de VN: A zona afetada pelo calor de aquecimento de soldagem foi formada dentro da organização austenítica devido à solubilidade do VN, o teor de nitrogênio aumenta e, depois disso, o grau de supersaturação na organização da temperatura ambiente aumenta no tratamento térmico subsequente da solda, há uma leve precipitação de VN, o que aumenta a estabilidade da organização e melhora o valor da resistência duradoura da zona afetada pelo calor. Por outro lado, o aço T91 também contém uma pequena quantidade de A1; O nitrogênio pode ser formado com seu A1N, A1N em mais de 1 100 ℃ apenas um grande número dissolvido na matriz e, em seguida, reprecipitado em temperaturas mais baixas, o que pode desempenhar um melhor efeito de fortalecimento da difusão.
2.1.3 adicionar cromo principalmente para melhorar a resistência à oxidação do aço resistente ao calor, resistência à corrosão, teor de cromo inferior a 5%, 600 ℃ começou a oxidar violentamente, enquanto a quantidade de teor de cromo até 5% tem uma excelente resistência à oxidação. O aço 12Cr1MoV nos seguintes 580 ℃ tem uma boa resistência à oxidação, a profundidade da corrosão de 0,05 mm/a, 600 ℃ quando o desempenho começou a se deteriorar, a profundidade da corrosão de 0,13 mm/a. T91 contendo teor de cromo de 1 100 ℃ antes de um grande número de dissolvidos na matriz, e em temperaturas mais baixas e reprecipitação pode desempenhar um efeito de fortalecimento da difusão sonora. / Teor de cromo T91 aumentou para cerca de 9%, o uso da temperatura pode atingir 650 ℃, a medida primária é tornar a matriz dissolvida em mais cromo.
2.1.4 vanádio e nióbio são elementos vitais formadores de carboneto. Quando adicionados para formar uma liga fina e estável de carboneto com carbono, há um efeito de fortalecimento de difusão sólida.
2.1.5 A adição de molibdênio melhora principalmente a resistência térmica do aço e fortalece soluções sólidas.
2.2 Propriedades Mecânicas
Tarugo T91, após o tratamento térmico final para normalização + revenimento em alta temperatura, tem resistência à tração em temperatura ambiente ≥ 585 MPa, resistência ao escoamento em temperatura ambiente ≥ 415 MPa, dureza ≤ 250 HB, alongamento (espaçamento de 50 mm da amostra circular padrão) ≥ 20%, valor de tensão permitido [σ] 650 ℃ = 30 MPa.
Processo de tratamento térmico: temperatura de normalização de 1040 ℃, tempo de espera não inferior a 10 min, temperatura de revenimento de 730 ~ 780 ℃, tempo de espera não inferior a uma hora.
2.3 Desempenho de soldagem
De acordo com a fórmula de carbono equivalente recomendada pelo Instituto Internacional de Soldagem, o carbono equivalente do aço T91 é calculado em 2,43%, e a soldabilidade visível do T91 é baixa.
O aço não tende a reaquecer. Rachaduras.
2.3.1 Problemas com soldagem T91
2.3.1.1 Fissuração de organização endurecida na zona afetada pelo calor
A velocidade crítica de resfriamento T91 é baixa, a austenita é muito estável e o resfriamento não ocorre rapidamente durante a transformação de perlita padrão. Ela deve ser resfriada a uma temperatura mais baixa (cerca de 400 ℃) para ser transformada em martensita e organização grosseira.
A soldagem produzida pela zona afetada pelo calor das várias organizações tem diferentes densidades, coeficientes de expansão e diferentes formas de rede no processo de aquecimento e resfriamento será inevitavelmente acompanhada por diferentes expansões e contrações de volume; por outro lado, devido ao aquecimento da soldagem ter características irregulares e de alta temperatura, então as juntas soldadas T91 são enormes tensões internas. Juntas de organização de martensita grossa endurecida que estão em um estado de tensão complexo, ao mesmo tempo, o processo de resfriamento da solda difusão de hidrogênio da solda para a área próxima à costura, a presença de hidrogênio contribuiu para a fragilização da martensita, esta combinação de efeitos, é fácil produzir trincas a frio na área temperada.
2.3.1.2 Crescimento de grãos na zona afetada pelo calor
O ciclo térmico de soldagem afeta significativamente o crescimento de grãos na zona afetada pelo calor das juntas soldadas, especialmente na zona de fusão imediatamente adjacente à temperatura máxima de aquecimento. Quando a taxa de resfriamento é menor, a zona afetada pelo calor soldada aparecerá com organização grossa de ferrita e carboneto maciço, de modo que a plasticidade do aço diminui significativamente; a taxa de resfriamento é significativa devido à produção de organização grossa de martensita, mas também a plasticidade das juntas soldadas será reduzida.
2.3.1.3 Geração de camada amolecida
Aço T91 soldado no estado temperado, a zona afetada pelo calor produz uma camada de amolecimento inevitável, que é mais severa do que o amolecimento do aço resistente ao calor perlita. O amolecimento é mais notável ao usar especificações com taxas de aquecimento e resfriamento mais lentas. Além disso, a largura da camada amolecida e sua distância da linha de fusão estão relacionadas às condições de aquecimento e características da soldagem, pré-aquecimento e tratamento térmico pós-soldagem.
2.3.1.4 Corrosão sob tensão
Aço T91 no tratamento térmico pós-soldagem antes da temperatura de resfriamento geralmente não é inferior a 100 ℃. Se o resfriamento for em temperatura ambiente e o ambiente for relativamente úmido, é fácil ocorrer rachaduras por corrosão sob tensão. Regulamentos alemães: Antes do tratamento térmico pós-soldagem, ele deve ser resfriado abaixo de 150 ℃. No caso de peças de trabalho mais espessas, soldas de filete e geometria ruim, a temperatura de resfriamento não é inferior a 100 ℃. Se o resfriamento em temperatura ambiente e umidade for estritamente proibido, caso contrário, é fácil produzir rachaduras por corrosão sob tensão.
2.3.2 Processo de soldagem
2.3.2.1 Método de soldagem: Pode ser usada soldagem manual, soldagem com gás de proteção de pólo de tungstênio ou soldagem automática de pólo de fusão.
2.3.2.2 Material de soldagem: pode escolher fio de solda WE690 ou vareta de solda.
Seleção de material de soldagem:
(1) Soldagem do mesmo tipo de aço – se a soldagem manual pode ser usada para fazer a haste de soldagem manual CM-9Cb, a soldagem com proteção de gás de tungstênio pode ser usada para fazer o TGS-9Cb, a soldagem automática de pólo de fusão pode ser usada para fazer o fio MGS-9Cb;
(2) soldagem de aços diferentes – como soldagem com aço inoxidável austenítico, consumíveis de soldagem ERNiCr-3 disponíveis.
2.3.2.3 Pontos do processo de soldagem:
(1) a escolha da temperatura de pré-aquecimento antes da soldagem
O ponto Ms do aço T91 é de cerca de 400 ℃; a temperatura de pré-aquecimento é geralmente selecionada em 200 ~ 250 ℃. A temperatura de pré-aquecimento não pode ser muito alta. Caso contrário, a taxa de resfriamento da junta é reduzida, o que pode ser causado nas juntas soldadas nos limites de grãos da precipitação de carboneto e da formação de organização de ferrite, reduzindo significativamente a tenacidade ao impacto das juntas soldadas de aço à temperatura ambiente. A Alemanha fornece uma temperatura de pré-aquecimento de 180 ~ 250 ℃; a USCE fornece uma temperatura de pré-aquecimento de 120 ~ 205 ℃.
(2) a escolha do canal de soldagem / temperatura da camada intermediária
A temperatura da intercamada não deve ser menor que o limite inferior da temperatura de pré-aquecimento. Ainda assim, como na seleção da temperatura de pré-aquecimento, a temperatura da intercamada não pode ser muito alta. A temperatura da intercamada de soldagem T91 é geralmente controlada a 200 ~ 300 ℃. Regulamentos franceses: a temperatura da intercamada não excede 300 ℃. Regulamentos dos EUA: a temperatura da intercamada pode estar localizada entre 170 ~ 230 ℃.
(3) a escolha da temperatura inicial do tratamento térmico pós-soldagem
O T91 requer resfriamento pós-soldagem abaixo do ponto Ms e mantido por um certo período antes do tratamento de têmpera, com uma taxa de resfriamento pós-soldagem de 80 ~ 100 ℃ / h. Se não for isolado, a organização austenítica da junta pode não ser totalmente transformada; o aquecimento de têmpera promoverá a precipitação de carboneto ao longo dos limites de grãos austeníticos, tornando a organização muito quebradiça. No entanto, o T91 não pode ser resfriado à temperatura ambiente antes do revenimento após a soldagem porque o craqueamento a frio é perigoso quando suas juntas soldadas são resfriadas à temperatura ambiente. Para o T91, a melhor temperatura inicial do tratamento térmico pós-soldagem de 100 ~ 150 ℃ e a manutenção por uma hora podem garantir a transformação completa da organização.
(4) temperatura de revenimento do tratamento térmico pós-soldagem, tempo de espera, seleção da taxa de resfriamento de revenimento
Temperatura de têmpera: a tendência de trincas a frio do aço T91 é mais significativa e, sob certas condições, é propensa a trincas tardias, portanto, as juntas soldadas devem ser temperadas dentro de 24 horas após a soldagem. O estado pós-soldagem T91 da organização da martensita de ripas, após a têmpera, pode ser alterado para martensita temperada; seu desempenho é superior ao da martensita de ripas. A temperatura de têmpera é baixa; o efeito de têmpera não é aparente; o metal de solda é fácil de envelhecer e fragilizar; a temperatura de têmpera é muito alta (mais do que a linha AC1), a junta pode ser austenitizada novamente e, no processo de resfriamento subsequente, resfriar novamente. Ao mesmo tempo, conforme descrito anteriormente neste artigo, a determinação da temperatura de têmpera também deve considerar a influência da camada de amolecimento da junta. Em geral, a temperatura de têmpera T91 de 730 ~ 780 ℃.
Tempo de espera: O T91 requer um tempo de espera de revenimento pós-soldagem de pelo menos uma hora para garantir que sua organização seja totalmente transformada em martensita revenida.
Taxa de resfriamento de revenimento: Para reduzir o estresse residual das juntas soldadas de aço T91, a taxa de resfriamento deve ser inferior a cinco ℃ / min.
No geral, o processo de soldagem do aço T91 no processo de controle de temperatura pode ser brevemente expresso na figura abaixo:
III. Compreensão da norma ASME SA213 T91
3.1 O aço T91, pelo princípio da liga, especialmente adicionando uma pequena quantidade de nióbio, vanádio e outros oligoelementos, melhora significativamente a resistência a altas temperaturas e a resistência à oxidação em comparação ao aço 12 Cr1MoV, mas seu desempenho de soldagem é ruim.
3.2 O aço T91 tem maior tendência a trincas a frio durante a soldagem e precisa ser pré-aquecido a 200 ~ 250 ℃ antes da soldagem, mantendo a temperatura da camada intermediária em 200 ~ 300 ℃, o que pode prevenir efetivamente trincas a frio.
3.3 O tratamento térmico pós-soldagem do aço T91 deve ser resfriado a 100 ~ 150 ℃, isolamento por uma hora, temperatura de aquecimento e revenimento a 730 ~ 780 ℃, tempo de isolamento não inferior a uma hora e, finalmente, não superior a 5 ℃ / min de velocidade de resfriamento à temperatura ambiente.
IV. Processo de fabricação de ASME SA213 T91
O processo de fabricação do SA213 T91 requer vários métodos, incluindo fundição, perfuração e laminação. O processo de fundição deve controlar a composição química para garantir que o tubo de aço tenha excelente resistência à corrosão. Os processos de perfuração e laminação exigem controle preciso de temperatura e pressão para obter as propriedades mecânicas e a precisão dimensional necessárias. Além disso, os tubos de aço precisam ser tratados termicamente para remover tensões internas e melhorar a resistência à corrosão.
V. Aplicações da ASME SA213 T91
Norma ASME SA213 T91 é um aço resistente ao calor com alto teor de cromo, usado principalmente na fabricação de superaquecedores e reaquecedores de alta temperatura e outras peças pressurizadas de caldeiras de usinas de energia subcríticas e supercríticas com temperaturas de parede de metal não superiores a 625 °C, e também pode ser usado como peças pressurizadas de alta temperatura de vasos de pressão e energia nuclear. SA213 T91 tem excelente resistência à fluência e pode manter tamanho e forma estáveis em altas temperaturas e sob cargas de longo prazo. Suas principais aplicações incluem caldeiras, superaquecedores, trocadores de calor e outros equipamentos nas indústrias de energia, química e petróleo. É amplamente utilizado nas paredes resfriadas a água de caldeiras de alta pressão da indústria petroquímica, tubos economizadores, superaquecedores, reaquecedores e tubos.