ZAM Coated Steel for Photovoltaic Brackets

Zinc-Aluminum-Magnesium (ZAM) vs Hot-dip galvanizing (HDG)

Definição

What is Zinc-Aluminum-Magnesium (ZAM)?

Zinc-aluminum-magnesium (ZAM) is a high-performance metallic coating applied to steel designed to offer superior corrosion resistance, durability, and heat resistance compared to traditional galvanizing (zinc-only coatings). The coating combines zinc (Zn), aluminum (Al), and magnesium (Mg), which provides unique advantages in various applications.

ZAM Coating

ZAM Coating

What is Hot-dip galvanizing? (HDG)?

Hot-dip galvanization is a form of galvanization. It is the process of coating iron and steel with zinc, which alloys with the base metal surface when immersing the metal in a bath of molten zinc at a temperature of around 450 °C (842 °F). When exposed to the atmosphere, the pure zinc (Zn) reacts with oxygen (O2) to form zinc oxide (ZnO), which further reacts with carbon dioxide (CO2) to form zinc carbonate (ZnCO3), a usually dull grey, fairly strong material that protects the steel underneath from further corrosion in many circumstances.

Hot-dip Galvanizing

Hot-dip Galvanizing

Main Differences: Zinc-Aluminum-Magnesium (ZAM) vs Hot-dip galvanizing (HDG)

The comparison between zinc-aluminum-magnesium (ZAM) e hot-dip galvanizing (HDG) revolves around their coating composition, corrosion resistance, applications, cost, e environmental impact. Below is a detailed comparison to help understand their differences:

1. Coating Composition

Zinc-Aluminum-Magnesium (ZAM):
ZAM coatings are made of a combination of zinc (Zn), aluminum (Al), e magnesium (Mg). Typically, the composition is about 80-90% Zinc, 5-11% Aluminum, e 1-3% Magnesium. Including aluminum and magnesium gives the coating superior properties compared to zinc alone.

Hot-Dip Galvanizing (HDG):
HDG involves immersing steel into a molten bath of zinc (Zn) to form a protective zinc coating. The coating consists almost entirely of zinc, with small amounts of iron from the substrate, forming a zinc-iron alloy layer.

2. Resistência à corrosão

Zinc-Aluminum-Magnesium (ZAM):
Superior corrosion resistance compared to hot-dip galvanized steel. Adding aluminum increases the coating’s resistance to high temperatures and oxidation, while magnesium improves its resistance to corrosion in harsh environments like coastal, industrial, and chemical settings. ZAM has self-healing properties—if the coating is damaged, the magnesium component reacts with moisture to help prevent further corrosion.

Hot-Dip Galvanizing (HDG):
It provides good corrosion resistance but not as high as ZAM, especially in aggressive environments. The zinc coating is sacrificial, meaning it corrodes first to protect the underlying steel, but its effectiveness can be limited in humid, salty, ou chemical environments. HDG does not have the advanced self-healing properties that ZAM offers.

3. Durability and Longevity

Zinc-Aluminum-Magnesium (ZAM):
ZAM-coated products can last 2 to 4 times longer than traditional galvanized steel in harsh environments (e.g., coastal areas, chemical plants, etc.). The coating’s enhanced resistance to environmental factors contributes to a longer service life.

Hot-Dip Galvanizing (HDG):
The lifespan of HDG products is good but generally shorter than ZAM, particularly in extreme conditions. HDG can last for many years in less corrosive environments (e.g., mild climates), but its protection may degrade faster in severe environments.

4. Applications

Zinc-Aluminum-Magnesium (ZAM):
Ideal for ambientes hostis such as Coastal areas (where saltwater exposure is high), Chemical and industrial environments (where exposure to aggressive substances is every day), Solar panel mounts (due to its superior durability), Heavy-duty industrial applications (e.g., agricultural and mining equipment, steel structures exposed to extreme weather conditions).

Hot-Dip Galvanizing (HDG):
It is commonly used in general construction, automotive industries, outdoor infrastructure, e agricultural applications. It is suitable for general-purpose corrosion protection in outdoor conditions but not recommended for extreme or coastal environments.

5. Cost

Zinc-Aluminum-Magnesium (ZAM):
It is more expensive than traditional hot-dip galvanizing due to the inclusion of aluminum and magnesium and the more advanced coating process. The longer lifespan and lower maintenance costs in harsh environments often justify the higher initial cost.

Hot-Dip Galvanizing (HDG):
It is cheaper than ZAM, making it more suitable for projects where cost-efficiency is a priority and the environment is less aggressive. The relatively lower cost makes it ideal for large-scale production.

6. Environmental Impact

Zinc-Aluminum-Magnesium (ZAM):
The production of ZAM coatings is more environmentally friendly than hot-dip galvanizing, as it involves lower emissions of harmful gases and waste materials. The production process for ZAM generally generates less waste e fewer harmful emissions compared to traditional galvanizing methods.

Hot-Dip Galvanizing (HDG):
It is more environmentally intensive than ZAM, producing more waste gases and wastewater. However, modern improvements in the HDG process have aimed to reduce the environmental footprint, though it remains higher than ZAM.

7. Aesthetic Appearance

Zinc-Aluminum-Magnesium (ZAM):
ZAM has a matte gray finish with a smoother, more uniform appearance. This appearance can be more desirable in specific applications like architectural structures or solar panel mounts.

Hot-Dip Galvanizing (HDG):
HDG often has a shiny or dull metallic finish, depending on the thickness of the coating. While durable, its aesthetic appearance may be less appealing than ZAM’s, especially if the finish is uneven.

8. Ease of Processing and Welding

Zinc-Aluminum-Magnesium (ZAM):
ZAM coatings can be more challenging to process, weld, e paint than traditional galvanized steel, creating issues in some applications.

Hot-Dip Galvanizing (HDG):
HDG products are easier to weld and process than ZAM. However, the zinc coating can make welding and cutting more difficult due to zinc fumes, and special precautions may be required.

Summary Comparison Table: Zinc-Aluminum-Magnesium (ZAM) vs Hot-dip Galvanizing (HDG)

Recurso Zinc-Aluminum-Magnesium (ZAM) Hot-Dip Galvanizing (HDG)
Coating Composition Zinc, Aluminum, Magnesium Zinc (with some iron from the substrate)
Resistência à corrosão Superior, especially in harsh environments Good, but less effective in aggressive settings
Durability and Longevity 2-4 times longer than HDG in extreme environments Moderate lifespan, shorter in harsh conditions
Formulários Coastal areas, chemical environments, heavy-duty General outdoor infrastructure, agriculture
Custo Higher initial cost Lower initial cost
Impacto ambiental Lower emissions and waste Higher emissions and waste
Aesthetic Appearance Matte gray, smoother finish Shiny or dull metallic finish
Ease of Processing It can be more challenging, especially with welding It is more straightforward to process and weld

Conclusão

ZAM is the best choice for extreme environments where superior corrosion resistance and durability are needed. Its long-term performance can justify the higher upfront cost.

HDG remains the go-to solution for general corrosion protection in less aggressive environments, providing a cost-effective and widely available option for most standard applications.

Pipeline vs Piping

Onshore vs Offshore Pipeline and Piping

Introdução

In the realm of energy transportation, the distinction between onshore and offshore pipelines and piping systems plays a crucial role in the efficiency, safety, and environmental impact of resource extraction and distribution. Onshore pipelines, typically situated on land, are designed to transport oil, gas, and other fluids over varying distances, benefiting from relatively more straightforward access for maintenance and monitoring. Conversely, offshore pipelines, laid on the seabed or suspended in water, present unique engineering challenges due to harsh marine conditions and logistical complexities. Understanding the Onshore vs Offshore Pipeline and Piping in design, construction, and operational considerations between these two types of pipelines is essential for optimizing infrastructure development and ensuring sustainable practices in the energy sector.

Definition: Onshore vs Offshore Pipeline and Piping

What is Pipeline?

Pipeline is a long series of pipes, usually of large diameter, running underground, aboveground and underwater, such as a submarine pipeline, and equipped with fittings, such as valves and pumps, to control the flow of large quantities of fluid over long distances. Pipelines have large diameters, making it easy to transport liquids or gases in bulk from one place to another, sometimes for thousands of miles.

Pipeline

Pipeline

What is Piping?

Tubulação is a system of pipes used to convey fluids (liquids and gases) from one location to another within the designated boundaries or spaces of petrochemical plants, power plants, refineries, etc. It is also equipped with valves and fittings to control the flow of fluids from one facility to another as needed, but only within the plant’s designated boundaries. Never skip these essential topics when taking an online course on piping engineering. Piping diameters range from 1/2 inch to 80 inches, depending on the facility’s design requirements for fluid transportation, usually from one facility to another within the facility’s boundaries.

Tubulação

Tubulação

What is Onshore Pipeline?

Onshore pipelines refer to networks of pipelines and related equipment used to transport fluids such as oil, natural gas, water, and chemicals in a land environment. These pipelines are integral to long-distance oil and gas transportation from oil fields to refineries, from natural gas wells to gas stations, and from crude oil and refined oil tank farms, chemical tank farms, LNG tank farms, and aircraft refueling pipeline operations.

Onshore Pipeline

Onshore Pipeline

What is Offshore Pipeline?

Offshore pipelines refer to the network of pipes and related equipment used to transport fluids such as oil, gas, water, and chemicals in an offshore environment. These pipelines are integral to operating offshore oil rigs, platforms and floating production storage and offloading units (FPSOs). The unique conditions of the offshore environment, such as high salinity, extreme temperatures, and strong currents, present significant challenges to the design and maintenance of these systems.

Offshore Pipeline

Offshore Pipeline

Main Differences: Onshore vs Offshore Pipeline and Piping

Comparison Table: Onshore vs Offshore Pipeline and Piping

Especificação Em terra No mar
Pipeline Tubulação Pipeline Tubulação
Códigos de Design – ASME B31.4: Pipeline Transportation Systems for Liquids and Slurries
– ASME B31.8: Gas Transmission and Distribution Piping Systems
ASME B31.3: Process Piping – DNVGL-ST-F101: Submarine pipeline systems
– API RP 1111: Design, Construction, Operation, and Maintenance of Offshore Hydrocarbon Pipelines (Limit state design)
ASME B31.3: Process Piping
Escopo Outside plant boundary
(Villages, fields, rivers, canals, railways, highways, cities, deserts, forests, hills, etc.)
Within plant boundary Outside plant boundary Within plant boundary
Type of pipe API Spec 5L: Specification for Line pipes – ASTM
– BS
– API 5L
API Spec 5L: Specification for Line pipes
– DNVGeu-ST-F101: Submarine Pipeline Systems
Padrões ASTM
Válvulas – API 6D: Specification for Pipeline and Piping Valves
– Full Bore (FB) Ball Valves are used for pigs.
– BS
– API Standard
– Full bore (FB) and Reduced bore (RB)
– Full bore Valves: for smooth passage of intelligent pigs
– API 6D SS: Specification on Subsea Pipeline Valves
– RB valves
– BS/API standards
Soldagem – API Std. 1104: Welding of Pipelines and Related Facilities
– Type of welding: Automatic / Semi-Automatic/ Manual
– ASME Sec. IX: Standard for Welding and Brazing Procedures, Welders, Brazers and Welding and Brazing Operators
– Type of welding: Manual (mostly)
– API Std. 1104: Welding of Pipelines and Related Facilities
– Mostly automatic welding on pipelay barge.
– ASME Sec. IX: Standard for Welding and Brazing Procedures, Welders, Brazers and Welding and Brazing Operators
– Manual welding at the fabrication yard.
Weld joint inspection (NDT requirements) 100% by Automatic UT or RT (by using X-Ray) 5% to 100%
(mostly by using gamma rays)
100% by Automatic UT From 10% to 100% as required
Analyses – Wall Thickness Analysis
– Elastic Bend Radius Analysis
– Stability Analysis for Water Bodies/ Marshy Areas
– Horizontal directional drilling design analysis
– Railroad/ Highway Crossing Analysis
– Casing Pipe Analysis for Crossings
– Seismic Analysis
– Piping wall thickness calculation
– Piping Stress Analysis
Static Analysis
Dynamic Analysis
Wind Analysis
Flange Leakage Analysis
Seismic Analysis
– Wall thickness Analysis
– On-bottom Stability
– Span Analysis
– Global Buckling – Lateral and Upheaval
– Pipeline Expansion Analysis
– Riser Design (Span, Stress & Flexibility Analysis)
– Riser Clamp Design
– Pipeline Crossing Design and Analysis
– Deck piping stress analysis
Instalação Buried (mostly) Above ground/On rack/slippers/T-postal etc. Subsea (in water on the seabed or buried in the seabed) Deck Platform Piping
(similar to plant)
Special Installations – Across rivers
– Horizontal Directional Drilling (HDD) method
– Micro-tunnelling method
– Across road/ rail/ highway
– Auger boring/ jacking boring method
– Shallow HDD
– Ghats/ Hills
– Modular installations
– Finning
– Studding
– Jacketing
– Spooling inside warehouse
– U/G piping for cooling water
– S-lay Method (for shallow water installation)
– J-Lay Method (for deep water installation)
– Shore pull/ barge pull near Land Fall Point (LFP)
Along with the deck structure
Special Equipment – Sectionalizing Valves (Remote operated)
– Insulating Joints
– Scraper Launcher/ Receiver
– Stem Extended Valves (for buried valves)
– Flow Tee
– Long Radius bends (R=6D)
– Cold field bends (R = 30D or 40D)
– Expansion Joints
– Motor Operator Valves (MOV)
– Cryogenic Valves
– Springs
– Subsea Isolation Valve (SSIV)
– LR Bends
– Flow tee
– Pipeline End Manifold (PLEM)
– Single Point Mooring (SPM) system
– Submarine hoses
– Floating hoses
– Cables and umbilical installation
– Piggy-back pipelines
Não aplicável
Survey – Topographical Survey
(all along the pipeline route)
– Geotechnical investigation
(all along the pipeline route)
– Soil resistivity survey
(all along the pipeline route)
– Hydrological Survey for water bodies (for scour depth calculation)
– Cadastral Survey (for RoU acquisition)
– Wind profile from meteorology
– Seismic study of plot
– Geophysical survey/ Bathymetric Survey by using side scan sonar, sub-bottom profiler, and echo-sounder
– Met-Ocean data collection
– Geotechnical data of the pipeline route
Não aplicável
Corrosion Protection Coating Three Layer Polyethylene (3LPE) coating
Three Layer Polypropylene (3LPP) coating
Fusion bonded epoxy (FBE) coating
– Coal tar enamel (CTE) Coating
Painting Coatings such as:
– Coal Tar Enamel Coating (CTE)
Three-layer polyethylene coating (3LPE)
Three-layer polypropylene coating (3LPP)
– Double-layer fusion bonded epoxy coating (2FBE)
Painting
Cathodic Protection System – Impressed Current Cathodic Protection (ICCP) system
– Sacrificial Anode (limited locations)
Not applicable Sacrificial Anodic Cathodic Protection (SACP) system Não aplicável
Hydrostatic testing – Gauge Plate run of 95% of the ID of the highest pipe thickness
– Test Pressure
Minimum: 1.25 times of Design Pressure (for liquid pipelines)
1.25 to 1.5 times of Design Pressure (for gas pipelines)
Maximum: Pressure equivalent to Hoop stress of 95% of SMYS of pipe material
– Hold period: 24 hours
– No gauge plate run is done. Generally, cardboard blasting is done to clean the piping.
– Test Pressure
Minimum: 1.5 × Design Pressure × Temperature Factor
Maximum: Based on line schedule
– Hold period: 2 – 6 hours
– Gauge Plate run of 95% of the ID of the highest pipeline thickness.
– Test Pressure
Minimum: 1.25 times x Design Pressure
– Hold period: 24 hours
– No gauging is done.
– Test Pressure
Maximum: As per line schedule
– Hold period: 2 hours
Preservation – Preservation of pipeline with corrosion-inhibited water or by filling of inert gas (N2) Not applicable
Pigging Intelligent Pigging Not applicable Compliant Not applicable
Machines/Equipment required for installation – Trencher
– Backhoe/ Excavator
– Side Boom
– Cold field bending machine
– Holiday Detection Machines
– Pneumatic/ Hydraulic Internal Clamps
Crane/ Hydra – Pipelay Barge
– Derrick Barge
– Diving support vessel
– Dynamic Positioning (DP) barge (for deepwater)
Pre-fabricated deck piping

Conclusion: Onshore vs Offshore Pipeline and Piping

In summary, Onshore pipelines are usually buried or erected on land to transport oil, natural gas, drinking water, sewage, seawater, slurry, etc. Onshore piping is typically erected in petrochemical plants, power plants, refineries, fire protection systems, water treatment systems, etc., while Offshore pipelines are buried on the seabed. Offshore piping typically consists of transmission and structural support pipeline systems on offshore drilling platforms. Special offshore equipment includes underwater isolation valves, tees, and submarine hoses. Offshore surveys include geophysics, bathymetry, and ocean data collection, while onshore surveys focus on topographic and geotechnical engineering studies.

L80-9Cr vs L80-13Cr

L80-9Cr vs L80-13Cr: Something You Need to Know

Choosing the proper casing and tubing materials can ensure safety and efficiency in oil and gas drilling and exploration. L80-9Cr and L80-13Cr are two alloy steel grades commonly used in petroleum casing and tubing. Each grade has unique characteristics and applications. L80-9Cr vs L80-13Cr, this article will delve into the difference between these materials to help you make an informed decision.

1. Overview of L80 Grade

L80 is an alloy steel used in the oil and gas sector. It is known for its good strength and corrosion resistance. It is typically employed in high-temperature and high-pressure environments and is suitable for both oil and gas production.

1.1 L80-9Cr

Composition: Contains 9% chromium, enhancing the material’s oxidation resistance at high temperatures.
Características:
Corrosion Resistance: It performs well in CO2 environments, making it suitable for acidic gas pipelines.
Mechanical Strength: Provides good strength and is suitable for high-temperature operations.
Applications: Commonly used in high-temperature gas pipelines in oil fields.

1.2 L80-13Cr

Composition: Contains 13% chromium, offering higher corrosion resistance.
Características:
Corrosion Resistance: Exhibits superior performance in environments with H2S and CO2, suitable for extreme conditions.
Mechanical Strength: Offers higher strength and is ideal for complex operational environments.
Applications: Used in high-corrosion environments and deep well operations.

L80-9Cr vs L80-13Cr

L80-9Cr and L80-13Cr Casing and Tubing in Oil and Gas Drilling and Exploration

2. Comparison: L80-9Cr vs L80-13Cr

2.1 Chemical Composition

Padrão Nota C Si Mn P S Cr Mo Não Cu
API 5CT L80-9Cr ≤ 0,15 ≤ 1.00 0.30-0.60 ≤ 0,020 ≤ 0,010 8.00-10.00 0.90-1.10 ≤ 0.50 ≤ 0,25
L80-13Cr 0.15-0.22 ≤ 1.00 0.25-1.00 ≤ 0,020 ≤ 0,010 12.00-14.00 ≤ 0.50 ≤ 0,25

2.2 Propriedades Mecânicas

Padrão Nota Yield Strength (Mpa) Resistência à tração (Mpa) Alongamento (%) Hardness max
min. max. min. min. CDH HBW
API 5CT L80-9Cr 552 655 655 API 5CT
Table C.7
23 241
L80-13Cr 552 655 655 23 241

2.3 Impact Test

Padrão Nota Sharpy Impact Energy (J)
Coupling Corpo do tubo
API 5CT L80-9Cr L-10-40-0 T-10-20-0 L-10-27-0 T-10-14-0
L80-13Cr L-10-40-0 T-10-20-0 L-10-27-0 T-10-14-0

2.4 Corrosion Resistance

L80-9Cr: The 9% chromium content provides moderate corrosion resistance, suitable for environments with low to moderate concentrations of H₂S (hydrogen sulfide) or CO₂ (carbon dioxide), typically seen in less aggressive environments.

L80-13Cr: The 13% chromium content provides enhanced resistance to sour service (i.e., environments with high levels of H₂S) and high CO₂ environments. It’s better for harsher conditions like deep wells or offshore drilling.

2.5 Temperature and Sour Service

L80-9Cr: Generally suitable for moderate-temperature environments.

L80-13Cr: Can withstand higher temperatures and is better equipped for sour service conditions with high concentrations of H₂S or CO₂.

2.6 Cost

L80-9Cr: Due to its lower chromium content, L80-9Cr is less expensive than L80-13Cr. If the environment is not highly corrosive or sour, L80-9Cr could be a more cost-effective option.

L80-13Cr: More expensive but provides superior resistance in harsh conditions, potentially reducing maintenance costs or failures over time.

2.7 Applications

L80-9Cr: Suitable in wells with moderate temperature, pressure, and sour gas conditions. Often used in conventional oil and gas wells or less aggressive service environments.

L80-13Cr: Ideal for high-pressure wells with harsh environmental conditions, particularly in sour gas service, deep wells, or offshore oil & gas operations where high corrosion resistance is critical.

Turbinas eólicas offshore

Seções circulares ocas estruturais para turbinas eólicas onshore e offshore

À medida que a demanda por energia renovável continua a aumentar globalmente, a energia eólica offshore surgiu como uma solução vital. Este artigo se aprofunda na importância das seções circulares ocas estruturais (CHS) usadas nas estruturas de suporte de turbinas eólicas offshore, explorando seu design, propriedades de materiais e aplicações.

1. Compreendendo seções circulares ocas estruturais

Seções circulares estruturais ocas são tubos cilíndricos com um centro oco. Essas seções desempenham um papel crucial nas estruturas de suporte de turbinas eólicas offshore, que são projetadas principalmente para suportar o peso da turbina e suportar pressões ambientais externas.

2. Propriedades dos materiais de seções circulares ocas estruturais

Aço carbono: S355MH, S355MLH, S420MH, S420MLH, S460MH, S460MLH, S460QH, S460QLH, S620QH, S620QLH, S690QH, S690QLH

3. Considerações de design

Ao projetar estruturas de suporte para turbinas eólicas offshore, vários fatores devem ser considerados:
Carga de vento: as turbinas sofrem cargas dinâmicas de vento durante a operação, exigindo um projeto que garanta estabilidade estrutural.
Impacto das ondas: As ondas em ambientes marinhos exercem pressão adicional sobre as estruturas, exigindo cálculos cuidadosos e ajustes de projeto.
Proteção contra corrosão: Dada a natureza corrosiva da água do mar, o uso de revestimentos protetores ou materiais resistentes à corrosão é essencial para prolongar a vida útil da estrutura.

4. Vantagens do uso de seções ocas circulares

O emprego de seções circulares ocas em estruturas de suporte oferece vários benefícios:
Alta resistência à compressão: a seção transversal circular permite uma distribuição uniforme da pressão, melhorando a estabilidade geral.
Leve: Em comparação com outros formatos, os tubos circulares oferecem resistência semelhante com peso reduzido, facilitando o transporte e a instalação.
Facilidade de construção: A simplicidade de conectar e soldar tubos circulares aumenta a eficiência da construção.

5. Perguntas frequentes

P: Que material deve ser escolhido para seções circulares estruturais ocas?
UM: A escolha do material depende de condições ambientais específicas, orçamento e requisitos de design. O aço carbono é adequado para a maioria das aplicações, mas em ambientes altamente corrosivos, aço inoxidável ou aço de liga podem ser mais apropriados.

P: Como garantir a durabilidade das seções circulares estruturais vazadas?
UM: Inspeções e manutenções regulares são vitais para garantir durabilidade. Além disso, selecionar revestimentos e materiais de proteção apropriados pode estender significativamente a vida útil das estruturas.

6. Conclusão

Seções circulares ocas estruturais são indispensáveis nas estruturas de suporte de turbinas eólicas offshore. Por meio de design cuidadoso e seleção de materiais, as turbinas eólicas podem ser aprimoradas em estabilidade e durabilidade, avançando assim o desenvolvimento de energia renovável.

Para mais informações ou assistência sobre seções ocas estruturais para estruturas de turbinas eólicas onshore e offshore, sinta-se à vontade para entrar em contato conosco em [email protected].

Produção de aço bruto

Produção de aço bruto em setembro de 2024

Em setembro de 2024, a produção mundial de aço bruto para os 71 países que reportaram à Associação Mundial do Aço (aço mundial) foi de 143,6 milhões de toneladas (Mt), uma redução de 4,7% em relação a setembro de 2023.

produção de aço bruto

produção de aço bruto

Produção de aço bruto por região

A África produziu 1,9 Mt em setembro de 2024, alta de 2,6% em setembro de 2023. Ásia e Oceania produziram 105,3 Mt, queda de 5,0%. A UE (27) produziu 10,5 Mt, alta de 0,3%. Europa, Outros produziram 3,6 Mt, alta de 4,1%. O Oriente Médio produziu 3,5 Mt, queda de 23,0%. América do Norte produziu 8,6 Mt, queda de 3,4%. Rússia e outros CIS + Ucrânia produziram 6,8 Mt, queda de 7,6%. América do Sul produziu 3,5 Mt, alta de 3,3%.

Tabela 1. Produção de aço bruto por região

Região Set 2024 (Mt) Mudança % 24/23 de setembro Jan-Set 2024 (Mt) Mudança % Jan-Set 24/23
África 1.9 2.6 16.6 2.3
Ásia e Oceania 105.3 -5 1,032.00 -2.5
UE (27) 10.5 0.3 97.8 1.5
Europa, Outros 3.6 4.1 33.1 7.8
Médio Oriente 3.5 -23 38.4 -1.5
América do Norte 8.6 -3.4 80 -3.9
Rússia e outros países da CEI + Ucrânia 6.8 -7.6 64.9 -2.5
Ámérica do Sul 3.5 3.3 31.4 0
Total de 71 países 143.6 -4.7 1,394.10 -1.9

Os 71 países incluídos nesta tabela foram responsáveis por aproximadamente 98% da produção mundial total de aço bruto em 2023.

Regiões e países abrangidos pela tabela:

  • África: Argélia, Egito, Líbia, Marrocos, África do Sul, Tunísia
  • Ásia e Oceania: Austrália, China, Índia, Japão, Mongólia, Nova Zelândia, Paquistão, Coreia do Sul, Taiwan (China), Tailândia, Vietnã
  • União Europeia (27): Áustria, Bélgica, Bulgária, Croácia, República Checa, Finlândia, França, Alemanha, Grécia, Hungria, Itália, Luxemburgo, Holanda, Polônia, Portugal, Romênia, Eslováquia, Eslovênia, Espanha, Suécia
  • Europa, Outros: Macedônia, Noruega, Sérvia, Türkiye, Reino Unido
  • Médio Oriente: Bahrein, Irã, Iraque, Jordânia, Kuwait, Omã, Catar, Arábia Saudita, Emirados Árabes Unidos, Iêmen
  • América do Norte: Canadá, Cuba, El Salvador, Guatemala, México, Estados Unidos
  • Rússia e outros países da CEI + Ucrânia: Bielorrússia, Cazaquistão, Rússia, Ucrânia
  • Ámérica do Sul: Argentina, Brasil, Chile, Colômbia, Equador, Paraguai, Peru, Uruguai, Venezuela

Os 10 principais países produtores de aço

A China produziu 77,1 Mt em setembro de 2024, queda de 6,1% em setembro de 2023. A Índia produziu 11,7 Mt, queda de 0,2%. O Japão produziu 6,6 Mt, queda de 5,8%. Os Estados Unidos produziram 6,7 Mt, alta de 1,2%. Estima-se que a Rússia tenha produzido 5,6 Mt, queda de 10,3%. A Coreia do Sul produziu 5,5 Mt, alta de 1,3%. A Alemanha produziu 3,0 Mt, alta de 4,3%. A Türkiye produziu 3,1 Mt, alta de 6,5%. O Brasil produziu 2,8 Mt, alta de 9,9%. Estima-se que o Irã tenha produzido 1,5 Mt, queda de 41,2%.

Tabela 2. Os 10 principais países produtores de aço

Região  Set 2024 (Mt) Mudança % 24/23 de setembro Jan-Set 2024 (Mt) Mudança % Jan-Set 24/23
China 77.1 -6.1 768.5 -3.6
Índia 11.7 -0.2 110.3 5.8
Japão 6.6 -5.8 63.3 -3.2
Estados Unidos 6.7 1.2 60.3 -1.6
Rússia 5.6 e -10.3 54 -5.5
Coréia do Sul 5.5 1.3 48.1 -4.6
Alemanha 3 4.3 28.4 4
Turquia 3.1 6.5 27.9 13.8
Brasil 2.8 9.9 25.2 4.4
Irã 1,5 e -41.2 21.3 -3.1

e – estimado. A classificação dos 10 principais países produtores é baseada no agregado acumulado do ano

API 5L vs ISO 3183

Conheça as diferenças: API 5L vs ISO 3183

ISO 3183 e API 5L são padrões relacionados a tubos de aço, principalmente para uso nas indústrias de petróleo, gás e outros transportes de fluidos. Embora haja sobreposição significativa entre esses dois padrões, API 5L vs ISO 3183, existem diferenças importantes em seu escopo, aplicação e nas organizações por trás deles.

1. Organizações emissoras: API 5L vs ISO 3183

API 5L: Emitido pelo American Petroleum Institute (API), este padrão é usado principalmente na indústria de petróleo e gás. Ele detalha os requisitos técnicos para tubos de aço transportando petróleo, gás e água.
ISO 3183: Emitida pela Organização Internacional de Padronização (ISO), esta norma é reconhecida internacionalmente e usada globalmente para tubos de aço no setor de transporte de petróleo e gás.

2. Âmbito de aplicação: API 5L vs ISO 3183

API 5L: Cobre tubos de aço para transporte de petróleo, gás natural e outros fluidos sob alta pressão. É amplamente usado na América do Norte, especialmente nos Estados Unidos.
ISO 3183: Esta norma se concentra principalmente no projeto, fabricação e controle de qualidade de tubos de aço usados em oleodutos e gasodutos, mas seu uso é mais internacional e aplicável em vários países do mundo.

3. Principais diferenças: API 5L vs ISO 3183

Foco geográfico e de mercado:

A API 5L é mais adaptada ao mercado norte-americano (particularmente os EUA), enquanto a ISO 3183 é aplicável internacionalmente e usada em muitos países ao redor do mundo.

Graus e requisitos de aço:

A API 5L define graus de aço como L175, L210, L245 e assim por diante, onde o número representa o limite de escoamento mínimo em megapascais (MPa).
A ISO 3183 também define classificações semelhantes, mas com requisitos mais detalhados em relação às propriedades do material, processos de fabricação e protocolos de inspeção, alinhando-se com as práticas internacionais da indústria.
Especificações adicionais:
A API 5L enfatiza o controle de qualidade, a certificação e os requisitos de produção, enquanto a ISO 3183 abrange um escopo mais amplo, com o comércio internacional em mente, e fornece especificações para diferentes condições, incluindo temperatura, ambiente e requisitos mecânicos específicos.

4. Requisitos técnicos: API 5L vs ISO 3183

A API 5L especifica as propriedades do material dos tubos de aço, processos de fabricação, dimensões, métodos de teste e controle de qualidade. Ela define graus de aço de L (baixa resistência) a X (maior resistência), como X42, X60 e X70.
A ISO 3183 abrange aspectos semelhantes da fabricação de tubos de aço, incluindo qualidade do material, tratamento térmico, tratamento de superfície e extremidades de tubos. Ela também fornece especificações detalhadas para pressão de projeto de tubulação, considerações ambientais e vários acessórios de tubulação.

5. Comparação de graus de tubos: API 5L vs ISO 3183

API 5L: Os graus variam de graus L (baixo limite de escoamento) a graus X (maior limite de escoamento). Por exemplo, X60 se refere a tubos com um limite de escoamento de 60.000 psi (aproximadamente 413 MPa).
ISO 3183: Usa um sistema de classificação similar, mas pode incluir classificações e condições mais detalhadas. Também garante alinhamento com o design global de pipeline e práticas operacionais.

6. Compatibilidade entre padrões:

Em muitos casos, API 5L e ISO 3183 são compatíveis, o que significa que um tubo de aço que atende aos requisitos da API 5L geralmente também atenderá aos requisitos da ISO 3183 e vice-versa. No entanto, projetos específicos de pipeline podem aderir a um padrão em detrimento do outro, dependendo da localização, preferências do cliente ou requisitos regulatórios.

7. Conclusão:

API 5L é mais comum nos Estados Unidos e regiões vizinhas. Ele se concentra na indústria de oleodutos e gasodutos, enfatizando fortemente a produção e o controle de qualidade.
ISO 3183 é um padrão internacional para projetos globais de oleodutos e gasodutos. Seus requisitos mais detalhados e globalmente alinhados garantem uma aceitação mais ampla em mercados internacionais.

Ambas as normas são muito semelhantes em relação a especificações de material, fabricação e teste. Ainda assim, a ISO 3183 tende a ter um escopo mais amplo e aplicável globalmente, enquanto a API 5L permanece mais específica para o mercado norte-americano. A escolha entre essas normas depende da localização geográfica, especificações e necessidades regulatórias do projeto de gasoduto.