Des articles

Exploration du rôle vital des tuyaux en acier dans l'exploration pétrolière et gazière

Introduction

Les tuyaux en acier sont essentiels dans l'industrie pétrolière et gazière, car ils offrent une durabilité et une fiabilité inégalées dans des conditions extrêmes. Essentiels pour l'exploration et le transport, ces tuyaux résistent aux pressions élevées, aux environnements corrosifs et aux températures extrêmes. Cette page explore les fonctions essentielles des tuyaux en acier dans l'exploration pétrolière et gazière, en détaillant leur importance dans le forage, les infrastructures et la sécurité. Découvrez comment le choix de tuyaux en acier adaptés peut améliorer l'efficacité opérationnelle et réduire les coûts dans cette industrie exigeante.

I. Connaissances de base sur les tubes en acier pour l'industrie pétrolière et gazière

1. Explication de la terminologie

API : Abréviation de Institut américain du pétrole.
FTPP : Abréviation de Produits tubulaires pour champs pétrolifères, y compris les tuyaux de tubage d'huile, les tubes d'huile, les tiges de forage, les colliers de forage, les forets, les tiges de ventouse, les joints de chiot, etc.
Tube d'huile : Les tubes sont utilisés dans les puits de pétrole pour l'extraction, l'extraction de gaz, l'injection d'eau et la fracturation acide.
Enveloppe: Tube descendu de la surface du sol dans un trou de forage comme revêtement pour empêcher l'effondrement du mur.
Garniture de forage : Tuyau utilisé pour percer des trous de forage.
Tuyau de canalisation : Tuyau utilisé pour transporter du pétrole ou du gaz.
Accouplements : Cylindres utilisés pour relier deux tuyaux filetés avec des filetages internes.
Matériau de couplage : Tuyau utilisé pour fabriquer des raccords.
Fils de discussion API : Filetages de tuyaux spécifiés par la norme API 5B, y compris les filetages ronds pour tuyaux pétroliers, les filetages ronds courts pour tubage, les filetages ronds longs pour tubage, les filetages trapézoïdaux partiels pour tubage, les filetages pour tuyaux de ligne, etc.
Connexion Premium : Filetages non API avec des propriétés d'étanchéité, des propriétés de connexion et d'autres propriétés uniques.
Les échecs: déformation, fracture, dommages de surface et perte de la fonction d'origine dans des conditions de service spécifiques.
Principales formes d’échec : écrasement, glissement, rupture, fuite, corrosion, collage, usure, etc.

2. Normes liées au pétrole

API Spec 5B, 17e édition – Spécifications pour le filetage, le calibrage et l'inspection des filetages des filetages de boîtiers, de tubes et de conduites
API Spec 5L, 46e édition – Spécification pour les tuyaux de canalisation
API Spec 5CT, 11e édition – Spécifications pour les boîtiers et les tubes
Spécification API 5DP, 7e édition – Spécifications pour les tiges de forage
Spécification API 7-1, 2e édition – Spécifications pour les éléments de tige de foret rotatif
Spécification API 7-2, 2e édition – Spécifications pour le filetage et le calibrage des connexions filetées à épaulement rotatif
API Spec 11B, 24e édition – Spécifications pour les tiges de pompage, les tiges et doublures polies, les accouplements, les barres de plombage, les colliers de tige polis, les presse-étoupes et les tés de pompage
ISO 3183:2019 – Industries du pétrole et du gaz naturel – Tuyaux en acier pour systèmes de transport par pipeline
ISO 11960:2020 – Industries du pétrole et du gaz naturel – Tuyaux en acier destinés à être utilisés comme tubage ou tube pour puits
NACE MR0175 / ISO 15156:2020 – Industries du pétrole et du gaz naturel – Matériaux destinés à être utilisés dans des environnements contenant du H2S dans la production pétrolière et gazière

II. Tube d'huile

1. Classification des tubes d'huile

Les tubes à huile sont divisés en tubes à huile non refoulés (NU), tubes à huile refoulés externes (EU) et tubes à huile à joint intégral (IJ). Les tubes à huile NU signifient que l'extrémité du tube est d'épaisseur moyenne, tourne directement le filetage et amène les raccords. Les tubes refoulés impliquent que les extrémités des deux tubes sont refoulées extérieurement, puis filetées et couplées. Les tubes à joint intégral signifient qu'une extrémité du tube est refoulée avec des filetages externes et l'autre est refoulée avec des filetages internes connectés directement sans raccords.

2. Fonction du tube d'huile

① Extraction de pétrole et de gaz : une fois les puits de pétrole et de gaz forés et cimentés, le tube est placé dans le carter de pétrole pour extraire le pétrole et le gaz jusqu'au sol.
② Injection d'eau : lorsque la pression au fond du trou est insuffisante, injectez de l'eau dans le puits à travers le tube.
③ Injection de vapeur : lors de la récupération à chaud du pétrole épais, la vapeur est introduite dans le puits avec un tube de pétrole isolé.
④ Acidification et fracturation : Au stade avancé du forage de puits ou pour améliorer la production des puits de pétrole et de gaz, il est nécessaire d'introduire un milieu d'acidification et de fracturation ou un matériau de durcissement dans la couche de pétrole et de gaz, et le milieu et le matériau de durcissement sont transportés à travers le tube de pétrole.

3. Qualité d'acier des tubes d'huile

Les qualités d'acier des tubes d'huile sont H40, J55, N80, L80, C90, T95, P110.
Le N80 est divisé en N80-1 et N80Q, les deux ont les mêmes propriétés de traction ; les deux différences sont l'état de livraison et les différences de performance d'impact, le N80-1 est livré par état normalisé ou lorsque la température de laminage finale est supérieure à la température critique Ar3 et la réduction de tension après refroidissement par air et peut être utilisé pour trouver le laminage à chaud au lieu de normalisé, les tests d'impact et non destructifs ne sont pas requis ; le N80Q doit être revenu (trempé et revenu) Traitement thermique, la fonction d'impact doit être conforme aux dispositions de l'API 5CT et doit être un test non destructif.
Le L80 est divisé en L80-1, L80-9Cr et L80-13Cr. Leurs propriétés mécaniques et leur état de livraison sont les mêmes. Différences d'utilisation, de difficulté de production et de prix : le L80-1 est destiné au type général, le L80-9Cr et le L80-13Cr sont des tubes à haute résistance à la corrosion, difficiles à produire et coûteux, généralement utilisés dans les puits à forte corrosion.
C90 et T95 sont divisés en types 1 et 2, à savoir C90-1, C90-2 et T95-1, T95-2.

4. La qualité d'acier, le nom de l'acier et l'état de livraison des tubes d'huile couramment utilisés

Tube d'huile J55 (37Mn5) NU : laminé à chaud au lieu de normalisé
Tube d'huile J55 (37Mn5) EU : normalisé sur toute la longueur après bouleversement
Tubes d'huile N80-1 (36Mn2V) NU : laminés à chaud au lieu de normalisés
Tube d'huile N80-1 (36Mn2V) EU : normalisé sur toute la longueur après bouleversement
Tube d'huile N80-Q (30Mn5) : 30Mn5, trempe sur toute la longueur
Tube d'huile L80-1 (30Mn5) : 30Mn5, trempe sur toute la longueur
Tube d'huile P110 (25CrMnMo) : 25CrMnMo, trempe sur toute la longueur
Accouplement J55 (37Mn5) : laminé à chaud en ligne normalisé
Couplage N80 (28MnTiB) : trempe sur toute la longueur
Accouplement L80-1 (28MnTiB) : trempé sur toute la longueur
Couplage P110 (25CrMnMo) : Trempe sur toute la longueur

III. Tuyau de tubage

1. Classification et rôle du boîtier

Le tubage est le tuyau en acier qui soutient la paroi des puits de pétrole et de gaz. Plusieurs couches de tubage sont utilisées dans chaque puits en fonction des différentes profondeurs de forage et des conditions géologiques. Le ciment est utilisé pour cimenter le tubage après son abaissement dans le puits, et contrairement aux oléoducs et aux tiges de forage, il ne peut pas être réutilisé et fait partie des matériaux consommables jetables. Par conséquent, la consommation de tubage représente plus de 70 pour cent de tous les tuyaux de puits de pétrole. Le boîtier peut être divisé en boîtier conducteur, boîtier intermédiaire, boîtier de production et boîtier de revêtement en fonction de son utilisation, et leurs structures dans les puits de pétrole sont illustrées à la figure 1.

①Boîtier du conducteur : Utilisant généralement les qualités API K55, J55 ou H40, le tubage conducteur stabilise la tête de puits et isole les aquifères peu profonds dont le diamètre est généralement d'environ 20 pouces ou 16 pouces.

②Boîtier intermédiaire : Le tubage intermédiaire, souvent fabriqué à partir de qualités API K55, N80, L80 ou P110, est utilisé pour isoler les formations instables et les zones de pression variables, avec des diamètres typiques de 13 3/8 pouces, 11 3/4 pouces ou 9 5/8 pouces. .

③Boîtier de production : Construit à partir d'acier de haute qualité tel que les nuances API J55, N80, L80, P110 ou Q125, le boîtier de production est conçu pour résister aux pressions de production, généralement avec des diamètres de 9 5/8 pouces, 7 pouces ou 5 1/2 pouces.

④Boîtier de revêtement : Les chemises prolongent le puits de forage dans le réservoir en utilisant des matériaux tels que les grades API L80, N80 ou P110, avec des diamètres typiques de 7 pouces, 5 pouces ou 4 1/2 pouces.

⑤Tube : Les tubes transportent les hydrocarbures vers la surface, en utilisant les qualités API J55, L80 ou P110, et sont disponibles dans des diamètres de 4 1/2 pouces, 3 1/2 pouces ou 2 7/8 pouces.

IV. Garniture de forage

1. Classification et fonction des tuyaux pour outils de forage

Le tube de forage carré, le tube de forage, le tube de forage lesté et la masse-tige des outils de forage forment le tube de forage. Le tube de forage est l'outil de forage central qui entraîne le trépan du sol jusqu'au fond du puits, et il constitue également un canal du sol jusqu'au fond du puits. Il a trois rôles principaux :

① Pour transmettre le couple pour entraîner le foret vers le foret ;

② Compter sur son poids sur le trépan pour briser la pression de la roche au fond du puits ;

③ Pour transporter le fluide de lavage, c'est-à-dire la boue de forage à travers le sol à travers les pompes à boue à haute pression, la colonne de forage dans le trou de forage s'écoule dans le fond du puits pour rincer les débris de roche et refroidir le trépan, et transporter les débris de roche à travers la surface extérieure de la colonne et la paroi du puits entre l'espace annulaire pour retourner au sol, pour atteindre l'objectif de forer le puits.

Le tube de forage est utilisé dans le processus de forage pour résister à une variété de charges alternées complexes, telles que la traction, la compression, la torsion, la flexion et d'autres contraintes. La surface intérieure est également soumise au décapage par boue à haute pression et à la corrosion.
(1) Garniture de forage carrée : Les tiges de forage carrées sont de deux types : quadrilatères et hexagonales. Dans les tiges de forage pétrolières chinoises, chaque ensemble de colonnes de forage utilise généralement une tige de forage de type quadrilatère. Ses spécifications sont de 63,5 mm (2-1/2 pouces), 88,9 mm (3-1/2 pouces), 107,95 mm (4-1/4 pouces), 133,35 mm (5-1/4 pouces), 152,4 mm (6 pouces), etc. La longueur utilisée est généralement de 1 214,5 m.
(2) Garniture de forage : La tige de forage est l'outil principal pour le forage des puits, reliée à l'extrémité inférieure de la tige de forage carrée, et à mesure que le puits de forage continue de s'approfondir, la tige de forage continue d'allonger la colonne de forage l'une après l'autre. Les spécifications de la tige de forage sont : 60,3 mm (2-3/8 pouces), 73,03 mm (2-7/8 pouces), 88,9 mm (3-1/2 pouces), 114,3 mm (4-1/2 pouces), 127 mm (5 pouces), 139,7 mm (5-1/2 pouces) et ainsi de suite.
(3) Garniture de forage robuste : Une tige de forage lestée est un outil de transition reliant la tige de forage et la masse-tige, ce qui peut améliorer l'état de force de la tige de forage et augmenter la pression sur le trépan. Les principales spécifications de la tige de forage lestée sont de 88,9 mm (3-1/2 pouces) et 127 mm (5 pouces).
(4) Collier de forage : La masse-tige est reliée à la partie inférieure du tube de forage, qui est un tube spécial à paroi épaisse et à haute rigidité. Il exerce une pression sur le trépan pour briser la roche et joue un rôle de guidage lors du forage d'un puits droit. Les spécifications courantes des masses-tiges sont 158,75 mm (6-1/4 pouces), 177,85 mm (7 pouces), 203,2 mm (8 pouces), 228,6 mm (9 pouces), etc.

V. Tuyau de canalisation

1. Classification des tuyaux de canalisation

Les tubes de canalisation sont utilisés dans l'industrie pétrolière et gazière pour transporter le pétrole, le pétrole raffiné, le gaz naturel et les canalisations d'eau avec l'abréviation de tube en acier. Le transport de pétrole et de gaz par pipeline est divisé en pipelines principaux, de dérivation et de réseau de pipelines urbains. Trois types de pipelines de transmission principaux ont les spécifications habituelles de ∅406 ~ 1219 mm, une épaisseur de paroi de 10 ~ 25 mm, une nuance d'acier X42 ~ X80 ; les pipelines de dérivation et les pipelines de réseau de pipelines urbains ont généralement des spécifications de ∅114 ~ 700 mm, une épaisseur de paroi de 6 ~ 20 mm, la nuance d'acier pour le X42 ~ X80. La nuance d'acier est X42~X80. Les tubes de canalisation sont disponibles en types soudés et sans soudure. Les tubes de canalisation soudés sont plus utilisés que les tubes de canalisation sans soudure.

2. Norme de conduite

API Spec 5L – Spécification pour les tuyaux de canalisation
ISO 3183 – Industries du pétrole et du gaz naturel – Tubes en acier pour systèmes de transport par pipeline

3. PSL1 et PSL2

PSL est l'abréviation de niveau de spécification du produitLe niveau de spécification du produit de tube de ligne est divisé en PSL 1 et PSL 2, et le niveau de qualité est divisé en PSL 1 et PSL 2. PSL 2 est supérieur à PSL 1; les deux niveaux de spécification ont non seulement des exigences de test différentes, mais les exigences de composition chimique et de propriétés mécaniques sont différentes, donc selon la commande API 5L, les termes du contrat, en plus de spécifier les spécifications, la nuance d'acier et d'autres indicateurs communs, mais doivent également indiquer le niveau de spécification du produit, c'est-à-dire PSL 1 ou PSL 2. PSL 2 dans la composition chimique, les propriétés de traction, la puissance d'impact, les tests non destructifs et d'autres indicateurs sont plus stricts que PSL 1.

4. Qualité d'acier des tuyaux de canalisation, composition chimique et propriétés mécaniques

Les nuances d'acier pour tubes de canalisation, de faible à élevée, sont divisées en A25, A, B, X42, X46, X52, X60, X65, X70 et X80. Pour une composition chimique et des propriétés mécaniques détaillées, veuillez vous référer à la spécification API 5L, 46e édition.

5. Exigences relatives aux essais hydrostatiques et aux examens non destructifs des conduites de canalisation

Les conduites doivent être soumises à des essais hydrauliques branche par branche, et la norme n'autorise pas la génération non destructive de pression hydraulique, ce qui constitue également une grande différence entre la norme API et nos normes. La norme PSL 1 n'exige pas d'essais non destructifs ; la norme PSL 2 doit être un essai non destructif branche par branche.

VI. Connexions premium

1. Introduction des connexions Premium

Le raccord Premium est un filetage de tuyau avec une structure unique qui est différente du filetage API. Bien que le boîtier d'huile fileté API existant soit largement utilisé dans l'exploitation des puits de pétrole, ses défauts sont clairement mis en évidence dans l'environnement unique de certains champs pétroliers : la colonne de tuyau filetée ronde API, bien que ses performances d'étanchéité soient meilleures, la force de traction supportée par la partie filetée n'est équivalente qu'à 60% à 80% de la résistance du corps du tuyau, et elle ne peut donc pas être utilisée dans l'exploitation de puits profonds ; la colonne de tuyau filetée trapézoïdale biaisée API, bien que ses performances de traction soient bien supérieures à celles du raccord fileté rond API, ses performances d'étanchéité ne sont pas si bonnes. Bien que les performances de traction de la colonne soient bien supérieures à celles du raccord fileté rond API, ses performances d'étanchéité ne sont pas très bonnes, de sorte qu'elle ne peut pas être utilisée dans l'exploitation de puits de gaz à haute pression ; de plus, la graisse filetée ne peut jouer son rôle que dans un environnement dont la température est inférieure à 95℃, elle ne peut donc pas être utilisée dans l'exploitation de puits à haute température.

Par rapport au filetage rond API et à la connexion à filetage trapézoïdal partiel, la connexion premium a fait des progrès révolutionnaires dans les aspects suivants :

(1) Une bonne étanchéité, grâce à l'élasticité et à la conception de la structure d'étanchéité métallique, rend l'étanchéité au gaz du joint résistante à l'atteinte de la limite du corps du tube dans la pression d'écoulement ;

(2) Haute résistance de la connexion, se connectant avec une connexion à boucle spéciale du carter d'huile, sa force de connexion atteint ou dépasse la résistance du corps du tube, pour résoudre fondamentalement le problème du glissement ;

(3) Grâce à la sélection des matériaux et à l'amélioration du processus de traitement de surface, le problème de la boucle qui colle au fil est essentiellement résolu ;

(4) Grâce à l'optimisation de la structure, afin que la répartition des contraintes des joints soit plus raisonnable et plus propice à la résistance à la corrosion sous contrainte ;

(5) Grâce à la structure d'épaule de la conception raisonnable, de sorte que le fonctionnement de la boucle sur l'opération est plus accessible.

L'industrie pétrolière et gazière dispose de plus de 100 connexions premium brevetées, qui représentent des avancées significatives dans la technologie des tuyaux. Ces conceptions de filetage spécialisées offrent des capacités d'étanchéité supérieures, une résistance accrue des connexions et une résistance améliorée aux contraintes environnementales. En relevant des défis tels que les pressions élevées, les environnements corrosifs et les températures extrêmes, ces innovations garantissent une excellente fiabilité et une efficacité dans les opérations pétrolières saines dans le monde entier. La recherche et le développement continus dans les connexions premium soulignent leur rôle essentiel dans le soutien de pratiques de forage plus sûres et plus productives, reflétant un engagement continu envers l'excellence technologique dans le secteur de l'énergie.

Connexion VAM® : Connues pour leurs performances robustes dans des environnements difficiles, les connexions VAM® sont dotées d'une technologie avancée d'étanchéité métal sur métal et de capacités de couple élevées, garantissant des opérations fiables dans les puits profonds et les réservoirs à haute pression.

Série TenarisHydril Wedge : Cette série propose une gamme de connexions telles que Blue®, Dopeless® et Wedge 521®, connues pour leur étanchéité exceptionnelle aux gaz et leur résistance aux forces de compression et de tension, améliorant ainsi la sécurité et l'efficacité opérationnelles.

TSH® Bleu : Conçues par Tenaris, les connexions TSH® Blue utilisent une conception exclusive à double épaulement et un profil de filetage haute performance, offrant une excellente résistance à la fatigue et une facilité de vissage dans les applications de forage critiques.

Accordez la connexion Prideco™ XT® : Conçues par NOV, les connexions XT® intègrent un joint métal sur métal unique et une forme de filetage robuste, garantissant une capacité de couple supérieure et une résistance au grippage, prolongeant ainsi la durée de vie opérationnelle de la connexion.

Connexion Hunting Seal-Lock® : Dotée d'un joint métal sur métal et d'un profil de filetage unique, la connexion Seal-Lock® de Hunting est réputée pour sa résistance supérieure à la pression et sa fiabilité dans les opérations de forage onshore et offshore.

Conclusion

En conclusion, le réseau complexe de tubes en acier indispensables à l'industrie pétrolière et gazière comprend un large éventail d'équipements spécialisés conçus pour résister à des environnements rigoureux et à des exigences opérationnelles complexes. Des tubes de tubage de base qui soutiennent et protègent les parois saines aux tubes polyvalents utilisés dans les processus d'extraction et d'injection, chaque type de tube remplit une fonction distincte dans l'exploration, la production et le transport des hydrocarbures. Des normes telles que les spécifications API garantissent l'uniformité et la qualité de ces tubes, tandis que des innovations telles que les connexions premium améliorent les performances dans des conditions difficiles. À mesure que la technologie évolue, ces composants critiques progressent, favorisant l'efficacité et la fiabilité des opérations énergétiques mondiales. La compréhension de ces tubes et de leurs spécifications souligne leur rôle indispensable dans l'infrastructure du secteur énergétique moderne.

Achèvement des puits : séquences d'application et d'installation des OCTG dans les puits de pétrole et de gaz

Introduction

L'exploration et la production de pétrole et de gaz impliquent des équipements et des processus complexes. Parmi ceux-ci, la sélection et l'utilisation appropriées des éléments tubulaires (tiges de forage, masses-tiges, trépans, tubages, tubes, tiges de pompage et tubes de canalisation) sont essentielles pour l'efficacité et la sécurité des opérations de forage. Ce blog vise à fournir un aperçu détaillé de ces composants, de leurs tailles et de leur utilisation séquentielle dans les puits de pétrole et de gaz.

1. Tailles des tiges de forage, des colliers de forage et des forets

Tiges de forage sont l'épine dorsale de l'opération de forage, transmettant la puissance de la surface au trépan tout en faisant circuler le fluide de forage. Les tailles courantes incluent :

  • 3 1/2 pouces (88,9 mm)
  • 4 pouces (101,6 mm)
  • 4 1/2 pouces (114,3 mm)
  • 5 pouces (127 mm)
  • 5 1/2 pouces (139,7 mm)

Colliers de forage ajoutez du poids au foret pour vous assurer qu'il pénètre efficacement dans la roche. Les tailles typiques sont :

  • 3 1/8 pouces (79,4 mm)
  • 4 3/4 pouces (120,7 mm)
  • 6 1/4 pouces (158,8 mm)
  • 8 pouces (203,2 mm)

Forets sont conçus pour écraser et couper les formations rocheuses. Leurs tailles varient considérablement en fonction du diamètre de forage requis :

  • 3 7/8 pouces (98,4 mm) à 26 pouces (660,4 mm)

2. Tailles des boîtiers et des tubes

Tuyau de tubage stabilise le forage, prévient les effondrements et isole les différentes formations géologiques. Il est installé par étapes, chaque colonne ayant un diamètre plus grand que celui de la colonne intérieure :

  • Boîtier de surface : 13 3/8 pouces (339,7 mm) ou 16 pouces (406,4 mm)
  • Boîtier intermédiaire : 9 5/8 pouces (244,5 mm) ou 10 3/4 pouces (273,1 mm)
  • Boîtier de production : 7 pouces (177,8 mm) ou 5 1/2 pouces (139,7 mm)

Tube d'huile est inséré à l’intérieur du boîtier pour transporter le pétrole et le gaz vers la surface. Les tailles de tubes typiques comprennent :

  • 1,050 pouces (26,7 mm)
  • 1,315 pouces (33,4 mm)
  • 1,660 pouces (42,2 mm)
  • 1.900 pouces (48,3 mm)
  • 2 3/8 pouces (60,3 mm)
  • 2 7/8 pouces (73,0 mm)
  • 3 1/2 pouces (88,9 mm)
  • 4 pouces (101,6 mm)

3. Tailles des tiges de pompage et des tubes

Tiges de ventouse connecter l'unité de pompage de surface à la pompe de fond, permettant le levage des fluides du puits. Ils sont sélectionnés en fonction de la taille du tube :

  • Pour tube de 2 3/8 pouces : 5/8 pouces (15,9 mm), 3/4 pouces (19,1 mm) ou 7/8 pouces (22,2 mm)
  • Pour un tube de 2 7/8 pouces : 3/4 pouces (19,1 mm), 7/8 pouces (22,2 mm) ou 1 pouce (25,4 mm)

4. Tailles des tuyaux de canalisation

Tuyaux de canalisation transporter les hydrocarbures produits de la tête de puits vers les installations de traitement ou les pipelines. Ils sont choisis en fonction du volume de production :

  • Petits champs : 2 pouces (60,3 mm), 4 pouces (114,3 mm)
  • Champs moyens : 6 pouces (168,3 mm), 8 pouces (219,1 mm)
  • Grands champs : 10 pouces (273,1 mm), 12 pouces (323,9 mm), 16 pouces (406,4 mm)

Utilisation séquentielle de tubes dans les puits de pétrole et de gaz

1. Étape de forage

  • L'opération de forage commence par le foret percer les formations géologiques.
  • Tubes de forage transmettre la puissance de rotation et le fluide de forage au trépan.
  • Colliers de forage ajoutez du poids au foret pour vous assurer qu'il pénètre efficacement.

2. Étape du boîtier

  • Une fois qu'une certaine profondeur est atteinte, un enveloppe est installé pour protéger le forage et isoler les différentes formations.
  • Les colonnes de tubage de surface, intermédiaires et de production sont exploitées séquentiellement au fur et à mesure de la progression du forage.

3. Étape d'achèvement et de production

  • Tubes est installé à l’intérieur du tubage de production pour faciliter l’écoulement des hydrocarbures vers la surface.
  • Tiges de pompage sont utilisés dans les puits équipés de systèmes de levage artificiel, reliant la pompe de fond à l'unité de surface.

4. Étape du transport de surface

  • Les conduites transportent le pétrole et gaz produits depuis la tête de puits jusqu'aux installations de traitement ou aux pipelines principaux.

Conclusion

Il est essentiel de comprendre le rôle, la taille et l'utilisation séquentielle de ces tubes pour des opérations pétrolières et gazières efficaces et sûres. La sélection et la manipulation appropriées des tiges de forage, des masses-tiges, des trépans, du tubage, des tubes, des tiges de pompage et des tubes de canalisation garantissent l'intégrité structurelle du puits et optimisent les performances de production.

En intégrant efficacement ces composants, l’industrie pétrolière et gazière peut continuer à répondre aux besoins énergétiques mondiaux tout en maintenant des normes élevées de sécurité et d’efficacité opérationnelle.

Produits tubulaires pour champs pétrolifères (OCTG)

Produits tubulaires pour puits de pétrole (OCTG) est une famille de produits laminés sans soudure constitués de tiges de forage, de tubages et de tubes soumis à des conditions de charge en fonction de leur application spécifique. (voir la figure 1 pour un schéma d'un puits profond) :

Le Garniture de forage est un tube lourd sans soudure qui fait tourner le trépan et fait circuler le fluide de forage. Des segments de tube de 30 pieds (9 m) de long sont couplés à des joints d'outils. Le tube de forage est simultanément soumis à un couple élevé par le forage, à une tension axiale par son poids mort et à une pression interne par la purge du fluide de forage. De plus, des charges de flexion alternées dues à un forage non vertical ou dévié peuvent se superposer à ces schémas de chargement de base.
Tuyau de tubage Le tubage est soumis à une tension axiale due à son poids mort, à une pression interne due à la purge du fluide et à une pression externe due aux formations rocheuses environnantes. L'émulsion de pétrole ou de gaz pompée expose particulièrement le tubage à une tension axiale et à une pression interne.
Un tubage est un tuyau par lequel le pétrole ou le gaz est transporté depuis le puits de forage. Les segments de tubage mesurent généralement environ 9 m de long et sont dotés d'un raccord fileté à chaque extrémité.

La résistance à la corrosion dans des conditions de service acides est une caractéristique cruciale des OCTG, en particulier pour les tubages et les tubes.

Les processus de fabrication typiques des OCTG comprennent (toutes les plages dimensionnelles sont approximatives)

Procédés de laminage continu sur mandrin et sur banc de poussée pour des dimensions comprises entre 21 et 178 mm de diamètre extérieur.
Laminage de bouchons pour des tailles comprises entre 140 et 406 mm de diamètre extérieur.
Perçage à rouleaux croisés et laminage de pèlerins pour des tailles comprises entre 250 et 660 mm de diamètre extérieur.
Ces procédés ne permettent généralement pas le traitement thermomécanique habituel des bandes et des plaques utilisées pour les tubes soudés. Par conséquent, les tubes sans soudure à haute résistance doivent être fabriqués en augmentant la teneur en alliage en combinaison avec un traitement thermique approprié, tel que la trempe et le revenu.

Figure 1. Schéma d'une réalisation en profondeur

Pour satisfaire à l'exigence fondamentale d'une microstructure entièrement martensitique, même avec une paroi de tube de grande épaisseur, une bonne trempabilité est nécessaire. Le Cr et le Mn sont les principaux éléments d'alliage qui produisent une bonne trempabilité dans l'acier conventionnel pouvant être traité thermiquement. Cependant, l'exigence d'une bonne résistance à la fissuration sous contrainte par sulfure (SSC) limite leur utilisation. Le Mn a tendance à se séparer pendant la coulée continue et peut former de grandes inclusions de MnS qui réduisent la résistance à la fissuration induite par l'hydrogène (HIC). Des niveaux plus élevés de Cr peuvent conduire à la formation de précipités Cr7C3 avec une morphologie grossière en forme de plaque, qui agissent comme des collecteurs d'hydrogène et des initiateurs de fissures. L'alliage avec du molybdène peut surmonter les limites de l'alliage Mn et Cr. Le Mo est un durcisseur beaucoup plus puissant que le Mn et le Cr, il peut donc récupérer rapidement l'effet d'une quantité réduite de ces éléments.

Traditionnellement, les nuances OCTG étaient des aciers au carbone-manganèse (jusqu'au niveau de résistance de 55 ksi) ou des nuances contenant du Mo jusqu'à 0,4% Mo. Ces dernières années, le forage de puits profonds et les réservoirs contenant des contaminants qui provoquent des attaques corrosives ont créé une forte demande de matériaux plus résistants à la fragilisation par l'hydrogène et au SSC. La martensite hautement revenue est la structure la plus résistante au SSC à des niveaux de résistance plus élevés, et une concentration de 0,75% Mo produit la combinaison optimale de limite d'élasticité et de résistance au SSC.