Exploration du rôle vital des tuyaux en acier dans l'exploration pétrolière et gazière

Introduction

Les tuyaux en acier sont essentiels dans l'industrie pétrolière et gazière, car ils offrent une durabilité et une fiabilité inégalées dans des conditions extrêmes. Essentiels pour l'exploration et le transport, ces tuyaux résistent aux pressions élevées, aux environnements corrosifs et aux températures extrêmes. Cette page explore les fonctions essentielles des tuyaux en acier dans l'exploration pétrolière et gazière, en détaillant leur importance dans le forage, les infrastructures et la sécurité. Découvrez comment le choix de tuyaux en acier adaptés peut améliorer l'efficacité opérationnelle et réduire les coûts dans cette industrie exigeante.

I. Connaissances de base sur les tubes en acier pour l'industrie pétrolière et gazière

1. Explication de la terminologie

API : Abréviation de Institut américain du pétrole.
FTPP : Abréviation de Produits tubulaires pour champs pétrolifères, y compris les tuyaux de tubage d'huile, les tubes d'huile, les tiges de forage, les colliers de forage, les forets, les tiges de ventouse, les joints de chiot, etc.
Tube d'huile : Les tubes sont utilisés dans les puits de pétrole pour l'extraction, l'extraction de gaz, l'injection d'eau et la fracturation acide.
Enveloppe: Tube descendu de la surface du sol dans un trou de forage comme revêtement pour empêcher l'effondrement du mur.
Garniture de forage : Tuyau utilisé pour percer des trous de forage.
Tuyau de canalisation : Tuyau utilisé pour transporter du pétrole ou du gaz.
Accouplements : Cylindres utilisés pour relier deux tuyaux filetés avec des filetages internes.
Matériau de couplage : Tuyau utilisé pour fabriquer des raccords.
Fils de discussion API : Filetages de tuyaux spécifiés par la norme API 5B, y compris les filetages ronds pour tuyaux pétroliers, les filetages ronds courts pour tubage, les filetages ronds longs pour tubage, les filetages trapézoïdaux partiels pour tubage, les filetages pour tuyaux de ligne, etc.
Connexion Premium : Filetages non API avec des propriétés d'étanchéité, des propriétés de connexion et d'autres propriétés uniques.
Les échecs: déformation, fracture, dommages de surface et perte de la fonction d'origine dans des conditions de service spécifiques.
Principales formes d’échec : écrasement, glissement, rupture, fuite, corrosion, collage, usure, etc.

2. Normes liées au pétrole

API Spec 5B, 17e édition – Spécifications pour le filetage, le calibrage et l'inspection des filetages des filetages de boîtiers, de tubes et de conduites
API Spec 5L, 46e édition – Spécification pour les tuyaux de canalisation
API Spec 5CT, 11e édition – Spécifications pour les boîtiers et les tubes
Spécification API 5DP, 7e édition – Spécifications pour les tiges de forage
Spécification API 7-1, 2e édition – Spécifications pour les éléments de tige de foret rotatif
Spécification API 7-2, 2e édition – Spécifications pour le filetage et le calibrage des connexions filetées à épaulement rotatif
API Spec 11B, 24e édition – Spécifications pour les tiges de pompage, les tiges et doublures polies, les accouplements, les barres de plombage, les colliers de tige polis, les presse-étoupes et les tés de pompage
ISO 3183:2019 – Industries du pétrole et du gaz naturel – Tuyaux en acier pour systèmes de transport par pipeline
ISO 11960:2020 – Industries du pétrole et du gaz naturel – Tuyaux en acier destinés à être utilisés comme tubage ou tube pour puits
NACE MR0175 / ISO 15156:2020 – Industries du pétrole et du gaz naturel – Matériaux destinés à être utilisés dans des environnements contenant du H2S dans la production pétrolière et gazière

II. Tube d'huile

1. Classification des tubes d'huile

Les tubes à huile sont divisés en tubes à huile non refoulés (NU), tubes à huile refoulés externes (EU) et tubes à huile à joint intégral (IJ). Les tubes à huile NU signifient que l'extrémité du tube est d'épaisseur moyenne, tourne directement le filetage et amène les raccords. Les tubes refoulés impliquent que les extrémités des deux tubes sont refoulées extérieurement, puis filetées et couplées. Les tubes à joint intégral signifient qu'une extrémité du tube est refoulée avec des filetages externes et l'autre est refoulée avec des filetages internes connectés directement sans raccords.

2. Fonction du tube d'huile

① Extraction de pétrole et de gaz : une fois les puits de pétrole et de gaz forés et cimentés, le tube est placé dans le carter de pétrole pour extraire le pétrole et le gaz jusqu'au sol.
② Injection d'eau : lorsque la pression au fond du trou est insuffisante, injectez de l'eau dans le puits à travers le tube.
③ Injection de vapeur : lors de la récupération à chaud du pétrole épais, la vapeur est introduite dans le puits avec un tube de pétrole isolé.
④ Acidification et fracturation : Au stade avancé du forage de puits ou pour améliorer la production des puits de pétrole et de gaz, il est nécessaire d'introduire un milieu d'acidification et de fracturation ou un matériau de durcissement dans la couche de pétrole et de gaz, et le milieu et le matériau de durcissement sont transportés à travers le tube de pétrole.

3. Qualité d'acier des tubes d'huile

Les qualités d'acier des tubes d'huile sont H40, J55, N80, L80, C90, T95, P110.
Le N80 est divisé en N80-1 et N80Q, les deux ont les mêmes propriétés de traction ; les deux différences sont l'état de livraison et les différences de performance d'impact, le N80-1 est livré par état normalisé ou lorsque la température de laminage finale est supérieure à la température critique Ar3 et la réduction de tension après refroidissement par air et peut être utilisé pour trouver le laminage à chaud au lieu de normalisé, les tests d'impact et non destructifs ne sont pas requis ; le N80Q doit être revenu (trempé et revenu) Traitement thermique, la fonction d'impact doit être conforme aux dispositions de l'API 5CT et doit être un test non destructif.
Le L80 est divisé en L80-1, L80-9Cr et L80-13Cr. Leurs propriétés mécaniques et leur état de livraison sont les mêmes. Différences d'utilisation, de difficulté de production et de prix : le L80-1 est destiné au type général, le L80-9Cr et le L80-13Cr sont des tubes à haute résistance à la corrosion, difficiles à produire et coûteux, généralement utilisés dans les puits à forte corrosion.
C90 et T95 sont divisés en types 1 et 2, à savoir C90-1, C90-2 et T95-1, T95-2.

4. La qualité d'acier, le nom de l'acier et l'état de livraison des tubes d'huile couramment utilisés

Tube d'huile J55 (37Mn5) NU : laminé à chaud au lieu de normalisé
Tube d'huile J55 (37Mn5) EU : normalisé sur toute la longueur après bouleversement
Tubes d'huile N80-1 (36Mn2V) NU : laminés à chaud au lieu de normalisés
Tube d'huile N80-1 (36Mn2V) EU : normalisé sur toute la longueur après bouleversement
Tube d'huile N80-Q (30Mn5) : 30Mn5, trempe sur toute la longueur
Tube d'huile L80-1 (30Mn5) : 30Mn5, trempe sur toute la longueur
Tube d'huile P110 (25CrMnMo) : 25CrMnMo, trempe sur toute la longueur
Accouplement J55 (37Mn5) : laminé à chaud en ligne normalisé
Couplage N80 (28MnTiB) : trempe sur toute la longueur
Accouplement L80-1 (28MnTiB) : trempé sur toute la longueur
Couplage P110 (25CrMnMo) : Trempe sur toute la longueur

III. Tuyau de tubage

1. Classification et rôle du boîtier

Le tubage est le tuyau en acier qui soutient la paroi des puits de pétrole et de gaz. Plusieurs couches de tubage sont utilisées dans chaque puits en fonction des différentes profondeurs de forage et des conditions géologiques. Le ciment est utilisé pour cimenter le tubage après son abaissement dans le puits, et contrairement aux oléoducs et aux tiges de forage, il ne peut pas être réutilisé et fait partie des matériaux consommables jetables. Par conséquent, la consommation de tubage représente plus de 70 pour cent de tous les tuyaux de puits de pétrole. Le boîtier peut être divisé en boîtier conducteur, boîtier intermédiaire, boîtier de production et boîtier de revêtement en fonction de son utilisation, et leurs structures dans les puits de pétrole sont illustrées à la figure 1.

①Boîtier du conducteur : Utilisant généralement les qualités API K55, J55 ou H40, le tubage conducteur stabilise la tête de puits et isole les aquifères peu profonds dont le diamètre est généralement d'environ 20 pouces ou 16 pouces.

②Boîtier intermédiaire : Le tubage intermédiaire, souvent fabriqué à partir de qualités API K55, N80, L80 ou P110, est utilisé pour isoler les formations instables et les zones de pression variables, avec des diamètres typiques de 13 3/8 pouces, 11 3/4 pouces ou 9 5/8 pouces. .

③Boîtier de production : Construit à partir d'acier de haute qualité tel que les nuances API J55, N80, L80, P110 ou Q125, le boîtier de production est conçu pour résister aux pressions de production, généralement avec des diamètres de 9 5/8 pouces, 7 pouces ou 5 1/2 pouces.

④Boîtier de revêtement : Les chemises prolongent le puits de forage dans le réservoir en utilisant des matériaux tels que les grades API L80, N80 ou P110, avec des diamètres typiques de 7 pouces, 5 pouces ou 4 1/2 pouces.

⑤Tube : Les tubes transportent les hydrocarbures vers la surface, en utilisant les qualités API J55, L80 ou P110, et sont disponibles dans des diamètres de 4 1/2 pouces, 3 1/2 pouces ou 2 7/8 pouces.

IV. Garniture de forage

1. Classification et fonction des tuyaux pour outils de forage

Le tube de forage carré, le tube de forage, le tube de forage lesté et la masse-tige des outils de forage forment le tube de forage. Le tube de forage est l'outil de forage central qui entraîne le trépan du sol jusqu'au fond du puits, et il constitue également un canal du sol jusqu'au fond du puits. Il a trois rôles principaux :

① Pour transmettre le couple pour entraîner le foret vers le foret ;

② Compter sur son poids sur le trépan pour briser la pression de la roche au fond du puits ;

③ Pour transporter le fluide de lavage, c'est-à-dire la boue de forage à travers le sol à travers les pompes à boue à haute pression, la colonne de forage dans le trou de forage s'écoule dans le fond du puits pour rincer les débris de roche et refroidir le trépan, et transporter les débris de roche à travers la surface extérieure de la colonne et la paroi du puits entre l'espace annulaire pour retourner au sol, pour atteindre l'objectif de forer le puits.

Le tube de forage est utilisé dans le processus de forage pour résister à une variété de charges alternées complexes, telles que la traction, la compression, la torsion, la flexion et d'autres contraintes. La surface intérieure est également soumise au décapage par boue à haute pression et à la corrosion.
(1) Garniture de forage carrée : Les tiges de forage carrées sont de deux types : quadrilatères et hexagonales. Dans les tiges de forage pétrolières chinoises, chaque ensemble de colonnes de forage utilise généralement une tige de forage de type quadrilatère. Ses spécifications sont de 63,5 mm (2-1/2 pouces), 88,9 mm (3-1/2 pouces), 107,95 mm (4-1/4 pouces), 133,35 mm (5-1/4 pouces), 152,4 mm (6 pouces), etc. La longueur utilisée est généralement de 1 214,5 m.
(2) Garniture de forage : La tige de forage est l'outil principal pour le forage des puits, reliée à l'extrémité inférieure de la tige de forage carrée, et à mesure que le puits de forage continue de s'approfondir, la tige de forage continue d'allonger la colonne de forage l'une après l'autre. Les spécifications de la tige de forage sont : 60,3 mm (2-3/8 pouces), 73,03 mm (2-7/8 pouces), 88,9 mm (3-1/2 pouces), 114,3 mm (4-1/2 pouces), 127 mm (5 pouces), 139,7 mm (5-1/2 pouces) et ainsi de suite.
(3) Garniture de forage robuste : Une tige de forage lestée est un outil de transition reliant la tige de forage et la masse-tige, ce qui peut améliorer l'état de force de la tige de forage et augmenter la pression sur le trépan. Les principales spécifications de la tige de forage lestée sont de 88,9 mm (3-1/2 pouces) et 127 mm (5 pouces).
(4) Collier de forage : La masse-tige est reliée à la partie inférieure du tube de forage, qui est un tube spécial à paroi épaisse et à haute rigidité. Il exerce une pression sur le trépan pour briser la roche et joue un rôle de guidage lors du forage d'un puits droit. Les spécifications courantes des masses-tiges sont 158,75 mm (6-1/4 pouces), 177,85 mm (7 pouces), 203,2 mm (8 pouces), 228,6 mm (9 pouces), etc.

V. Tuyau de canalisation

1. Classification des tuyaux de canalisation

Les tubes de canalisation sont utilisés dans l'industrie pétrolière et gazière pour transporter le pétrole, le pétrole raffiné, le gaz naturel et les canalisations d'eau avec l'abréviation de tube en acier. Le transport de pétrole et de gaz par pipeline est divisé en pipelines principaux, de dérivation et de réseau de pipelines urbains. Trois types de pipelines de transmission principaux ont les spécifications habituelles de ∅406 ~ 1219 mm, une épaisseur de paroi de 10 ~ 25 mm, une nuance d'acier X42 ~ X80 ; les pipelines de dérivation et les pipelines de réseau de pipelines urbains ont généralement des spécifications de ∅114 ~ 700 mm, une épaisseur de paroi de 6 ~ 20 mm, la nuance d'acier pour le X42 ~ X80. La nuance d'acier est X42~X80. Les tubes de canalisation sont disponibles en types soudés et sans soudure. Les tubes de canalisation soudés sont plus utilisés que les tubes de canalisation sans soudure.

2. Norme de conduite

API Spec 5L – Spécification pour les tuyaux de canalisation
ISO 3183 – Industries du pétrole et du gaz naturel – Tubes en acier pour systèmes de transport par pipeline

3. PSL1 et PSL2

PSL est l'abréviation de niveau de spécification du produitLe niveau de spécification du produit de tube de ligne est divisé en PSL 1 et PSL 2, et le niveau de qualité est divisé en PSL 1 et PSL 2. PSL 2 est supérieur à PSL 1; les deux niveaux de spécification ont non seulement des exigences de test différentes, mais les exigences de composition chimique et de propriétés mécaniques sont différentes, donc selon la commande API 5L, les termes du contrat, en plus de spécifier les spécifications, la nuance d'acier et d'autres indicateurs communs, mais doivent également indiquer le niveau de spécification du produit, c'est-à-dire PSL 1 ou PSL 2. PSL 2 dans la composition chimique, les propriétés de traction, la puissance d'impact, les tests non destructifs et d'autres indicateurs sont plus stricts que PSL 1.

4. Qualité d'acier des tuyaux de canalisation, composition chimique et propriétés mécaniques

Les nuances d'acier pour tubes de canalisation, de faible à élevée, sont divisées en A25, A, B, X42, X46, X52, X60, X65, X70 et X80. Pour une composition chimique et des propriétés mécaniques détaillées, veuillez vous référer à la spécification API 5L, 46e édition.

5. Exigences relatives aux essais hydrostatiques et aux examens non destructifs des conduites de canalisation

Les conduites doivent être soumises à des essais hydrauliques branche par branche, et la norme n'autorise pas la génération non destructive de pression hydraulique, ce qui constitue également une grande différence entre la norme API et nos normes. La norme PSL 1 n'exige pas d'essais non destructifs ; la norme PSL 2 doit être un essai non destructif branche par branche.

VI. Connexions premium

1. Introduction des connexions Premium

Le raccord Premium est un filetage de tuyau avec une structure unique qui est différente du filetage API. Bien que le boîtier d'huile fileté API existant soit largement utilisé dans l'exploitation des puits de pétrole, ses défauts sont clairement mis en évidence dans l'environnement unique de certains champs pétroliers : la colonne de tuyau filetée ronde API, bien que ses performances d'étanchéité soient meilleures, la force de traction supportée par la partie filetée n'est équivalente qu'à 60% à 80% de la résistance du corps du tuyau, et elle ne peut donc pas être utilisée dans l'exploitation de puits profonds ; la colonne de tuyau filetée trapézoïdale biaisée API, bien que ses performances de traction soient bien supérieures à celles du raccord fileté rond API, ses performances d'étanchéité ne sont pas si bonnes. Bien que les performances de traction de la colonne soient bien supérieures à celles du raccord fileté rond API, ses performances d'étanchéité ne sont pas très bonnes, de sorte qu'elle ne peut pas être utilisée dans l'exploitation de puits de gaz à haute pression ; de plus, la graisse filetée ne peut jouer son rôle que dans un environnement dont la température est inférieure à 95℃, elle ne peut donc pas être utilisée dans l'exploitation de puits à haute température.

Par rapport au filetage rond API et à la connexion à filetage trapézoïdal partiel, la connexion premium a fait des progrès révolutionnaires dans les aspects suivants :

(1) Une bonne étanchéité, grâce à l'élasticité et à la conception de la structure d'étanchéité métallique, rend l'étanchéité au gaz du joint résistante à l'atteinte de la limite du corps du tube dans la pression d'écoulement ;

(2) Haute résistance de la connexion, se connectant avec une connexion à boucle spéciale du carter d'huile, sa force de connexion atteint ou dépasse la résistance du corps du tube, pour résoudre fondamentalement le problème du glissement ;

(3) Grâce à la sélection des matériaux et à l'amélioration du processus de traitement de surface, le problème de la boucle qui colle au fil est essentiellement résolu ;

(4) Grâce à l'optimisation de la structure, afin que la répartition des contraintes des joints soit plus raisonnable et plus propice à la résistance à la corrosion sous contrainte ;

(5) Grâce à la structure d'épaule de la conception raisonnable, de sorte que le fonctionnement de la boucle sur l'opération est plus accessible.

L'industrie pétrolière et gazière dispose de plus de 100 connexions premium brevetées, qui représentent des avancées significatives dans la technologie des tuyaux. Ces conceptions de filetage spécialisées offrent des capacités d'étanchéité supérieures, une résistance accrue des connexions et une résistance améliorée aux contraintes environnementales. En relevant des défis tels que les pressions élevées, les environnements corrosifs et les températures extrêmes, ces innovations garantissent une excellente fiabilité et une efficacité dans les opérations pétrolières saines dans le monde entier. La recherche et le développement continus dans les connexions premium soulignent leur rôle essentiel dans le soutien de pratiques de forage plus sûres et plus productives, reflétant un engagement continu envers l'excellence technologique dans le secteur de l'énergie.

Connexion VAM® : Connues pour leurs performances robustes dans des environnements difficiles, les connexions VAM® sont dotées d'une technologie avancée d'étanchéité métal sur métal et de capacités de couple élevées, garantissant des opérations fiables dans les puits profonds et les réservoirs à haute pression.

Série TenarisHydril Wedge : Cette série propose une gamme de connexions telles que Blue®, Dopeless® et Wedge 521®, connues pour leur étanchéité exceptionnelle aux gaz et leur résistance aux forces de compression et de tension, améliorant ainsi la sécurité et l'efficacité opérationnelles.

TSH® Bleu : Conçues par Tenaris, les connexions TSH® Blue utilisent une conception exclusive à double épaulement et un profil de filetage haute performance, offrant une excellente résistance à la fatigue et une facilité de vissage dans les applications de forage critiques.

Accordez la connexion Prideco™ XT® : Conçues par NOV, les connexions XT® intègrent un joint métal sur métal unique et une forme de filetage robuste, garantissant une capacité de couple supérieure et une résistance au grippage, prolongeant ainsi la durée de vie opérationnelle de la connexion.

Connexion Hunting Seal-Lock® : Dotée d'un joint métal sur métal et d'un profil de filetage unique, la connexion Seal-Lock® de Hunting est réputée pour sa résistance supérieure à la pression et sa fiabilité dans les opérations de forage onshore et offshore.

Conclusion

En conclusion, le réseau complexe de tubes en acier indispensables à l'industrie pétrolière et gazière comprend un large éventail d'équipements spécialisés conçus pour résister à des environnements rigoureux et à des exigences opérationnelles complexes. Des tubes de tubage de base qui soutiennent et protègent les parois saines aux tubes polyvalents utilisés dans les processus d'extraction et d'injection, chaque type de tube remplit une fonction distincte dans l'exploration, la production et le transport des hydrocarbures. Des normes telles que les spécifications API garantissent l'uniformité et la qualité de ces tubes, tandis que des innovations telles que les connexions premium améliorent les performances dans des conditions difficiles. À mesure que la technologie évolue, ces composants critiques progressent, favorisant l'efficacité et la fiabilité des opérations énergétiques mondiales. La compréhension de ces tubes et de leurs spécifications souligne leur rôle indispensable dans l'infrastructure du secteur énergétique moderne.

Boîtier et tubes Super 13Cr SMSS 13Cr

SMSS 13Cr et DSS 22Cr dans un environnement H₂S/CO₂-Huile-Eau

Introduction

Les comportements à la corrosion de l’acier inoxydable super martensitique (SMSS) 13Cr et l'acier inoxydable duplex (DSS) 22Cr dans un environnement H₂S/CO₂-huile-eau présentent un intérêt considérable, en particulier dans l'industrie pétrolière et gazière, où ces matériaux sont souvent exposés à des conditions aussi difficiles. Voici un aperçu du comportement de chaque matériau dans ces conditions :

1. Acier inoxydable super martensitique (SMSS) 13Cr :

Composition: SMSS 13Cr contient généralement environ 12-14% de chrome, avec de petites quantités de nickel et de molybdène. La teneur élevée en Chrome lui confère une bonne résistance à la corrosion, tandis que la structure martensitique lui confère une grande résistance.
Comportement à la corrosion :
Corrosion au CO₂ : Le SMSS 13Cr présente une résistance modérée à la corrosion par le CO₂, principalement en raison de la formation d'une couche protectrice d'oxyde de chrome. Cependant, en présence de CO₂, la corrosion localisée, comme la corrosion par piqûres et par crevasses, est risquée.
Corrosion H₂S : Le H₂S augmente le risque de fissuration sous contrainte par sulfure (SSC) et de fragilisation par l'hydrogène. Le SMSS 13Cr est relativement résistant mais pas à l'abri de ces formes de corrosion, en particulier à des températures et des pressions plus élevées.
Environnement huile-eau : L'huile peut parfois constituer une barrière protectrice, réduisant l'exposition de la surface métallique aux agents corrosifs. Cependant, l'eau, en particulier la saumure, peut être très corrosive. L'équilibre des phases huileuse et aqueuse peut influencer considérablement le taux de corrosion global.
Problèmes courants :
Fissuration sous contrainte de sulfure (SSC) : La structure martensitique, bien que solide, est sensible au SSC en présence de H₂S.
Corrosion par piqûres et fissures : Il s’agit de préoccupations importantes, en particulier dans les environnements contenant des chlorures et du CO₂.

2. Acier inoxydable duplex (DSS) 22Cr :

Composition: Le DSS 22Cr contient environ 22% de chrome, environ 5% de nickel, 3% de molybdène et une microstructure austénite-ferrite équilibrée. Cela confère au DSS une excellente résistance à la corrosion et une résistance élevée.
Comportement à la corrosion :
Corrosion au CO₂ : Le DSS 22Cr est plus résistant à la corrosion par le CO₂ que le SMSS 13Cr. La teneur élevée en chrome et la présence de molybdène contribuent à former une couche d'oxyde stable et protectrice qui résiste à la corrosion.
Corrosion H₂S : Le DSS 22Cr est très résistant à la corrosion induite par H₂S, y compris la fragilisation par SSC et par l'hydrogène. La microstructure équilibrée et la composition de l’alliage contribuent à atténuer ces risques.
Environnement huile-eau : Le DSS 22Cr est très performant dans les environnements mixtes huile-eau, résistant à la corrosion générale et localisée. La présence d'huile peut améliorer la résistance à la corrosion en formant un film protecteur, mais cela est moins critique pour le DSS 22Cr en raison de sa résistance inhérente à la corrosion.
Problèmes courants :
Fissuration par corrosion sous contrainte (SCC) : Bien que plus résistant que le SMSS 13Cr, le DSS 22Cr peut néanmoins être sensible au SCC dans certaines conditions, comme des concentrations élevées de chlorure à des températures élevées.
Corrosion localisée : Le DSS 22Cr est généralement très résistant à la corrosion par piqûres et par crevasses, mais celles-ci peuvent néanmoins se produire dans des conditions extrêmes.

Résumé comparatif :

Résistance à la corrosion: Le DSS 22Cr offre généralement une résistance à la corrosion supérieure à celle du SMSS 13Cr, en particulier dans les environnements avec H₂S et CO₂.
Force et robustesse : Le SMSS 13Cr est plus robuste mais sensible aux problèmes de corrosion tels que le SSC et les piqûres.
Adéquation des applications : Le DSS 22Cr est souvent préféré dans les environnements présentant des risques de corrosion plus élevés, tels que ceux présentant des niveaux élevés de H₂S et de CO₂, tandis que le SMSS 13Cr peut être sélectionné pour les applications nécessitant une résistance plus élevée avec des risques de corrosion modérés.

Conclusion:

Lors du choix entre SMSS 13Cr et DSS 22Cr pour une utilisation dans des environnements H₂S/CO₂-huile-eau, le DSS 22Cr est généralement le meilleur choix pour résister à la corrosion, en particulier dans les environnements plus agressifs. Cependant, la décision finale doit tenir compte des conditions spécifiques, notamment la température, la pression et les concentrations relatives de H₂S et de CO₂.

Plaques et procédés de surface pour la construction de réservoirs de stockage de pétrole

Construire des réservoirs de stockage d'huile : sélection de plaques et processus

Introduction

La construction de réservoirs de stockage de pétrole est essentielle pour l'industrie pétrolière et gazière. Ces réservoirs doivent être conçus et construits avec précision pour garantir la sécurité, la durabilité et l'efficacité du stockage des produits pétroliers. L'un des composants les plus critiques de ces réservoirs est la sélection et le traitement des plaques utilisées dans leur construction. Ce blog fournit un aperçu détaillé des critères de sélection des plaques, des processus de fabrication et des considérations relatives à la construction de réservoirs de stockage de pétrole.

Importance de la sélection des plaques

Les plaques sont le principal composant structurel des réservoirs de stockage de pétrole. Le choix de plaques appropriées est crucial pour plusieurs raisons :
Sécurité:Le matériau de plaque approprié garantit que le réservoir peut résister à la pression interne du produit stocké, aux conditions environnementales et aux réactions chimiques potentielles.
Durabilité:Les matériaux de haute qualité améliorent la longévité du réservoir, réduisant ainsi les coûts de maintenance et les temps d'arrêt.
Conformité: Le respect des normes et réglementations de l’industrie est essentiel pour un fonctionnement légal et la protection de l’environnement.
Rapport coût-efficacité: Le choix des matériaux et des méthodes de traitement appropriés peut réduire considérablement les coûts de construction et d'exploitation.

Types de réservoirs de stockage de pétrole

Avant de plonger dans la sélection des plaques, il est essentiel de comprendre les différents types de réservoirs de stockage de pétrole, car chaque type a des exigences spécifiques :
Réservoirs à toit fixe Les réservoirs à pression sont le type de réservoir de stockage le plus courant pour le pétrole et les produits pétroliers. Ils conviennent aux liquides à faible pression de vapeur.
Réservoirs à toit flottant: Ces réservoirs ont un toit qui flotte à la surface du liquide stocké, réduisant ainsi les pertes par évaporation et les risques d'explosion.
Chars à balles:Ces réservoirs cylindriques stockent des gaz liquéfiés et des liquides volatils.
Réservoirs sphériques: Utilisé pour stocker des liquides et des gaz à haute pression, offrant une répartition égale des contraintes.

Critères de sélection des plaques

1. Composition du matériau
Acier Carbone: Largement utilisé en raison de sa solidité, de son prix abordable et de sa disponibilité. Convient à la plupart des produits pétroliers et pétroliers.
Acier inoxydable: Préféré pour le stockage de produits corrosifs ou à haute température en raison de sa résistance à la corrosion.
Aluminium: Léger et résistant à la corrosion, idéal pour les composants de toit flottant et les réservoirs dans des environnements corrosifs.
Matériaux composites: Occasionnellement utilisé pour des applications spécifiques nécessitant une haute résistance à la corrosion et une légèreté.
2. Épaisseur et taille
Épaisseur:Cela dépend de la pression, du diamètre et de la hauteur de conception du réservoir. Elle varie généralement entre 5 et 30 mm.
Taille: Les plaques doivent être suffisamment grandes pour minimiser les cordons de soudure, mais gérables pour la manipulation et le transport.
3. Propriétés mécaniques
Résistance à la traction: Garantit que le réservoir peut résister à la pression interne et aux forces externes.
Ductilité: Permet une déformation sans fracture, s'adaptant aux changements de pression et de température.
Résistance aux chocs: Important pour résister aux forces soudaines, notamment dans les environnements plus froids.
4. Facteurs environnementaux
Variations de température: Prise en compte du comportement des matériaux aux températures extrêmes.
Environnement corrosif: Sélection de matériaux résistants à la corrosion environnementale, notamment pour les installations offshore ou côtières.

Normes et qualités des matériaux

Le respect des normes et des qualités reconnues est essentiel lors de la sélection des matériaux pour les réservoirs de stockage de pétrole, car cela garantit la qualité, les performances et la conformité aux réglementations de l’industrie.

Acier Carbone

Normes: ASTM A36, ASTM A283, JIS G3101
Notes:
ASTMA36: Nuance d'acier de construction courante utilisée pour la construction de réservoirs en raison de sa bonne soudabilité et usinabilité.
ASTM A283 Catégorie C:Offre une bonne résistance et flexibilité pour les applications à contraintes modérées.
JIS G3101 SS400: Norme japonaise pour l'acier au carbone utilisé à des fins structurelles générales, connu pour ses bonnes propriétés mécaniques et sa soudabilité.

Acier inoxydable

Normes: ASTM A240
Notes:
304/304L:Offre une bonne résistance à la corrosion et est utilisé pour stocker des produits légèrement corrosifs dans des réservoirs.
En raison de l'ajout de molybdène, 316/316L Offre une résistance supérieure à la corrosion, en particulier dans les environnements marins.
904L (UNS N08904): Connu pour sa haute résistance à la corrosion, notamment contre les chlorures et l'acide sulfurique.
Acier inoxydable duplex 2205 (UNS S32205):Combine une résistance élevée avec une excellente résistance à la corrosion, adapté aux environnements difficiles.

Aluminium

Normes: ASTM B209
Notes:
5083:Connu pour sa haute résistance et son excellente résistance à la corrosion, il est idéal pour les réservoirs en milieu marin.
6061: Offre de bonnes propriétés mécaniques et soudabilité, adaptées aux composants structurels.

Matériaux composites

Normes: ASME RTP-1
Applications: Utilisé dans des applications spécialisées nécessitant une résistance aux attaques chimiques et un gain de poids.

Types de doublures et de revêtements

Les revêtements et les revêtements protègent les réservoirs de stockage de pétrole de la corrosion et des dommages environnementaux. Le choix du revêtement et du revêtement dépend de l'emplacement du réservoir, de son contenu et des conditions écologiques.

Revêtements externes

Revêtements époxy:
Propriétés: Offrent une excellente adhérence et résistance à la corrosion. Convient aux environnements difficiles.
Applications: Utilisé à l'extérieur des réservoirs pour se protéger contre les intempéries et l'exposition aux produits chimiques.
Marques recommandées:
Hempel: Époxy Hempel 35540
AkzoNobel: Interjoint 670HS
Jotun: Jotamastique 90
3M: Revêtement époxy Scotchkote 162PWX
DFT (épaisseur de film sec) recommandée: 200-300 microns
Revêtements en polyuréthane:
Propriétés: Offrent une excellente résistance aux UV et une excellente flexibilité.
Applications: Idéal pour les réservoirs exposés au soleil et aux conditions météorologiques variables.
Marques recommandées:
Hempel: Émail polyuréthane Hempel's 55300
AkzoNobel: Interthane 990
Jotun: Toit rigide XP
DFT recommandé: 50-100 microns
Apprêts riches en zinc:
Propriétés: Fournit une protection cathodique aux surfaces en acier.
Applications: Utilisé comme couche de base pour éviter la rouille.
Marques recommandées:
Hempel: Hempadur Zinc 17360
AkzoNobel: Interzinc 52
Jotun: Barrière 77
DFT recommandé: 120-150 microns

Doublures internes

Revêtements époxy phénoliques:
Propriétés: Excellente résistance chimique aux produits pétroliers et aux solvants.
Applications: Utilisé à l'intérieur des réservoirs stockant du pétrole brut et des produits raffinés.
Marques recommandées:
Hempel: Phénolique de Hempel 35610
AkzoNobel: Interligne 984
Jotun: Stockage de protection de réservoir
DFT recommandé: 400-600 microns
Revêtements en flocons de verre:
Propriétés: Haute résistance chimique et à l’abrasion.
Applications: Adapté au stockage de produits chimiques agressifs et aux fonds de cuves.
Marques recommandées:
Hempel: Flocon de verre de Hempel 35620
AkzoNobel: Interzone 954
Jotun: Baltoflacon
DFT recommandé: 500-800 microns
Doublures en caoutchouc:
Propriétés: Offrent flexibilité et résistance aux produits chimiques.
Applications: Utilisé pour le stockage de substances corrosives comme les acides.
Marques recommandées:
3M: Scotchkote Poly-Tech 665
DFT recommandé: 2-5mm

Considérations de sélection

Compatibilité des produits: S'assurer que le revêtement ou le revêtement est compatible avec le produit stocké pour éviter les réactions.
Conditions environnementales:Tenez compte de la température, de l’humidité et de l’exposition aux produits chimiques lors du choix des revêtements et des revêtements.
Entretien et durabilité: Choisissez des doublures et des revêtements qui offrent une protection à long terme et sont faciles à entretenir.

Processus de fabrication

La fabrication de réservoirs de stockage de pétrole implique plusieurs processus clés :
1. Coupe
Découpe Mécanique:Implique le cisaillage, le sciage et le fraisage pour façonner les plaques.
Découpe thermique: Utilise la découpe oxy-combustible, plasma ou laser pour une mise en forme précise et efficace.
2. Soudage
Le soudage est essentiel pour assembler les plaques et garantir l’intégrité structurelle.
Soudage à l'arc métallique protégé (SMAW): Couramment utilisé pour sa simplicité et sa polyvalence.
Soudage à l'arc sous gaz tungstène (GTAW): Fournit des soudures de haute qualité pour les joints critiques.
Soudage à l'arc submergé (SAW): Convient aux plaques épaisses et aux joints longs, offrant une pénétration profonde et des taux de dépôt élevés.
3. Formage
Roulant: Les plaques sont roulées dans la courbure souhaitée pour les parois cylindriques des réservoirs.
Formage à la presse: Utilisé pour façonner les extrémités des réservoirs et autres composants complexes.
4. Inspection et tests
Contrôles Non Destructifs (CND): Des techniques telles que les tests par ultrasons et la radiographie garantissent la qualité de la soudure et l'intégrité structurelle sans endommager le matériau.
Test de pression: Garantit que le réservoir peut résister à la pression de conception sans fuite.
5. Préparation de surface et revêtement
Dynamitage: Nettoie et prépare la surface au revêtement.
enrobage: Application de revêtements protecteurs pour prévenir la corrosion et prolonger la durée de vie du réservoir.
Normes et réglementations de l'industrie
Le respect des normes industrielles garantit la sécurité, la qualité et la conformité. Les normes clés comprennent :
API650: Norme pour les réservoirs de stockage en acier soudés pour le pétrole et le gaz.
API620: Couvre la conception et la construction de grands réservoirs de stockage basse pression.
ASME Section VIII: Fournit des lignes directrices pour la construction d’appareils sous pression.

Conclusion

La construction de réservoirs de stockage de pétrole exige une attention méticuleuse aux détails, notamment dans la sélection et le traitement des plaques. En prenant en compte des facteurs tels que la composition du matériau, l'épaisseur, les propriétés mécaniques et les conditions environnementales, les constructeurs peuvent garantir la sécurité, la durabilité et la rentabilité de ces structures critiques. Le respect des normes et réglementations de l'industrie garantit en outre la conformité et la protection de l'environnement. À mesure que l'industrie pétrolière et gazière continue d'évoluer, les progrès des matériaux et des technologies de fabrication continueront d'améliorer la construction de réservoirs de stockage de pétrole.

Réservoir et pipeline de stockage de carburant Jet A-1

Choisir le bon revêtement d'apprêt époxy pour les pipelines de carburant Jet A-1

Introduction

Dans le domaine hautement spécialisé du transport de carburant aviation, assurer l'intégrité et la sécurité des Conduites de carburant Jet A-1 est crucial. Ces pipelines doivent résister aux environnements chimiques difficiles, empêcher la corrosion et minimiser le risque d'accumulation d'électricité statique. Le choix du revêtement d'apprêt époxy approprié est essentiel pour atteindre ces objectifs. Ce blog explore les meilleures options de revêtement d'apprêt époxy pour les pipelines de carburant Jet A-1 et leur importance dans le maintien de systèmes de transport de carburant efficaces et sûrs.

Pourquoi des revêtements d'apprêt époxy ?

Les revêtements primaires époxy sont largement utilisés dans l'industrie du carburant en raison de leurs propriétés protectrices exceptionnelles. Ils constituent une barrière robuste contre la corrosion et les attaques chimiques, prolongeant ainsi la durée de vie du pipeline et garantissant la pureté du carburant. Les principaux avantages de l'utilisation de primaires époxy pour les pipelines Jet A-1 sont les suivants :

  • Résistance chimique: Les revêtements époxy offrent une excellente résistance aux hydrocarbures, garantissant que le pipeline ne reste pas affecté par une exposition prolongée au carburant Jet A-1.
  • Protection contre la corrosion:Les apprêts époxy empêchent la rouille et la corrosion, préservant ainsi l’intégrité structurelle du pipeline et réduisant les coûts de maintenance et les temps d’arrêt.
  • Propriétés antistatiques: L'électricité statique constitue un risque de sécurité important lors du transport de liquides inflammables comme le Jet A-1. Les revêtements époxy antistatiques aident à dissiper les charges statiques, réduisant ainsi le risque d'étincelles et d'explosions potentielles.
  • Finition de surface lisse:L'application d'un apprêt époxy permet d'obtenir une surface intérieure lisse, améliorant l'efficacité du débit du pipeline et réduisant la consommation d'énergie pendant le transport du carburant.

Meilleurs apprêts époxy pour les pipelines de carburant Jet A-1

Lors de la sélection d'un apprêt époxy pour les conduites de carburant Jet A-1, il est essentiel de choisir un produit spécialement formulé pour les hydrocarbures qui répond aux normes de l'industrie. Voici quelques-uns des meilleurs choix :

1. Hempadur 35760 de Hempel

L'Hempadur 35760 de Hempel est un apprêt époxy antistatique conçu spécifiquement pour les canalisations de carburant d'aviation et les réservoirs de stockage. Il offre une excellente résistance chimique et des propriétés antistatiques, ce qui le rend idéal pour les environnements où la prévention des décharges statiques est essentielle. Sa forte adhérence sur les surfaces métalliques assure une protection durable.

2. 876CN de Hempel

Hempel 876CN est un apprêt époxy bicomposant hautes performances qui offre une excellente résistance à la corrosion et une protection chimique, ce qui le rend adapté aux conduites de carburant Jet A-1. Sa formulation fournit une barrière robuste contre les conditions difficiles typiques des systèmes de carburant de l'aviation, améliorant ainsi la sécurité et la durabilité. Cet apprêt est particulièrement apprécié pour ses fortes propriétés adhésives et sa résistance à l'abrasion, qui sont essentielles dans les environnements à haut débit.

3. Interline 850 d'International Paint

Interline 850 d'International Paint (AkzoNobel) est un revêtement époxy bicomposant hautes performances. Il offre une résistance chimique supérieure, formulé spécifiquement pour le Jet A-1 et d'autres carburants d'aviation. Ses caractéristiques antistatiques en font un choix fiable pour les conduites de carburant, garantissant la sécurité et la conformité aux normes de l'industrie.

4. Dura-Plate 235 de Sherwin-Williams

Dura-Plate 235 est un apprêt époxy polyvalent connu pour sa durabilité et sa résistance chimique. Il convient aux environnements de service difficiles et offre une protection robuste contre la corrosion et la perméation d'hydrocarbures. Sa flexibilité et son adhérence en font un choix populaire pour les conduites de carburant d'aviation.

5. Garde-char de Jotun 412

Tankguard 412 de Jotun est un revêtement époxy spécialisé pour les réservoirs de carburant et les canalisations. Il offre une excellente résistance à divers produits chimiques, notamment le Jet A-1. Sa finition lisse et ses qualités protectrices garantissent un débit de carburant efficace et une intégrité durable des canalisations.

Application et entretien

Pour maximiser les avantages des revêtements d’apprêt époxy, une application et un entretien appropriés sont essentiels :

  • Préparation de surface: Assurez-vous que les surfaces des canalisations sont soigneusement nettoyées et préparées avant d'appliquer l'apprêt époxy. Cela peut impliquer un sablage et un dégraissage pour obtenir une adhérence optimale.
  • Procédé d'application: Suivez les instructions du fabricant concernant la méthode d'application, qui peut inclure la pulvérisation, le pinceau ou le rouleau.
  • Inspection régulière: Procédez à des inspections régulières de la canalisation afin d'identifier et de traiter rapidement tout signe d'usure ou de dommage. Un entretien approprié contribuera à prolonger la durée de vie du revêtement et de la canalisation.

Conclusion

Le choix du revêtement d'apprêt époxy adapté aux conduites de carburant Jet A-1 est essentiel pour garantir la sécurité, l'efficacité et la longévité. Avec des options telles que Hempadur 35760 de Hempel, Hempel 876CN, Interline 850 d'International Paint, Dura-Plate 235 de Sherwin-Williams et Tankguard 412 de Jotun, les opérateurs peuvent trouver une solution adaptée à leurs besoins spécifiques. Les systèmes de transport de carburant peuvent atteindre des performances et une fiabilité optimales en investissant dans des revêtements de haute qualité et en maintenant un processus d'application et d'inspection rigoureux.

Tuyau sans couture superbe 13Cr

Application du Super 13Cr dans les champs de pétrole et de gaz

Introduction

Dans le monde toujours plus exigeant de l'exploration pétrolière et gazière, où les environnements difficiles et les conditions extrêmes sont la norme, le choix de matériaux adaptés est crucial pour le succès opérationnel et la sécurité. Parmi la gamme de matériaux utilisés dans l'industrie, l'acier inoxydable Super 13Cr se distingue comme un choix de premier ordre pour les applications nécessitant une résistance à la corrosion et une durabilité exceptionnelles. Voyons pourquoi le Super 13Cr est le matériau de choix pour les applications modernes des champs pétroliers et gaziers et comment il surpasse les autres options.

Qu'est-ce que l'acier inoxydable Super 13Cr ?

L'acier inoxydable Super 13Cr est un alliage à haute teneur en chrome conçu pour résister aux conditions difficiles rencontrées dans les opérations pétrolières et gazières. Sa composition comprend généralement environ 13% de chrome, ainsi que des éléments supplémentaires tels que le molybdène et le nickel. Par rapport aux nuances 13Cr standard, cet alliage offre une résistance accrue à la corrosion et des performances à haute température.

Pourquoi Super 13Cr?

1. Résistance supérieure à la corrosion

Les puits de pétrole et de gaz rencontrent souvent des substances corrosives comme le sulfure d'hydrogène (H2S), le dioxyde de carbone (CO2) et les chlorures. L'acier inoxydable Super 13Cr excelle dans ces environnements en raison de sa teneur élevée en chrome, qui forme une couche d'oxyde protectrice sur la surface de l'acier. Cette couche réduit considérablement le taux de corrosion et empêche les piqûres et les fissures de corrosion sous contrainte, garantissant ainsi la longévité et la fiabilité des équipements.

2. Haute résistance et ténacité

En plus de sa résistance à la corrosion, le Super 13Cr offre des propriétés mécaniques impressionnantes. L'alliage conserve une résistance et une ténacité élevées même dans des conditions de haute pression et de haute température. Cela le rend idéal pour les composants critiques tels que les tubes, les tubages et les connecteurs utilisés dans les puits de pétrole et de gaz, où l'intégrité structurelle est primordiale.

3. Résistance aux conditions de service acides

Les environnements acides caractérisés par le H2S représentent un défi majeur pour les matériaux d'extraction de pétrole et de gaz. Le Super 13Cr est conçu avec précision pour résister à ces conditions difficiles, réduisant ainsi le risque de défaillance du matériau et garantissant un fonctionnement sûr et efficace. Sa conformité aux normes NACE MR0175 / ISO 15156 certifie en outre son adéquation aux applications de service acide.

4. Performances améliorées dans les environnements à haute température

Les champs de pétrole et de gaz fonctionnent souvent à des températures élevées, ce qui aggrave la corrosion et la dégradation des matériaux. L'acier inoxydable Super 13Cr est conçu pour conserver ses performances dans de tels environnements, en conservant sa résistance à la corrosion et ses propriétés mécaniques même à des températures plus élevées. Cette fiabilité est cruciale pour le fonctionnement sûr et efficace des équipements de production.

Applications dans l'industrie pétrolière et gazière

L'acier inoxydable Super 13Cr est utilisé dans diverses applications critiques dans le secteur pétrolier et gazier :

  • Boîtier et tubes: Composants essentiels des puits de pétrole et de gaz, les tuyaux Super 13Cr sont choisis pour leur capacité à résister aux hautes pressions et aux environnements corrosifs.
  • Outils de fond: Le Super 13Cr est utilisé dans divers outils et équipements de fond de trou, y compris les tiges de forage et les équipements de production, où la fiabilité et les performances sont essentielles.
  • Équipement sous-marin: La résistance de l'alliage à l'eau de mer et à d'autres substances corrosives le rend idéal pour les applications sous-marines, notamment les colonnes montantes, les ombilicaux et les connecteurs.

Perspectives d'avenir et innovations

Alors que l'industrie pétrolière et gazière continue de repousser les limites de l'exploration et de la production, la demande de matériaux avancés comme le Super 13Cr va augmenter. La recherche et le développement en cours visent à améliorer encore les propriétés de cet alliage, en explorant de nouvelles applications et en améliorant ses performances pour répondre aux besoins en constante évolution de l'industrie.

Conclusion

L'acier inoxydable Super 13Cr représente le summum de la science des matériaux dans le secteur pétrolier et gazier, combinant une résistance à la corrosion inégalée avec une résistance et une ténacité élevées. Sa capacité à fonctionner de manière fiable dans des environnements difficiles, à haute pression et à haute température, en fait un choix privilégié pour les applications critiques. À mesure que l’industrie progresse, le Super 13Cr continuera de jouer un rôle essentiel pour garantir la sécurité, l’efficacité et le succès des opérations pétrolières et gazières.

En choisissant Super 13Cr, les opérateurs et les ingénieurs peuvent relever en toute confiance les défis de l’exploration pétrolière et gazière moderne, en sécurisant leurs investissements et en favorisant les progrès dans ce domaine.

Qu’est-ce que la NACE MR0175/ISO 15156 ?

Qu’est-ce que la NACE MR0175/ISO 15156 ?

NACE MR0175/ISO 15156 est une norme mondialement reconnue qui fournit des lignes directrices pour la sélection de matériaux résistants à la fissuration sous contrainte par sulfure (SSC) et à d'autres formes de fissuration induite par l'hydrogène dans des environnements contenant du sulfure d'hydrogène (H₂S). Cette norme est essentielle pour garantir la fiabilité et la sécurité des équipements utilisés dans l'industrie pétrolière et gazière, en particulier dans les environnements de service acides.

Aspects critiques de la norme NACE MR0175/ISO 15156

  1. Champ d'application:
    • La norme traite de la sélection de matériaux pour les équipements utilisés dans la production pétrolière et gazière qui sont exposés à des environnements contenant du H₂S, ce qui peut provoquer diverses formes de fissuration.
    • Son objectif est de prévenir les défaillances matérielles dues aux contraintes du sulfure, à la corrosion, aux fissures induites par l’hydrogène et à d’autres mécanismes connexes.
  2. Sélection des matériaux:
    • Ce guide fournit des lignes directrices pour la sélection de matériaux appropriés, notamment les aciers au carbone, les aciers faiblement alliés, les aciers inoxydables, les alliages à base de nickel et d’autres alliages résistants à la corrosion.
    • Spécifie les conditions environnementales et les niveaux de contrainte que chaque matériau peut supporter sans subir de fissures.
  3. Qualifications et tests:
    • Cet article décrit les procédures de test nécessaires pour qualifier les matériaux pour un service acide, y compris les tests en laboratoire qui simulent les conditions corrosives trouvées dans les environnements H₂S.
    • Spécifie les critères de performance acceptables dans ces tests, garantissant que les matériaux résistent à la fissuration dans des conditions spécifiées.
  4. Conception et fabrication:
    • Comprend des recommandations pour la conception et la fabrication d’équipements visant à minimiser le risque de fissuration induite par l’hydrogène.
    • Souligne l'importance des processus de fabrication, des techniques de soudage et des traitements thermiques qui peuvent affecter la résistance du matériau à la fissuration induite par H₂S.
  5. Entretien et surveillance:
    • Donne des conseils sur les pratiques de maintenance et les stratégies de surveillance pour détecter et prévenir les fissures en service.
    • Des inspections régulières et des méthodes de contrôle non destructif sont recommandées pour garantir l’intégrité continue des équipements.

Importance dans l'industrie

  • Sécurité: Assure le fonctionnement sûr des équipements dans des environnements de service acides en réduisant le risque de pannes catastrophiques dues à la fissuration.
  • Fiabilité: Améliore la fiabilité et la longévité des équipements, réduisant ainsi les temps d'arrêt et les coûts de maintenance.
  • Conformité: Aide les entreprises à se conformer aux exigences réglementaires et aux normes de l'industrie, en évitant les répercussions juridiques et financières.

La norme NACE MR0175/ISO 15156 est divisée en trois parties, chacune se concentrant sur différents aspects de la sélection des matériaux à utiliser dans des environnements de service acides. Voici une répartition plus détaillée :

Partie 1 : Principes généraux de sélection des matériaux résistants à la fissuration

  • Portée:Fournit des lignes directrices et des principes généraux pour la sélection de matériaux résistants à la fissuration dans les environnements contenant du H₂S.
  • Contenu:
    • Définit les termes et concepts clés liés aux environnements de service acides et à la dégradation des matériaux.
    • Décrit les critères généraux pour évaluer l’adéquation des matériaux au service acide.
    • Décrit l'importance de prendre en compte les facteurs environnementaux, les propriétés des matériaux et les conditions opérationnelles lors de la sélection des matériaux.
    • Fournit un cadre pour effectuer des évaluations des risques et prendre des décisions éclairées en matière de sélection de matériaux.

Partie 2 : Aciers au carbone et aciers faiblement alliés résistants à la fissuration et utilisation des fontes

  • Portée:Cet article se concentre sur les exigences et les lignes directrices relatives à l’utilisation des aciers au carbone, des aciers faiblement alliés et des fontes dans des environnements de service acides.
  • Contenu:
    • Détaille les conditions spécifiques dans lesquelles ces matériaux peuvent être utilisés en toute sécurité.
    • Répertorie les propriétés mécaniques et les compositions chimiques requises pour que ces matériaux résistent à la fissuration sous contrainte par sulfure (SSC) et à d'autres formes de dommages induits par l'hydrogène.
    • Fournit des lignes directrices pour les processus de traitement thermique et de fabrication qui peuvent améliorer la résistance de ces matériaux à la fissuration.
    • Discute de la nécessité de procédures appropriées de test et de qualification des matériaux pour garantir la conformité à la norme.

Partie 3 : ARC (alliages résistants à la corrosion) et autres alliages résistants à la fissuration

  • Portée:Traite des alliages résistants à la corrosion (CRA) et d'autres alliages spéciaux dans les environnements de service acides.
  • Contenu:
    • Identifie différents types de CRA, tels que les aciers inoxydables, les alliages à base de nickel et d'autres alliages hautes performances, ainsi que leur aptitude au service acide.
    • Spécifie les compositions chimiques, les propriétés mécaniques et les traitements thermiques requis pour que ces matériaux résistent à la fissuration.
    • Fournit des lignes directrices pour la sélection, le test et la qualification des CRA afin de garantir leurs performances dans les environnements H₂S.
    • Cet article examine l’importance de prendre en compte à la fois la résistance à la corrosion et les propriétés mécaniques de ces alliages lors de la sélection de matériaux pour des applications spécifiques.

La norme NACE MR0175/ISO 15156 est une norme complète qui permet de garantir une utilisation sûre et efficace des matériaux dans les environnements de service acides. Chaque partie aborde différentes catégories de matériaux et fournit des directives détaillées pour leur sélection, leurs tests et leur qualification. En suivant ces directives, les entreprises peuvent réduire le risque de défaillance des matériaux et améliorer la sécurité et la fiabilité de leurs opérations dans les environnements contenant du H₂S.