Beiträge

NACE MR0175 ISO 15156 im Vergleich zu NACE MR0103 ISO 17495-1

NACE MR0175/ISO 15156 vs. NACE MR0103/ISO 17495-1

Einführung

In der Öl- und Gasindustrie, insbesondere in Onshore- und Offshore-Umgebungen, ist die Gewährleistung der Langlebigkeit und Zuverlässigkeit von Materialien, die aggressiven Bedingungen ausgesetzt sind, von größter Bedeutung. Hier kommen Standards wie NACE MR0175/ISO 15156 vs. NACE MR0103/ISO 17495-1 ins Spiel. Beide Standards bieten wichtige Leitlinien für die Materialauswahl in sauren Betriebsumgebungen. Das Verständnis der Unterschiede zwischen ihnen ist jedoch wichtig, um die richtigen Materialien für Ihren Betrieb auszuwählen.

In diesem Blogbeitrag werden wir die wichtigsten Unterschiede untersuchen zwischen NACE MR0175/ISO 15156 vs. NACE MR0103/ISO 17495-1, und bieten praktische Ratschläge für Öl- und Gasfachleute, die mit diesen Normen zurechtkommen müssen. Wir werden auch die spezifischen Anwendungen, Herausforderungen und Lösungen besprechen, die diese Normen bieten, insbesondere im Zusammenhang mit den rauen Umgebungsbedingungen in Öl- und Gasfeldern.

Was sind NACE MR0175/ISO 15156 und NACE MR0103/ISO 17495-1?

NACE MR0175/ISO 15156:
Diese Norm wird weltweit für die Materialauswahl und Korrosionskontrolle in Umgebungen mit sauren Gasen anerkannt, in denen Schwefelwasserstoff (H₂S) vorhanden ist. Sie bietet Richtlinien für die Konstruktion, Herstellung und Wartung von Materialien, die bei der Öl- und Gasförderung an Land und auf See verwendet werden. Ziel ist es, die mit wasserstoffinduzierter Rissbildung (HIC), Sulfid-Spannungsrissbildung (SSC) und Spannungsrisskorrosion (SCC) verbundenen Risiken zu mindern, die die Integrität kritischer Geräte wie Rohrleitungen, Ventile und Bohrlochköpfe beeinträchtigen können.

NACE MR0103/ISO 17495-1:
Auf der anderen Seite, NACE MR0103/ISO 17495-1 konzentriert sich in erster Linie auf Materialien, die in Raffinerien und bei der chemischen Verarbeitung verwendet werden, wo es zu sauren Bedingungen kommen kann, allerdings mit etwas anderem Anwendungsbereich. Es deckt die Anforderungen für Geräte ab, die leicht korrosiven Bedingungen ausgesetzt sind, wobei der Schwerpunkt darauf liegt, sicherzustellen, dass die Materialien der aggressiven Natur bestimmter Raffinationsprozesse wie Destillation oder Cracken standhalten, bei denen das Korrosionsrisiko vergleichsweise geringer ist als bei Upstream-Öl- und Gasoperationen.

NACE MR0175 ISO 15156 im Vergleich zu NACE MR0103 ISO 17495-1

NACE MR0175 ISO 15156 im Vergleich zu NACE MR0103 ISO 17495-1

Hauptunterschiede: NACE MR0175/ISO 15156 vs. NACE MR0103/ISO 17495-1

Nachdem wir nun einen Überblick über die einzelnen Normen haben, ist es wichtig, die Unterschiede hervorzuheben, die sich auf die Materialauswahl vor Ort auswirken können. Diese Unterschiede können die Leistung der Materialien und die Betriebssicherheit erheblich beeinträchtigen.

1. Geltungsbereich

Der Hauptunterschied zwischen NACE MR0175/ISO 15156 vs. NACE MR0103/ISO 17495-1 liegt im Umfang ihrer Anwendung.

NACE MR0175/ISO 15156 ist auf Geräte zugeschnitten, die in sauren Umgebungen mit Schwefelwasserstoff eingesetzt werden. Es ist von entscheidender Bedeutung für Upstream-Aktivitäten wie Exploration, Produktion und Transport von Öl und Gas, insbesondere in Offshore- und Onshore-Feldern, in denen mit saurem Gas (Gas mit Schwefelwasserstoff) gearbeitet wird.

NACE MR0103/ISO 17495-1befasst sich zwar weiterhin mit der Verarbeitung saurer Gase, konzentriert sich jedoch stärker auf die Raffinerie- und Chemieindustrie, insbesondere dort, wo saures Gas in Prozessen wie der Raffination, Destillation und dem Cracken zum Einsatz kommt.

2. Umweltbelastung

Auch die Umgebungsbedingungen spielen bei der Anwendung dieser Normen eine entscheidende Rolle. NACE MR0175/ISO 15156 befasst sich mit härteren Bedingungen im sauren Bereich. Beispielsweise deckt es höhere Konzentrationen von Schwefelwasserstoff ab, der korrosiver ist und ein höheres Risiko für Materialzersetzung durch Mechanismen wie wasserstoffinduzierte Rissbildung (HIC) und Sulfidspannungsrissbildung (SSC) darstellt.

Im Gegensatz, NACE MR0103/ISO 17495-1 berücksichtigt Umgebungen, die hinsichtlich der Schwefelwasserstoffbelastung weniger streng sein können, in Raffinerien und Chemiewerken jedoch immer noch kritisch sind. Die chemische Zusammensetzung der in den Raffinationsprozessen eingesetzten Flüssigkeiten ist möglicherweise nicht so aggressiv wie die in Sauergasfeldern, birgt aber dennoch Korrosionsrisiken.

3. Benötigte Materialien

Beide Normen geben konkrete Kriterien für die Materialauswahl vor, unterscheiden sich jedoch in ihren strengen Anforderungen. NACE MR0175/ISO 15156 legt größeren Wert auf die Verhinderung von wasserstoffbedingter Korrosion in Materialien, die selbst bei sehr geringen Schwefelwasserstoffkonzentrationen auftreten kann. Diese Norm fordert Materialien, die gegen SSC, HIC und Korrosionsermüdung in sauren Umgebungen beständig sind.

Auf der anderen Seite, NACE MR0103/ISO 17495-1 ist in Bezug auf wasserstoffbedingtes Cracken weniger normativ, erfordert aber Materialien, die mit korrosiven Stoffen in Raffinationsprozessen zurechtkommen, wobei der Schwerpunkt oft eher auf der allgemeinen Korrosionsbeständigkeit als auf spezifischen wasserstoffbedingten Risiken liegt.

4. Testen und Verifizieren

Beide Normen erfordern Tests und Überprüfungen, um sicherzustellen, dass die Materialien in ihren jeweiligen Umgebungen funktionieren. NACE MR0175/ISO 15156 erfordert umfangreichere Tests und eine detailliertere Überprüfung der Materialleistung unter sauren Betriebsbedingungen. Die Tests umfassen spezifische Richtlinien für SSC, HIC und andere Ausfallarten, die mit sauren Gasumgebungen verbunden sind.

NACE MR0103/ISO 17495-1erfordert zwar auch Materialprüfungen, ist hinsichtlich der Prüfkriterien jedoch häufig flexibler und konzentriert sich eher darauf, sicherzustellen, dass die Materialien die allgemeinen Korrosionsbeständigkeitsstandards erfüllen, statt sich speziell auf die mit Schwefelwasserstoff verbundenen Risiken zu konzentrieren.

Warum sollten Sie sich für NACE MR0175/ISO 15156 im Vergleich zu NACE MR0103/ISO 17495-1 interessieren?

Das Verständnis dieser Unterschiede kann dazu beitragen, Materialfehler zu vermeiden, die Betriebssicherheit zu gewährleisten und Branchenvorschriften einzuhalten. Ganz gleich, ob Sie auf einer Offshore-Bohrinsel, einem Pipeline-Projekt oder in einer Raffinerie arbeiten: Die Verwendung der geeigneten Materialien gemäß diesen Normen schützt vor kostspieligen Ausfällen, unerwarteten Ausfallzeiten und potenziellen Umweltgefahren.

Für Öl- und Gasbetriebe, insbesondere in sauren Umgebungen an Land und auf See, NACE MR0175/ISO 15156 ist der Standard. Er stellt sicher, dass die Materialien den härtesten Umgebungsbedingungen standhalten und mindert Risiken wie SSC und HIC, die zu katastrophalen Ausfällen führen können.

Im Gegensatz dazu bei Raffinations- oder chemischen Verarbeitungsprozessen NACE MR0103/ISO 17495-1 bietet eine maßgeschneiderte Anleitung. Sie ermöglicht den effektiven Einsatz von Materialien in Umgebungen mit saurem Gas, aber weniger aggressiven Bedingungen als bei der Öl- und Gasförderung. Der Schwerpunkt liegt hier eher auf der allgemeinen Korrosionsbeständigkeit in Verarbeitungsumgebungen.

Praktische Anleitung für Öl- und Gasfachleute

Beachten Sie bei der Auswahl von Materialien für Projekte in beiden Kategorien Folgendes:

Verstehen Sie Ihre Umgebung: Bewerten Sie, ob Ihr Betrieb an der Gewinnung von Sauergas (Upstream) oder der Raffination und chemischen Verarbeitung (Downstream) beteiligt ist. So können Sie bestimmen, welcher Standard anzuwenden ist.

Materialauswahl: Wählen Sie Materialien, die den relevanten Standards entsprechen, basierend auf den Umgebungsbedingungen und der Art des Einsatzes (Sauergas oder Raffination). Je nach Härte der Umgebung werden häufig rostfreie Stähle, hochlegierte Materialien und korrosionsbeständige Legierungen empfohlen.

Testen und Verifizieren: Stellen Sie sicher, dass alle Materialien gemäß den entsprechenden Normen getestet werden. In Umgebungen mit sauren Gasen können zusätzliche Tests auf SSC, HIC und Korrosionsermüdung erforderlich sein.

Konsultieren Sie Experten: Es ist immer eine gute Idee, Korrosionsspezialisten oder Werkstoffingenieure zu konsultieren, die mit NACE MR0175/ISO 15156 vs. NACE MR0103/ISO 17495-1 um eine optimale Materialleistung sicherzustellen.

Abschluss

Zusammenfassend lässt sich sagen, dass das Verständnis des Unterschieds zwischen NACE MR0175/ISO 15156 vs. NACE MR0103/ISO 17495-1 ist unerlässlich, um fundierte Entscheidungen bei der Materialauswahl für Öl- und Gasanwendungen im Upstream- und Downstream-Bereich zu treffen. Durch die Wahl des geeigneten Standards für Ihren Betrieb stellen Sie die langfristige Integrität Ihrer Ausrüstung sicher und helfen, katastrophale Ausfälle zu verhindern, die durch falsch spezifizierte Materialien entstehen können. Ob Sie nun mit Sauergas auf Offshore-Feldern oder mit chemischer Verarbeitung in Raffinerien arbeiten, diese Standards bieten die notwendigen Richtlinien zum Schutz Ihrer Anlagen und zur Wahrung der Sicherheit.

Wenn Sie sich nicht sicher sind, welcher Standard zu befolgen ist, oder weitere Unterstützung bei der Materialauswahl benötigen, wenden Sie sich an einen Materialexperten, der Ihnen eine individuelle Beratung zu folgenden Themen bietet: NACE MR0175/ISO 15156 vs. NACE MR0103/ISO 17495-1 und stellen Sie sicher, dass Ihre Projekte sowohl sicher sind als auch den Best Practices der Branche entsprechen.

NACE MR0175 vs. NACE MR0103

Was ist der Unterschied zwischen NACE MR0175 und NACE MR0103?

Einführung

In Branchen wie der Öl- und Gasindustrie, in denen Ausrüstung und Infrastruktur regelmäßig rauen Umgebungsbedingungen ausgesetzt sind, ist die Auswahl von Materialien, die korrosionsbeständig sind, von entscheidender Bedeutung. Zwei wesentliche Standards, die die Materialauswahl für Umgebungen mit Schwefelwasserstoff (H₂S) leiten, sind NACE MR0175 Und NACE MR0103. Beide Normen zielen zwar darauf ab, Spannungsrisse durch Sulfid und andere wasserstoffbedingte Schäden zu verhindern, sind jedoch für unterschiedliche Anwendungen und Umgebungen konzipiert. Dieser Blog bietet einen umfassenden Überblick über die Unterschiede zwischen diesen beiden wichtigen Normen.

Einführung in die NACE-Standards

NACE International, jetzt Teil der Association for Materials Protection and Performance (AMPP), hat NACE MR0175 und NACE MR0103 entwickelt, um die Herausforderungen durch saure Betriebsumgebungen – solche, die H₂S enthalten – zu bewältigen. Diese Umgebungen können zu verschiedenen Formen von Korrosion und Rissbildung führen, die die Integrität von Materialien beeinträchtigen und möglicherweise zu katastrophalen Ausfällen führen können. Der Hauptzweck dieser Standards besteht darin, Richtlinien für die Auswahl von Materialien bereitzustellen, die diesen schädlichen Auswirkungen standhalten können.

Umfang und Anwendung

NACE MR0175

Hauptaugenmerk: NACE MR0175 oder ISO 15156 zielt in erster Linie auf die vorgelagerte Öl- und Gasindustrie ab, einschließlich der Exploration, Bohrung, Produktion und des Transports von Kohlenwasserstoffen.
Umfeld: Die Norm gilt für Materialien, die bei der Öl- und Gasproduktion in sauren Umgebungen verwendet werden. Dazu gehören Bohrlochausrüstung, Bohrlochkopfkomponenten, Pipelines und Raffinerien.
Weltweite Nutzung: NACE MR0175 ist ein weltweit anerkannter Standard, der in der Öl- und Gasförderung weit verbreitet ist, um die Sicherheit und Zuverlässigkeit von Materialien in sauren Umgebungen zu gewährleisten.

NACE MR0103

Hauptaugenmerk: NACE MR0103 ist speziell für die Raffinerie- und Petrochemieindustrie konzipiert und konzentriert sich auf nachgelagerte Vorgänge.
Umfeld: Die Norm gilt für Prozessanlagen mit Schwefelwasserstoff, insbesondere in feuchten H₂S-Umgebungen. Sie ist auf die Bedingungen in Raffinerieanlagen wie Hydroprocessing-Anlagen zugeschnitten, in denen ein erhebliches Risiko von Spannungsrissen durch Sulfid besteht.
Branchenspezifisch: Im Gegensatz zu NACE MR0175, das in einem breiteren Anwendungsbereich eingesetzt wird, konzentriert sich NACE MR0103 stärker auf den Raffineriesektor.

Benötigte Materialien

NACE MR0175

Materialoptionen: NACE MR0175 bietet viele Materialoptionen, darunter Kohlenstoffstähle, niedriglegierte Stähle, rostfreie Stähle, Nickellegierungen und mehr. Jedes Material wird basierend auf seiner Eignung für bestimmte saure Umgebungen kategorisiert.
Qualifikation: Um für den Einsatz geeignet zu sein, müssen die Materialien strenge Kriterien erfüllen, darunter Beständigkeit gegen SSC, wasserstoffinduzierte Rissbildung (HIC) und Sulfidspannungskorrosion (SSCC).
Umweltgrenzwerte: Die Norm begrenzt den H₂S-Partialdruck, die Temperatur, den pH-Wert und andere ökologische Faktoren, die die Eignung des Materials für den Einsatz in sauren Umgebungen bestimmen.

NACE MR0103

Materialbedarf: NACE MR0103 konzentriert sich auf Materialien, die SSC in der Raffinationsumgebung widerstehen. Es bietet spezifische Kriterien für Kohlenstoff-, niedriglegierte und bestimmte rostfreie Stähle.
Vereinfachte Richtlinien: Im Vergleich zu MR0175 sind die Richtlinien zur Materialauswahl in MR0103 einfacher und spiegeln die kontrollierteren und konsistenteren Bedingungen wider, die normalerweise bei Raffinationsvorgängen vorherrschen.
Herstellungsprozess: Die Norm beschreibt außerdem die Anforderungen an Schweißen, Wärmebehandlung und Herstellung, um sicherzustellen, dass die Materialien ihre Rissbeständigkeit behalten.

Zertifizierung und Compliance

NACE MR0175
Zertifizierung: Die Einhaltung der NACE MR0175 wird häufig von Aufsichtsbehörden gefordert und ist für die Gewährleistung der Sicherheit und Zuverlässigkeit der Ausrüstung bei der Förderung von Saueröl und Sauergas von entscheidender Bedeutung. Auf die Norm wird in vielen internationalen Vorschriften und Verträgen verwiesen.
Dokumentation: Um nachzuweisen, dass die Materialien die in MR0175 beschriebenen spezifischen Kriterien erfüllen, ist in der Regel eine ausführliche Dokumentation erforderlich. Dazu gehören die chemische Zusammensetzung, die mechanischen Eigenschaften und die Prüfung auf Beständigkeit gegen saure Betriebsbedingungen.
NACE MR0103
Zertifizierung: Die Einhaltung von NACE MR0103 ist in der Regel in Verträgen für Geräte und Materialien erforderlich, die in Raffinerien und petrochemischen Anlagen verwendet werden. Sie stellt sicher, dass die ausgewählten Materialien den spezifischen Herausforderungen der Raffinerieumgebung standhalten.
Vereinfachte Anforderungen: Die Dokumentations- und Testanforderungen für die Einhaltung von MR0103 sind zwar immer noch streng, aber häufig weniger komplex als die für MR0175. Dies spiegelt die unterschiedlichen Umgebungsbedingungen und Risiken bei der Raffination im Vergleich zu Upstream-Vorgängen wider.

Prüfung und Qualifikation

NACE MR0175
Strenge Tests: Materialien müssen umfangreichen Tests, einschließlich Labortests auf SSC, HIC und SSCC, unterzogen werden, um für den Einsatz in sauren Umgebungen geeignet zu sein.
Globale Standards: Die Norm orientiert sich an internationalen Testverfahren und erfordert häufig Materialien, die strenge Leistungskriterien unter den härtesten Bedingungen im Öl- und Gassektor erfüllen.
NACE MR0103
Gezieltes Testen: Die Testanforderungen sind auf die spezifischen Bedingungen der Raffinerieumgebungen ausgerichtet. Dazu gehören Tests auf Beständigkeit gegen nassen H₂S, SSC und andere relevante Formen von Rissbildung.
Anwendungsspezifisch: Die Testprotokolle sind auf die Anforderungen von Raffinationsprozessen zugeschnitten, bei denen typischerweise weniger anspruchsvolle Bedingungen herrschen als bei vorgelagerten Vorgängen.

Abschluss

Während NACE MR0175 und NACE MR0103 Beide verhindern Spannungsrisse durch Sulfid sowie andere Formen umweltbedingter Risse in sauren Betriebsumgebungen und sind für unterschiedliche Anwendungen konzipiert.
NACE MR0175 ist der Standard für Upstream-Öl- und Gasoperationen. Er deckt ein breites Spektrum an Materialien und Umgebungsbedingungen ab und verfügt über strenge Test- und Qualifizierungsprozesse.
NACE MR0103 ist auf die Raffinerieindustrie zugeschnitten. Es konzentriert sich auf nachgelagerte Vorgänge und verwendet einfachere, gezieltere Kriterien für die Materialauswahl.

Das Verständnis der Unterschiede zwischen diesen Normen ist wichtig für die Auswahl geeigneter Materialien für Ihre spezifische Anwendung und um die Sicherheit, Zuverlässigkeit und Langlebigkeit Ihrer Infrastruktur in Schwefelwasserstoffumgebungen zu gewährleisten.

Die entscheidende Rolle von Stahlrohren bei der Öl- und Gasförderung

Einführung

Stahlrohre sind in der Öl- und Gasindustrie von entscheidender Bedeutung, da sie unter extremen Bedingungen unübertroffene Haltbarkeit und Zuverlässigkeit bieten. Diese Rohre sind für die Exploration und den Transport unverzichtbar und halten hohem Druck, korrosiven Umgebungen und extremen Temperaturen stand. Auf dieser Seite werden die entscheidenden Funktionen von Stahlrohren bei der Öl- und Gasexploration untersucht und ihre Bedeutung für Bohrungen, Infrastruktur und Sicherheit im Detail erläutert. Entdecken Sie, wie die Auswahl geeigneter Stahlrohre die Betriebseffizienz steigern und die Kosten in dieser anspruchsvollen Branche senken kann.

I. Grundkenntnisse zu Stahlrohren für die Öl- und Gasindustrie

1. Begriffserklärung

API: Abkürzung für Amerikanisches Erdölinstitut.
OCTG: Abkürzung für Rohrwaren aus der Ölindustrie, einschließlich Ölmantelrohr, Ölschläuche, Bohrgestänge, Bohrkragen, Bohrer, Pumpenstangen, Verbindungsstücke usw.
Ölschläuche: Rohre werden in Ölquellen zur Förderung, Gasextraktion, Wasserinjektion und Säurefrakturierung verwendet.
Gehäuse: Als Auskleidung zur Verhinderung des Einsturzes einer Wand wird ein Rohr von der Erdoberfläche in ein Bohrloch hinabgelassen.
Bohrgestänge: Rohr zum Bohren von Bohrlöchern.
Leitungsrohre: Rohr zum Transport von Öl oder Gas.
Kupplungen: Zylinder zum Verbinden zweier Gewinderohre mit Innengewinde.
Kupplungsmaterial: Rohr zur Herstellung von Kupplungen.
API-Threads: Rohrgewinde gemäß API 5B-Standard, einschließlich Rundgewinde für Ölrohre, kurze Rundgewinde für Gehäuse, lange Rundgewinde für Gehäuse, teilweise Trapezgewinde für Gehäuse, Leitungsrohrgewinde usw.
Premium-Verbindung: Nicht-API-Gewinde mit einzigartigen Dichtungseigenschaften, Verbindungseigenschaften und anderen Eigenschaften.
Fehler: Verformung, Bruch, Oberflächenschaden und Verlust der ursprünglichen Funktion unter bestimmten Betriebsbedingungen.
Primäre Ausfallarten: Quetschen, Rutschen, Bruch, Leckage, Korrosion, Verkleben, Verschleiß usw.

2. Normen im Bereich Erdöl

API Spec 5B, 17. Ausgabe – Spezifikation für Gewindeschneiden, Messen und Gewindeprüfung von Futterrohr-, Rohr- und Leitungsrohrgewinden
API Spec 5L, 46. Ausgabe – Spezifikation für Leitungsrohre
API Spec 5CT, 11. Ausgabe – Spezifikation für Gehäuse und Rohre
API Spec 5DP, 7. Ausgabe – Spezifikation für Bohrgestänge
API Spec 7-1, 2. Ausgabe – Spezifikation für rotierende Bohrgestängeelemente
API Spec 7-2, 2. Ausgabe – Spezifikation für das Gewindeschneiden und Messen von Drehbundgewindeverbindungen
API Spec 11B, 24. Ausgabe – Spezifikation für Pumpenstangen, polierte Stangen und Auskleidungen, Kupplungen, Senkstangen, polierte Stangenklemmen, Stopfbuchsen und Pumpen-T-Stücke
ISO 3183:2019 – Erdöl- und Erdgasindustrie — Stahlrohre für Pipeline-Transportsysteme
ISO 11960:2020 – Erdöl- und Erdgasindustrie — Stahlrohre zur Verwendung als Gehäuse oder Rohre für Bohrlöcher
NACE MR0175 / ISO 15156:2020 – Erdöl- und Erdgasindustrie – Materialien für den Einsatz in H2S-haltigen Umgebungen bei der Öl- und Gasproduktion

II. Ölschläuche

1. Klassifizierung von Ölschläuchen

Ölschläuche werden in nicht gestauchte Ölschläuche (NU), extern gestauchte Ölschläuche (EU) und Ölschläuche mit integrierter Verbindung (IJ) unterteilt. NU-Ölschläuche bedeuten, dass das Ende des Schlauchs eine durchschnittliche Dicke hat, direkt das Gewinde dreht und die Kupplungen mitbringt. Gestauchte Schläuche bedeuten, dass die Enden beider Schläuche extern gestaucht, dann mit Gewinden versehen und gekoppelt werden. Rohre mit integrierter Verbindung bedeuten, dass ein Ende des Schlauchs mit Außengewinde gestaucht ist und das andere mit Innengewinde gestaucht ist, die direkt ohne Kupplungen verbunden sind.

2. Funktion der Ölschläuche

① Öl- und Gasförderung: Nachdem die Öl- und Gasquellen gebohrt und zementiert wurden, werden die Rohre in die Ölverrohrung eingesetzt, um Öl und Gas aus der Erde zu fördern.
② Wasserinjektion: Wenn der Bohrlochdruck nicht ausreicht, injizieren Sie Wasser durch das Rohr in den Brunnen.
③ Dampfeinspritzung: Bei der Heißgewinnung von Dicköl wird Dampf über isolierte Ölleitungen in die Bohrung eingeleitet.
④ Ansäuerung und Aufbrechen: In der Spätphase der Bohrung oder zur Verbesserung der Produktion von Öl- und Gasquellen ist es notwendig, ein Ansäuerungs- und Aufbruchmedium oder ein Härtungsmittel in die Öl- und Gasschicht einzubringen und das Medium und das Härtungsmittel durch die Ölrohre zu transportieren.

3. Stahlqualität der Ölleitungen

Die Stahlsorten für Ölleitungen sind H40, J55, N80, L80, C90, T95, P110.
N80 wird in N80-1 und N80Q unterteilt. Beide weisen die gleichen Zugfestigkeitseigenschaften auf. Die beiden Unterschiede liegen im Lieferzustand und in der unterschiedlichen Schlagzähigkeit. N80-1 wird im normalisierten Zustand geliefert oder wenn die endgültige Walztemperatur über der kritischen Temperatur Ar3 liegt und die Spannung nach der Luftkühlung abnimmt. Es kann anstelle des normalisierten Zustands Warmwalzen verwendet werden. Schlagzähigkeits- und zerstörungsfreie Prüfungen sind nicht erforderlich. N80Q muss angelassen (vergütet) werden. Die Wärmebehandlung muss durchgeführt werden. Die Schlagzähigkeit muss den Bestimmungen von API 5CT entsprechen und es müssen zerstörungsfreie Prüfungen durchgeführt werden.
L80 wird in L80-1, L80-9Cr und L80-13Cr unterteilt. Ihre mechanischen Eigenschaften und ihr Lieferstatus sind gleich. Unterschiede in Verwendung, Produktionsschwierigkeiten und Preis: L80-1 ist für den allgemeinen Typ, L80-9Cr und L80-13Cr sind Rohre mit hoher Korrosionsbeständigkeit, Produktionsschwierigkeiten und hohen Kosten und werden normalerweise in stark korrosionsanfälligen Bohrlöchern verwendet.
C90 und T95 werden in 1 und 2 Typen unterteilt, nämlich C90-1, C90-2 und T95-1, T95-2.

4. Die für Ölrohre häufig verwendete Stahlsorte, Stahlname und Lieferstatus

J55 (37Mn5) NU Ölrohre: Warmgewalzt statt normalisiert
J55 (37Mn5) EU-Ölrohre: In voller Länge normalisiert nach dem Stauchen
N80-1 (36Mn2V) NU-Ölrohre: Warmgewalzt statt normalisiert
N80-1 (36Mn2V) EU-Ölrohr: In voller Länge normalisiert nach dem Stauchen
N80-Q (30Mn5) Ölrohr: 30Mn5, durchgehende Temperierung
L80-1 (30Mn5) Ölrohr: 30Mn5, durchgehende Temperierung
P110 (25CrMnMo) Ölrohr: 25CrMnMo, durchgehende Vergütung
J55 (37Mn5) Kupplung: Warmgewalzt, normalisiert
N80 (28MnTiB) Kupplung: Durchgehendes Temperieren
L80-1 (28MnTiB) Kupplung: Durchgehend gehärtet
P110 (25CrMnMo) Kupplung: Durchgehendes Anlassen

III. Mantelrohr

1. Klassifizierung und Rolle des Gehäuses

Das Gehäuse ist das Stahlrohr, das die Wand von Öl- und Gasquellen stützt. In jeder Quelle werden je nach Bohrtiefe und geologischen Bedingungen mehrere Schichten Gehäuse verwendet. Das Gehäuse wird nach dem Absenken in die Quelle mit Zement einzementiert. Im Gegensatz zu Öl- und Bohrrohren kann es nicht wiederverwendet werden und gehört zu den Einweg-Verbrauchsmaterialien. Daher macht der Verbrauch von Gehäusen mehr als 70 Prozent aller Ölquellenrohre aus. Das Gehäuse kann je nach Verwendung in Leitergehäuse, Zwischengehäuse, Produktionsgehäuse und Linergehäuse unterteilt werden. Ihre Strukturen in Ölquellen sind in Abbildung 1 dargestellt.

①Leitergehäuse: Normalerweise werden für die Leitungsverrohrung die API-Klassen K55, J55 oder H40 verwendet. Sie stabilisiert den Bohrlochkopf und isoliert flache Grundwasserleiter mit Durchmessern von üblicherweise etwa 20 oder 16 Zoll.

②Zwischengehäuse: Zwischenverrohrungen, häufig aus den API-Klassen K55, N80, L80 oder P110, werden zur Isolierung instabiler Formationen und unterschiedlicher Druckzonen verwendet und haben typische Durchmesser von 13 3/8 Zoll, 11 3/4 Zoll oder 9 5/8 Zoll.

③Produktionsgehäuse: Produktionsgehäuse werden aus hochwertigem Stahl wie etwa den API-Klassen J55, N80, L80, P110 oder Q125 hergestellt und sind so ausgelegt, dass sie dem Produktionsdruck standhalten. Normalerweise sind sie in den Durchmessern 9 5/8 Zoll, 7 Zoll oder 5 1/2 Zoll erhältlich.

④Liner-Gehäuse: Liner erweitern das Bohrloch unter Verwendung von Materialien wie den API-Klassen L80, N80 oder P110 mit typischen Durchmessern von 7 Zoll, 5 Zoll oder 4 1/2 Zoll in das Reservoir.

⑤Schläuche: Rohre transportieren Kohlenwasserstoffe an die Oberfläche. Sie verwenden die API-Klassen J55, L80 oder P110 und sind in den Durchmessern 4 1/2 Zoll, 3 1/2 Zoll oder 2 7/8 Zoll erhältlich.

IV. Bohrgestänge

1. Klassifizierung und Funktion von Rohren für Bohrwerkzeuge

Das quadratische Bohrrohr, das Bohrrohr, das gewichtete Bohrrohr und der Bohrkragen in Bohrwerkzeugen bilden das Bohrrohr. Das Bohrrohr ist das Kernbohrwerkzeug, das den Bohrer vom Boden zum Boden des Bohrlochs treibt, und es ist auch ein Kanal vom Boden zum Boden des Bohrlochs. Es hat drei Hauptrollen:

① Zur Übertragung des Drehmoments, um den Bohrer anzutreiben und zu bohren;

② Sich auf das Gewicht des Bohrers zu verlassen, um den Druck des Gesteins am Boden des Bohrlochs zu brechen;

③ Um Spülflüssigkeit, d. h. Bohrschlamm, durch den Boden zu transportieren, werden Hochdruckschlammpumpen eingesetzt. Die Bohrsäule fließt in das Bohrloch und fließt in den Boden des Brunnens, um das Gesteinsmaterial auszuspülen und den Bohrer abzukühlen. Außerdem wird das Gesteinsmaterial durch die Außenfläche der Säule und die Wand des Brunnens zwischen den Ringräumen zurück in den Boden befördert, um den Zweck des Bohrens des Brunnens zu erreichen.

Das Bohrgestänge muss beim Bohrvorgang einer Vielzahl komplexer Wechselbelastungen standhalten, wie Zug-, Druck-, Torsions-, Biege- und anderen Belastungen. Die Innenfläche ist außerdem der Auswaschung durch Hochdruckschlamm und Korrosion ausgesetzt.
(1) Quadratisches Bohrgestänge: Quadratische Bohrrohre gibt es in zwei Ausführungen: viereckig und sechseckig. In Chinas Erdölbohrrohren wird für jeden Satz Bohrsäulen normalerweise ein viereckiges Bohrrohr verwendet. Seine Spezifikationen sind 63,5 mm (2-1/2 Zoll), 88,9 mm (3-1/2 Zoll), 107,95 mm (4-1/4 Zoll), 133,35 mm (5-1/4 Zoll), 152,4 mm (6 Zoll) usw. Die verwendete Länge beträgt normalerweise 1214,5 m.
(2) Bohrgestänge: Das Bohrgestänge ist das Hauptwerkzeug zum Bohren von Brunnen. Es ist mit dem unteren Ende des quadratischen Bohrgestänges verbunden. Während der Bohrbrunnen tiefer wird, verlängert das Bohrgestänge die Bohrsäule nach und nach. Die Spezifikationen des Bohrgestänges sind: 60,3 mm (2-3/8 Zoll), 73,03 mm (2-7/8 Zoll), 88,9 mm (3-1/2 Zoll), 114,3 mm (4-1/2 Zoll), 127 mm (5 Zoll), 139,7 mm (5-1/2 Zoll) und so weiter.
(3) Hochleistungs-Bohrgestänge: Ein gewichtetes Bohrrohr ist ein Übergangswerkzeug, das das Bohrrohr und den Bohrkragen verbindet. Es kann den Kraftzustand des Bohrrohrs verbessern und den Druck auf den Bohrer erhöhen. Die Hauptspezifikationen des gewichteten Bohrrohrs sind 88,9 mm (3-1/2 Zoll) und 127 mm (5 Zoll).
(4) Bohrkragen: Der Bohrkragen ist mit dem unteren Teil des Bohrgestänges verbunden, einem speziellen dickwandigen Rohr mit hoher Steifigkeit. Er übt Druck auf den Bohrer aus, um das Gestein aufzubrechen, und spielt eine Führungsrolle beim Bohren eines geraden Bohrlochs. Die üblichen Spezifikationen für Bohrkragen sind 158,75 mm (6-1/4 Zoll), 177,85 mm (7 Zoll), 203,2 mm (8 Zoll), 228,6 mm (9 Zoll) usw.

V. Leitungsrohr

1. Klassifizierung von Leitungsrohren

In der Öl- und Gasindustrie werden Rohrleitungen mit der Abkürzung „Stahlrohr“ zum Transport von Öl, raffiniertem Öl, Erdgas und Wasser verwendet. Die Öl- und Gasleitungen werden in Hauptleitungen, Zweigleitungen und städtische Rohrleitungsnetze unterteilt. Drei Arten von Hauptleitungen haben die üblichen Spezifikationen von ∅406 bis 1219 mm, eine Wandstärke von 10 bis 25 mm, Stahlgüte X42 bis X80; Zweigleitungen und städtische Rohrleitungsnetze haben normalerweise Spezifikationen von ∅114 bis 700 mm, eine Wandstärke von 6 bis 20 mm, die Stahlgüte für X42 bis X80. Die Stahlgüte ist X42 bis X80. Leitungsrohre sind in geschweißter und nahtloser Ausführung erhältlich. Geschweißte Leitungsrohre werden häufiger verwendet als nahtlose Leitungsrohre.

2. Standard für Leitungsrohre

API Spec 5L – Spezifikation für Leitungsrohre
ISO 3183 – Erdöl- und Erdgasindustrie – Stahlrohre für Pipeline-Transportsysteme

3. PSL1 und PSL2

PSL ist die Abkürzung für Produktspezifikationsebene. Die Spezifikationsstufe des Leitungsrohrprodukts ist in PSL 1 und PSL 2 unterteilt, und die Qualitätsstufe ist in PSL 1 und PSL 2 unterteilt. PSL 2 ist höher als PSL 1; die beiden Spezifikationsstufen haben nicht nur unterschiedliche Testanforderungen, sondern auch unterschiedliche Anforderungen an die chemische Zusammensetzung und die mechanischen Eigenschaften. Daher müssen die Vertragsbedingungen gemäß der API 5L-Bestellung neben der Angabe der Spezifikationen, der Stahlsorte und anderer allgemeiner Indikatoren auch die Produktspezifikationsstufe angeben, d. h. PSL 1 oder PSL 2. PSL 2 ist hinsichtlich der chemischen Zusammensetzung, der Zugfestigkeitseigenschaften, der Schlagfestigkeit, der zerstörungsfreien Prüfung und anderer Indikatoren strenger als PSL 1.

4. Stahlsorte, chemische Zusammensetzung und mechanische Eigenschaften für Leitungsrohre

Die Stahlgüten für Leitungsrohre werden von niedrig bis hoch in A25, A, B, X42, X46, X52, X60, X65, X70 und X80 unterteilt. Detaillierte Angaben zur chemischen Zusammensetzung und zu den mechanischen Eigenschaften finden Sie in der Spezifikation API 5L, 46. Ausgabe.

5. Anforderungen an die hydrostatische Prüfung und zerstörungsfreie Prüfung von Leitungsrohren

Bei Leitungsrohren muss Zweig für Zweig ein hydraulischer Test durchgeführt werden, und der Standard erlaubt keine zerstörungsfreie Erzeugung von Hydraulikdruck, was ebenfalls einen großen Unterschied zwischen dem API-Standard und unseren Standards darstellt. PSL 1 erfordert keine zerstörungsfreie Prüfung; PSL 2 muss Zweig für Zweig eine zerstörungsfreie Prüfung durchführen.

VI. Premium-Anbindungen

1. Einführung von Premium-Verbindungen

Premium Connection ist ein Rohrgewinde mit einer einzigartigen Struktur, die sich vom API-Gewinde unterscheidet. Obwohl das vorhandene API-Gewinde-Ölgehäuse bei der Ölbohrungsausbeutung weit verbreitet ist, zeigen sich seine Mängel in der einzigartigen Umgebung einiger Ölfelder deutlich: Die API-Rundgewinderohrsäule hat zwar eine bessere Dichtleistung, aber die vom Gewindeteil getragene Zugkraft entspricht nur 60% bis 80% der Festigkeit des Rohrkörpers und kann daher nicht bei der Ausbeutung tiefer Bohrungen verwendet werden; die API-Rohrsäule mit vorgespanntem Trapezgewinde hat zwar eine viel höhere Zugleistung als die der API-Rundgewindeverbindung, aber ihre Dichtleistung ist nicht so gut. Obwohl die Zugleistung der Säule viel höher ist als die der API-Rundgewindeverbindung, ist ihre Dichtleistung nicht sehr gut, sodass sie nicht bei der Ausbeutung von Hochdruckgasbohrungen verwendet werden kann; außerdem kann das Gewindefett nur in einer Umgebung mit einer Temperatur unter 95℃ seine Rolle spielen, sodass es nicht bei der Ausbeutung von Hochtemperaturbohrungen verwendet werden kann.

Im Vergleich zur API-Rundgewinde- und Teiltrapezgewindeverbindung weist die Premiumverbindung in folgenden Punkten bahnbrechende Fortschritte auf:

(1) Eine gute Abdichtung durch die Elastizität und die Konstruktion der metallischen Dichtungsstruktur macht die Gasabdichtung der Verbindung widerstandsfähiger gegen das Erreichen der Grenze des Rohrkörpers innerhalb des Fließdrucks.

(2) Hohe Festigkeit der Verbindung. Verbindung mit einer speziellen Schnallenverbindung des Ölgehäuses, deren Verbindungsfestigkeit die Festigkeit des Rohrkörpers erreicht oder übersteigt, um das Problem des Schlupfs grundsätzlich zu lösen;

(3) Durch die Verbesserung des Materialauswahl- und Oberflächenbehandlungsprozesses wurde das Problem der am Faden hängenden Schnalle grundsätzlich gelöst.

(4) Durch Optimierung der Struktur wird eine vernünftigere Verteilung der Verbindungsspannungen erreicht, die die Beständigkeit gegen Spannungskorrosion verbessert.

(5) Durch die vernünftige Gestaltung der Schulterstruktur ist die Bedienung der Schnalle leichter zugänglich.

Die Öl- und Gasindustrie verfügt über mehr als 100 patentierte Premium-Verbindungen, die bedeutende Fortschritte in der Rohrtechnologie darstellen. Diese speziellen Gewindedesigns bieten überlegene Dichtungseigenschaften, erhöhte Verbindungsfestigkeit und verbesserte Widerstandsfähigkeit gegen Umweltbelastungen. Indem sie Herausforderungen wie hohen Druck, korrosive Umgebungen und extreme Temperaturen bewältigen, gewährleisten diese Innovationen hervorragende Zuverlässigkeit und Effizienz bei ölgesunden Operationen weltweit. Kontinuierliche Forschung und Entwicklung im Bereich Premium-Verbindungen unterstreichen ihre zentrale Rolle bei der Unterstützung sicherer und produktiverer Bohrverfahren und spiegeln ein anhaltendes Engagement für technologische Spitzenleistungen im Energiesektor wider.

VAM®-Verbindung: VAM®-Verbindungen sind für ihre robuste Leistung in anspruchsvollen Umgebungen bekannt und zeichnen sich durch fortschrittliche Metall-Metall-Dichtungstechnologie und hohe Drehmomentfähigkeiten aus, wodurch ein zuverlässiger Betrieb in Tiefbohrungen und Hochdruckreservoirs gewährleistet wird.

TenarisHydril Wedge-Serie: Diese Serie bietet eine Reihe von Verbindungen wie Blue®, Dopeless® und Wedge 521®, die für ihre außergewöhnliche gasdichte Abdichtung und Widerstandsfähigkeit gegen Druck- und Zugkräfte bekannt sind und so die Betriebssicherheit und Effizienz verbessern.

TSH® Blau: Die von Tenaris entwickelten TSH® Blue-Verbindungen nutzen ein proprietäres Doppelschulterdesign und ein Hochleistungsgewindeprofil und bieten so hervorragende Ermüdungsbeständigkeit und einfache Montage bei kritischen Bohranwendungen.

Grant Prideco™ XT®-Verbindung: Die von NOV entwickelten XT®-Verbindungen verfügen über eine einzigartige Metall-Metall-Dichtung und eine robuste Gewindeform, die eine überlegene Drehmomentkapazität und Beständigkeit gegen Abrieb gewährleisten und so die Lebensdauer der Verbindung verlängern.

Hunting Seal-Lock® Verbindung: Die Seal-Lock®-Verbindung von Hunting verfügt über eine Metall-Metall-Dichtung und ein einzigartiges Gewindeprofil und ist für ihre überragende Druckbeständigkeit und Zuverlässigkeit bei Bohrvorgängen an Land und auf See bekannt.

Abschluss

Zusammenfassend lässt sich sagen, dass das komplexe Netzwerk aus Stahlrohren, das für die Öl- und Gasindustrie von entscheidender Bedeutung ist, eine breite Palette von Spezialgeräten umfasst, die für raue Umgebungen und komplexe Betriebsanforderungen ausgelegt sind. Von den grundlegenden Mantelrohren, die gesunde Wände stützen und schützen, bis hin zu den vielseitigen Rohren, die bei Extraktions- und Injektionsprozessen verwendet werden, dient jeder Rohrtyp einem bestimmten Zweck bei der Erkundung, Produktion und dem Transport von Kohlenwasserstoffen. Standards wie API-Spezifikationen gewährleisten Einheitlichkeit und Qualität dieser Rohre, während Innovationen wie Premium-Verbindungen die Leistung unter schwierigen Bedingungen verbessern. Mit der Weiterentwicklung der Technologie werden diese kritischen Komponenten weiterentwickelt und steigern die Effizienz und Zuverlässigkeit im globalen Energiebetrieb. Das Verständnis dieser Rohre und ihrer Spezifikationen unterstreicht ihre unverzichtbare Rolle in der Infrastruktur des modernen Energiesektors.

Was ist NACE MR0175/ISO 15156?

Was ist NACE MR0175/ISO 15156?

NACE MR0175/ISO 15156 ist ein weltweit anerkannter Standard, der Richtlinien für die Auswahl von Materialien bereitstellt, die gegen Sulfid-Spannungsrisse (SSC) und andere Formen wasserstoffinduzierter Risse in Umgebungen mit Schwefelwasserstoff (H₂S) beständig sind. Dieser Standard ist von entscheidender Bedeutung für die Gewährleistung der Zuverlässigkeit und Sicherheit von Geräten, die in der Öl- und Gasindustrie verwendet werden, insbesondere in sauren Umgebungen.

Kritische Aspekte von NACE MR0175/ISO 15156

  1. Umfang und Zweck:
    • Die Norm befasst sich mit der Materialauswahl für Geräte, die bei der Öl- und Gasproduktion eingesetzt werden und Umgebungen ausgesetzt sind, die H₂S enthalten, welches verschiedene Formen von Rissen verursachen kann.
    • Ziel ist es, Materialversagen aufgrund von Sulfidspannung, Korrosion, wasserstoffinduzierter Rissbildung und anderen ähnlichen Mechanismen zu verhindern.
  2. Materialauswahl:
    • Dieser Leitfaden enthält Richtlinien zur Auswahl geeigneter Materialien, darunter Kohlenstoffstähle, niedriglegierte Stähle, rostfreie Stähle, Nickellegierungen und andere korrosionsbeständige Legierungen.
    • Gibt die Umgebungsbedingungen und Belastungsgrade an, denen jedes Material standhalten kann, ohne dass Risse entstehen.
  3. Qualifizierung und Prüfung:
    • In diesem Dokument werden die notwendigen Testverfahren zur Qualifizierung von Materialien für den Einsatz in sauren Umgebungen beschrieben. Dazu gehören auch Labortests, die die in H₂S-Umgebungen herrschenden korrosiven Bedingungen simulieren.
    • Gibt die Kriterien für eine akzeptable Leistung in diesen Tests an und stellt sicher, dass die Materialien unter festgelegten Bedingungen keiner Rissbildung unterliegen.
  4. Design und Herstellung:
    • Enthält Empfehlungen für die Konstruktion und Herstellung von Geräten, um das Risiko wasserstoffbedingter Risse zu minimieren.
    • Betont die Bedeutung von Herstellungsprozessen, Schweißtechniken und Wärmebehandlungen, die die Widerstandsfähigkeit des Materials gegenüber durch H₂S verursachter Rissbildung beeinflussen können.
  5. Wartung und Überwachung:
    • Gibt Ratschläge zu Wartungspraktiken und Überwachungsstrategien, um Risse im Betrieb zu erkennen und zu verhindern.
    • Um die dauerhafte Integrität der Ausrüstung sicherzustellen, werden regelmäßige Inspektionen und zerstörungsfreie Prüfverfahren empfohlen.

Bedeutung in der Branche

  • Sicherheit: Gewährleistet den sicheren Betrieb von Geräten in sauren Betriebsumgebungen durch Reduzierung des Risikos katastrophaler Ausfälle aufgrund von Rissen.
  • Zuverlässigkeit: Verbessert die Zuverlässigkeit und Langlebigkeit der Ausrüstung und reduziert Ausfallzeiten und Wartungskosten.
  • Einhaltung: Hilft Unternehmen, gesetzliche Anforderungen und Industriestandards einzuhalten und rechtliche und finanzielle Auswirkungen zu vermeiden.

NACE MR0175/ISO 15156 ist in drei Teile gegliedert, die sich jeweils auf unterschiedliche Aspekte der Materialauswahl für den Einsatz in sauren Umgebungen konzentrieren. Hier ist eine detailliertere Aufschlüsselung:

Teil 1: Allgemeine Grundsätze für die Auswahl rissbeständiger Werkstoffe

  • Umfang: Bietet übergreifende Richtlinien und Grundsätze für die Auswahl von Materialien, die in H₂S-haltigen Umgebungen rissbeständig sind.
  • Inhalt:
    • Definiert wichtige Begriffe und Konzepte im Zusammenhang mit sauren Betriebsumgebungen und Materialabbau.
    • Gibt einen Überblick über allgemeine Kriterien zur Beurteilung der Eignung von Materialien für den Einsatz in sauren Umgebungen.
    • Beschreibt, wie wichtig es ist, bei der Materialauswahl Umweltfaktoren, Materialeigenschaften und Betriebsbedingungen zu berücksichtigen.
    • Bietet einen Rahmen für die Durchführung von Risikobewertungen und das Treffen fundierter Entscheidungen zur Materialauswahl.

Teil 2: Rissbeständige unlegierte und niedriglegierte Stähle und die Verwendung von Gusseisen

  • Umfang: In diesem Dokument werden die Anforderungen und Richtlinien für die Verwendung von Kohlenstoffstählen, niedriglegierten Stählen und Gusseisen in sauren Betriebsumgebungen behandelt.
  • Inhalt:
    • Gibt Einzelheiten zu den spezifischen Bedingungen an, unter denen diese Materialien sicher verwendet werden können.
    • Listet die mechanischen Eigenschaften und chemischen Zusammensetzungen auf, die erforderlich sind, damit diese Materialien Sulfidspannungsrissen (SSC) und anderen Formen wasserstoffbedingter Schäden widerstehen.
    • Bietet Richtlinien für die Wärmebehandlung und Herstellungsprozesse, die die Rissbeständigkeit dieser Materialien erhöhen können.
    • Erläutert die Notwendigkeit geeigneter Materialprüfungs- und Qualifizierungsverfahren, um die Einhaltung der Norm sicherzustellen.

Teil 3: Rissbeständige korrosionsbeständige Legierungen und andere Legierungen

  • Umfang: Befasst sich mit korrosionsbeständigen Legierungen (CRAs) und anderen Speziallegierungen in sauren Betriebsumgebungen.
  • Inhalt:
    • Identifiziert verschiedene Arten von CRAs, wie etwa rostfreien Stahl, Nickellegierungen und andere Hochleistungslegierungen, und ihre Eignung für den Einsatz in sauren Umgebungen.
    • Gibt die chemischen Zusammensetzungen, mechanischen Eigenschaften und Wärmebehandlungen an, die erforderlich sind, damit diese Materialien Rissbildung verhindern.
    • Bietet Richtlinien zum Auswählen, Testen und Qualifizieren von CRAs, um ihre Leistung in H₂S-Umgebungen sicherzustellen.
    • In diesem Dokument wird erläutert, wie wichtig es ist, bei der Auswahl von Materialien für bestimmte Anwendungen sowohl die Korrosionsbeständigkeit als auch die mechanischen Eigenschaften dieser Legierungen zu berücksichtigen.

NACE MR0175/ISO 15156 ist ein umfassender Standard, der dazu beiträgt, den sicheren und effektiven Einsatz von Materialien in sauren Umgebungen zu gewährleisten. Jeder Teil befasst sich mit verschiedenen Materialkategorien und bietet detaillierte Richtlinien für deren Auswahl, Prüfung und Qualifikation. Durch die Einhaltung dieser Richtlinien können Unternehmen das Risiko von Materialfehlern verringern und die Sicherheit und Zuverlässigkeit ihrer Abläufe in H₂S-haltigen Umgebungen verbessern.