Rohre aus Ölfeldern (OCTG)
Ölfeldrohre (OCTG) ist eine Familie nahtlos gewalzter Produkte, bestehend aus Bohrrohren, Futterrohren und Rohrleitungen, die je nach spezifischer Anwendung Belastungsbedingungen ausgesetzt sind. (Eine schematische Darstellung eines Tiefbrunnens finden Sie in Abbildung 1):
Der Bohrgestänge ist ein schweres nahtloses Rohr, das den Bohrer dreht und Bohrflüssigkeit zirkulieren lässt. Rohrsegmente von 30 Fuß (9 m) Länge sind mit Werkzeugverbindungen verbunden. Das Bohrrohr ist gleichzeitig einem hohen Drehmoment durch das Bohren, axialer Spannung durch sein Eigengewicht und innerem Druck durch austretende Bohrflüssigkeit ausgesetzt. Zusätzlich können sich auf diese grundlegenden Belastungsmuster wechselnde Biegebelastungen aufgrund von nicht vertikalem oder abgelenktem Bohren auswirken.
Mantelrohr kleidet das Bohrloch aus. Es ist axialer Spannung durch sein Eigengewicht, innerem Druck durch die Flüssigkeitsspülung und äußerem Druck durch umgebende Gesteinsformationen ausgesetzt. Die gepumpte Öl- oder Gasemulsion setzt das Gehäuse insbesondere axialer Spannung und innerem Druck aus.
Ein Rohr ist ein Rohr, durch das Öl oder Gas aus dem Bohrloch transportiert wird. Rohrsegmente sind im Allgemeinen etwa 9 m lang und haben an jedem Ende einen Gewindeanschluss.
Korrosionsbeständigkeit unter sauren Betriebsbedingungen ist eine entscheidende OCTG-Eigenschaft, insbesondere bei Gehäusen und Rohren.
Typische OCTG-Herstellungsverfahren umfassen (alle Maßbereiche sind ungefähre Angaben)
Kontinuierliche Dornwalz- und Stoßbankverfahren für Größen zwischen 21 und 178 mm Außendurchmesser.
Stopfenwalzwerk für Größen zwischen 140 und 406 mm Außendurchmesser.
Querwalzlochen und Pilgerwalzen für Größen zwischen 250 und 660 mm Außendurchmesser.
Diese Verfahren ermöglichen in der Regel nicht die thermomechanische Verarbeitung, die für die für das geschweißte Rohr verwendeten Band- und Plattenprodukte üblich ist. Daher müssen hochfeste nahtlose Rohre durch Erhöhung des Legierungsgehalts in Kombination mit einer geeigneten Wärmebehandlung, wie z. B. Abschrecken und Anlassen, hergestellt werden.
Abbildung 1. Schematische Darstellung einer tiefen, blühenden Fertigstellung
Um die grundlegende Anforderung einer vollständig martensitischen Mikrostruktur auch bei großen Rohrwandstärken zu erfüllen, ist eine gute Härtbarkeit erforderlich. Cr und Mn sind die wichtigsten Legierungselemente, die bei herkömmlichem Vergütungsstahl eine gute Härtbarkeit bewirken. Die Anforderung einer guten Beständigkeit gegen Sulfidspannungsrisse (SSC) begrenzt jedoch ihre Verwendung. Mn neigt beim Stranggießen zur Entmischung und kann große MnS-Einschlüsse bilden, die die Beständigkeit gegen wasserstoffinduzierte Risse (HIC) verringern. Höhere Cr-Werte können zur Bildung von Cr7C3-Niederschlägen mit grober, plattenförmiger Morphologie führen, die als Wasserstoffsammler und Rissinitiatoren wirken. Durch Legieren mit Molybdän können die Beschränkungen von Mn- und Cr-Legierungen überwunden werden. Mo ist ein viel stärkerer Härter als Mn und Cr, sodass es die Wirkung einer reduzierten Menge dieser Elemente schnell wiederherstellen kann.
Traditionell waren OCTG-Güten Kohlenstoff-Mangan-Stähle (bis zu einer Festigkeit von 55 ksi) oder Mo-haltige Güten bis zu 0,4% Mo. In den letzten Jahren haben Tiefbohrungen und Lagerstätten mit Schadstoffen, die Korrosion verursachen, eine starke Nachfrage nach höherfesten Materialien geschaffen, die gegen Wasserstoffversprödung und SCC beständig sind. Hochvergüteter Martensit ist die Struktur, die bei höheren Festigkeitsstufen am widerstandsfähigsten gegen SSC ist, und eine Konzentration von 0,75% Mo ergibt die optimale Kombination aus Streckgrenze und SSC-Beständigkeit.